Содержание
Введение. 3
1. Формирование свойств материала и размерных связей в процессе изготовления цилиндрических зубчатых колес. 5
2. Разработка технологических процессов изготовления. 8
3. Достижение требуемой точности деталей в процессе изготовления цилиндрических зубчатых колес. 10
Заключение. 15
Список литературы.. 16
Введение
Осуществление производственного процесса включает выполнение ряда технологических процессов изготовления деталей и сборки машины, доставку к рабочим местам технологической документации, заготовок, сборочных единиц, инструментов, технологической оснастки, складирование заготовок и продукции, контроль хода производственного процесса и управление им и прочие действия, обеспечивