Содержание

Введение..................................................................................................... 3

1. Особенности глобальных, региональных, локальных (ЛВС) сетей.... 4

1.1. Отличия различных видов сетей.................................................... 4

1.2. Виды топологий сетей.................................................................... 4

1.2.1. Топология типа «звезда»......................................................... 4

1.2.2. Кольцевая топология............................................................... 6

1.2.3. Шинная топология................................................................... 8

2. Коммутационное программное обеспечение ЛВС............................. 10

2.1. Состав коммутационного обеспечения сетей............................... 10

2.2. Особенности Ethernet, Arcnet, Tokin Ring................................... 11

2.2.1. Ethernet................................................................................... 11

2.2.2. ArcNet..................................................................................... 14

2.2.3. Tokin Ring............................................................................... 14

Заключение.............................................................................................. 16

Литература............................................................................................... 17

Введение

На сегодняшний день в мире существует более 130 миллионов компьютеров и более 80 % из них объединены в различные информационно-вычислительные сети от малых локальных сетей в офисах до глобальных сетей типа Internet, FidoNet, FREEnet и т.д. Всемирная тенденция к объединению компьютеров в сети обусловлена рядом важных причин, таких как ускорение передачи информационных сообщений, возможность быстрого обмена информацией между пользователями, получение и передача сообщений (факсов, E–Mail писем, электронных конференций и т.д.) не отходя от рабочего места, возможность мгновенного получения любой информации из любой точки земного шара, а так же обмен информацией между компьютерами разных фирм производителей работающих под разным программным обеспечением.

Такие огромные потенциальные возможности, которые несет в себе вычислительная сеть и тот новый потенциальный подъем, который при этом испытывает информационный комплекс, а так же значительное ускорение производственного процесса не дают нам право игнорировать и не применять их на практике.

Зачастую возникает необходимость в разработке принципиального решения вопроса по организации ИВС (информационно–вычислительной сети) на базе уже существующего компьютерного парка и программного комплекса, отвечающей современным научно–техническим требованиям с учетом возрастающих потребностей и возможностью дальнейшего постепенного развития сети в связи с появлением новых технических и программных решений.

1. Особенности глобальных, региональных, локальных (ЛВС) сетей

1.1. Отличия различных видов сетей

В зависимости от того, на каком расстоянии друг от друга находятся компьютеры, объединенные в сеть, различают локальные, региональные и глобальные вычислительные сети[1].

Локальная вычислительная сеть (ЛВС) объединяет, как правило, компьютеры, находящиеся в одном или соседних помещениях, в пределах одного или соседних зданий на расстояниях, не превышающих одного-двух километров.

Региональная - связывает абонентов, расположенных на значительном расстоянии друг от друга в пределах города, района или области.

Глобальная сеть - это сеть, в которой объединены компьютеры, расположенные в различных странах или на различных континентах земного шара (примером может служить сеть Интернет).

1.2. Виды топологий сетей

1.2.1. Топология типа «звезда».

Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте сети RelCom. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Рисунок 1. Структура топологии ЛВС в виде «звезды»

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях[2].

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети.

Центральный узел управления – файловый сервер реализует оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

1.2.2. Кольцевая топология

При кольцевой топологии сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.

Рисунок 2. Структура кольцевой топологии ЛВС.

Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географическое расположение рабочих станций далеко от формы кольца (например, в линию).

Сообщения циркулируют регулярно по кругу. Рабочая станция посылает по определенному конечному адресу информацию, предварительно получив из кольца запрос. Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять «в дорогу» по кабельной системе одно за другим. Очень просто можно сделать кольцевой запрос на все станции. Продолжительность передачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется. Неисправности в кабельных соединениях локализуются легко.

Подключение новой рабочей станции требует кратко срочного выключения сети, так как во время установки кольцо должно быть разомкнуто. Ограничения на протяженность вычислительной сети не существует, так как оно, в конечном счете, определяется исключительно расстоянием между двумя рабочими станциями.

Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий. Отдельные звезды включаются с помощью специальных коммутаторов (англ. Hub – концентратор), которые по-русски также иногда называют «хаб». В зависимости от числа рабочих станций и длины кабеля между рабочими станциями применяют активные или пассивные концентраторы. Активные концентраторы дополнительно содержат усилитель для подключения от 4 до 16 рабочих станций. Пассивный концентратор является исключительно разветвительным устройством (максимум на три рабочие станции). Управление отдельной рабочей станцией в логической кольцевой сети происходит так же, как и в обычной кольцевой сети. Каждой рабочей станции присваивается соответствующий ей адрес, по которому передается управление (от старшего к младшему и от самого младшего к самому старшему). Разрыв соединения происходит только для нижерасположенного (ближайшего) узла вычислительной сети, так что лишь в редких случаях может нарушаться работа всей сети.

Рисунок 3. Структура логической кольцевой цепи ЛВС.

1.2.3. Шинная топология

При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети[3].

Рисунок 4. Структура шинной топологии ЛВС.

Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции.

В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet–кабель с тройниковым соединителем. Отключение и особенно подключение к такой сети требуют разрыва шины, что вызывает нарушение циркулирующего потока информации и зависание системы.

Новые технологии предлагают пассивные штепсельные коробки, через которые можно отключать и/или подключать рабочие станции во время работы вычислительной сети.

Благодаря тому, что рабочие станции можно подключать без прерывания сетевых процессов и коммуникационной среды, очень легко прослушивать информацию, т.е. ответвлять информацию из коммуникационной среды.

В ЛВС с прямой (не модулируемой) передачей информации всегда может существовать только одна станция, передающая информацию. Для предотвращения коллизий в большинстве случаев применяется временной метод разделения, согласно которому для каждой подключенной рабочей станции в определенные моменты времени предоставляется исключительное право на использование канала передачи данных. Поэтому требования к пропускной способности вычислительной сети при повышенной нагрузке повышаются, например, при вводе новых рабочих станций. Рабочие станции присоединяются к шине посредством устройств ТАР (англ. Terminal Access Point – точка подключения терминала). ТАР представляет собой специальный тип подсоединения к коаксиальному кабелю. Зонд игольчатой формы внедряется через наружную оболочку внешнего проводника и слой диэлектрика к внутреннему проводнику и присоединяется к нему.

В ЛВС с модулированной широкополосной передачей информации различные рабочие станции получают, по мере надобности, частоту, на которой эти рабочие станции могут отправлять и получать информацию. Пересылаемые данные модулируются на соответствующих несущих частотах, т.е. между средой передачи информации и рабочими станциями находятся соответственно модемы для модуляции и демодуляции. Техника широкополосных сообщений позволяет одновременно транспортировать в коммуникационной среде довольно большой объем информации. Для дальнейшего развития дискретной транспортировки данных не играет роли, какая первоначальная информация подана в модем (аналоговая или цифровая), так как она все равно в дальнейшем будет преобразована.

2. Коммутационное программное обеспечение ЛВС

2.1. Состав коммутационного обеспечения сетей

Весьма важный момент – учет факторов, влияющих на выбор физической среды передачи (кабельной системы). Среди них можно перечислить следующие[4]:

1)    Требуемая пропускная способность, скорость передачи в сети;

2)    Размер сети;

3)    Требуемый набор служб (передача данных, речи, мультимедиа и т.д.), который необходимо организовать.

4)    Требования к уровню шумов и помехозащищенности;

5)    Общая стоимость проекта, включающая покупку оборудования, монтаж и последующую эксплуатацию.

Основная среда передачи данных ЛКС – неэкранированная витая пара, коаксиальный кабель, многомодовое оптоволокно. При примерно одинаковой стоимости одномодового и многомодового оптоволокна, оконечное оборудование для одномодового значительно дороже, хотя и обеспечивает большие расстояния. Поэтому в ЛКС используют, в основном, многомодовую оптику.

Основные технологии ЛКС: Ethernet, ATM. Технологии FDDI (2 кольца), применявшаяся ранее для опорных сетей и имеющая хорошие характеристики по расстоянию, скорости и отказоустойчивости, сейчас мало используется, в основном, из-за высокой стоимости, как, впрочем, и кольцевая технология Token Ring, хотя обе они до сих пор поддерживаются на высоком уровне всеми ведущими вендорами, а в отдельных случаях (например, применение FDDI для опорной сети масштаба города, где необходима высокая отказоустойчивость и гарантированная доставка пакетов) использование этих технологий все еще может быть оправданным.

2.2. Особенности Ethernet, Arcnet, Tokin Ring

2.2.1. Ethernet

Ethernet – изначально коллизионная технология, основанная на общей шине, к которой компьютеры подключаются и «борются» между собой за право передачи пакета. Основной протокол – CSMA/CD (множественный доступ с чувствительностью несущей и обнаружению коллизий). Дело в том, что если две станции одновременно начнут передачу, то возникает ситуация коллизии, и сеть некоторое время «ждет», пока «улягутся» переходные процессы и опять наступит «тишина». Существует еще один метод доступа – CSMA/CA (Collision Avoidance) – то же, но с исключением коллизий. Этот метод применяется в беспроводной технологии Radio Ethernet или Apple Local Talk – перед отправкой любого пакета в сети пробегает анонс о том, что сейчас будет происходить передача, и станции уже не пытаются ее инициировать.

Ethernet бывает полудуплексный (Half Duplex), по всем средам передачи: источник и приемник «говорит по очереди» (классическая коллизионная технология) и полнодуплексный (Full Duplex), когда две пары приемника и передатчика на устройствах говорят одновременно. Этот механизм работает только на витой паре (одна пара на передачу, одна пара на прием) и на оптоволокне (одна пара на передачу, одна пара на прием)[5].

Ethernet различается по скоростям и методам кодирования для различной физической среды, а также по типу пакетов (Ethernet II, 802.3, RAW, 802.2 (LLC), SNAP).

Ethernet различается по скоростям: 10 Мбит/с, 100 Мбит/с, 1000 Мбит/с (Гигабит). Поскольку недавно ратифицирован стандарт Gigabit Ethernet для витой пары категории 5, можно сказать, что для любой сети Ethernet могут быть использованы витая пара, одномодовое (SMF) или многомодовое (MMF) оптоволокно. В зависимости от этого существуют различные спецификации:

·        10 Мбит/с Ethernet: 10BaseT, 10BaseFL, (10Base2 и 10Base5 существуют для коаксиального кабеля и уже не применяются);

·        100 Мбит/с Ethernet: 100BaseTX, 100BaseFX, 100BaseT4, 100BaseT2;

·        Gigabit Ethernet: 1000BaseLX, 1000BaseSX (по оптике) и 1000BaseTX (для витой пары)

Существуют два варианта реализации Ethernet на коаксиальном кабеле, называемые «тонкий» и «толстый» Ethernet (Ethernet на тонком кабеле 0,2 дюйма и Ethernet на толстом кабеле 0,4 дюйма).

Тонкий Ethernet использует кабель типа RG-58A/V (диаметром 0,2 дюйма). Для маленькой сети используется кабель с сопротивлением 50 Ом. Коаксиальный кабель прокладывается от компьютера к компьютеру. У каждого компьютера оставляют небольшой запас кабеля на случай возможности его перемещения. Длина сегмента 185 м, количество компьютеров, подключенных к шине – до 30.

После присоединения всех отрезков кабеля с BNC-коннекторами (Bayonel-Neill-Concelnan) к Т-коннекторам (название обусловлено формой разъема, похожей на букву «Т») получится единый кабельный сегмент. На его обоих концах устанавливаются терминаторы («заглушки»). Терминатор конструктивно представляет собой BNC-коннектор (он также надевается на Т-коннектор) с впаянным сопротивлением. Значение этого сопротивления должно соответствовать значению волнового сопротивления кабеля, т.е. для Ethernet нужны терминаторы с сопротивлением 50 Ом.

Толстый Ethernet – сеть на толстом коаксиальном кабеле, имеющем диаметр 0,4 дюйма и волновое сопротивление 50 Ом. Максимальная длина кабельного сегмента – 500 м.

Прокладка самого кабеля почти одинакова для всех типов коаксиального кабеля.

Для подключения компьютера к толстому кабелю используется дополнительное устройство, называемое трансивером. Трансивер подсоединен непосредственно к сетевому кабелю. От него к компьютеру идет специальный трансиверный кабель, максимальная длина которого 50 м. На обоих его концах  находятся 15-контактные DIX-разъемы (Digital, Intel и Xerox). С помощью одного разъема осуществляется подключение к трансиверу, с помощью другого – к сетевой плате компьютера.

Трансиверы освобождают от необходимости подводить кабель к каждому компьютеру. Расстояние от компьютера до сетевого кабеля определяется длиной трансиверного кабеля.

Ethernet на витой паре. Витая пара – это два изолированных провода, скрученных между собой. Для Ethernet используется 8-жильный кабель, состоящий из четырех витых пар. Для защиты от воздействия окружающей среды кабель имеет внешнее изолирующее покрытие.

Основной узел на витой паре – hub (в переводе называется накопителем, концентратором или просто хаб). Каждый компьютер должен быть подключен к нему с помощью своего сегмента кабеля. Длина каждого сегмента не должна превышать 100 м. На концах кабельных сегментов устанавливаются разъемы RJ-45. Одним разъемом кабель подключается к хабу, другим – к сетевой  плате. Разъемы RJ-45 очень компактны, имеют пластмассовый корпус и восемь миниатюрных площадок.

Хаб – центральное устройство в сети на витой паре, от него зависит ее работоспособность. Располагать его надо в легкодоступном месте, чтобы можно было легко подключать кабель и следить за индикацией портов.

Хабы выпускаются на разное количество портов – 8, 12, 16 или 24. Соответственно к нему можно подключить такое же количество компьютеров.

2.2.2. ArcNet

Этот метод доступа разработан фирмой Datapoint Corp. Он тоже получил широкое распространение, в основном благодаря тому, что оборудование Arcnet дешевле, чем оборудование Ethernet или Token -Ring. Arcnet используется в локальных сетях с топологией "звезда". Один из компьютеров создает специальный маркер (сообщение специального вида), который последовательно передается от одного компьютера к другому.

Если станция желает передать сообщение другой станции, она должна дождаться маркера и добавить к нему сообщение, дополненное адресами отправителя и назначения. Когда пакет дойдет до станции назначения, сообщение будет "отцеплено" от маркера и передано станции.

2.2.3. Tokin Ring

Топология этой сети больше похожа на топологию звезды, чем на топологию кольца. Вместо того чтобы, соединяясь друг с другом, образовывать кольцо, рабочие станции Token-Ring подключаются радиально к концентратору типа 8228 производства IBM. Правда, концентраторов может быть несколько, и в этом случае концентраторы действительно объединяются в кольцо через специальные разъемы.

Однако если используется один концентратор, то объединяющие разъемы можно не закольцовывать.

Скорость передачи данных в сети Token-Ring может достигать 4 или 16 Мбит в секунду, однако стоимость сетевого оборудования выше, чем для сети Ethernet. Кроме того, существуют и другие ограничения (см. таблицу 1)[6].

Таблица #1. Ограничения для сети Token-Ring.

Максимальное количество концентраторов типа 8228 в сети

12

Минимальное количество рабочих станций в сети

96

Максимальная длина кабеля между двумя концентраторами

45 м

Максимальная длина кабеля, соединяющая все концентраторы в сети

120 м

Как видно из этой таблицы, сети Token-Ring не рассчитаны на большие расстояния. Все компьютеры должны быть расположены на одном или двух этажах здания. Более высокая стоимость оборудования с Ethernet дополнительно уменьшает привлекательность этого изделия IBM.

Заключение

На сегодняшний день разработка и внедрение ИВС является одной из самых интересных и важных задач в области информационных технологий. Все больше возрастает необходимость в оперативной информации, постоянно растет траффик сетей всех уровней.

В связи с этим появляются новые технологии передачи информации в ИВС. Среди последних открытий следует отметить возможность передачи данных с помощью обычных линий электропередач, при чем данный метод позволяет увеличить не только скорость, но и надежность передачи.

Сетевые технологии очень быстро развиваются, в связи с чем они начинают выделяться в отдельную информационную отрасль. Ученные прогнозируют, что ближайшим достижением этой отрасли будет полное вытеснение других средств передачи информации (телевидение, радио, печать, телефон и т.д.).

На смену этим «устаревшим» технологиям придет компьютер, он будет подключен к некоему глобальному потоку информации, возможно даже это будет Internet, и из этого потока можно будет получить любую информацию в любом представлении. Хотя нельзя утверждать, что все будет именно так, поскольку сетевые технологии, как и сама информатика – самые молодые науки, а все молодое – очень непредсказуемо.

Литература

1.     Кульгин М. Практика построения компьютерных систем. Для профессионалов. Издательство «Питер», 2001, 320 с.

2.     Новиков Ю.В., Кондратенко С.В. Локальные сети: архитектура, алгоритмы, проектирование. Издательство «Эком», 2000, 312 с.

3.     Скотт Хогдал Дж. Анализ и диагностика компьютерных сетей. Издательство «Лори», 2001, 354 с.

4.     Столлинг В. Компьютерные системы передачи данных. Издательство «Вильямс», 2002, 928 с.

5.     Таненбаум Э. Компьютерные сети. Третье издание. Издательство «Питер», 2002, 848 с.

6.     Хэлд Г. Технологии передачи данных. Издательство «Питер»,  2003, 720 с.


[1] Столлинг В. Компьютерные системы передачи данных. Издательство «Вильямс», 2002, стр. 54

[2] Новиков Ю.В., Кондратенко С.В. Локальные сети: архитектура, алгоритмы, проектирование. Издательство «Эком», 2000, стр. 210

[3] Таненбаум Э. Компьютерные сети. Третье издание. Издательство «Питер», 2002, стр. 477

[4] Скотт Хогдал Дж. Анализ и диагностика компьютерных сетей. Издательство «Лори», 2001, стр. 198

[5] Хэлд Г. Технологии передачи данных. Издательство «Питер»,  2003, стр. 549

[6] Кульгин М. Практика построения компьютерных систем. Для профессионалов. Издательство «Питер», 2001, стр. 79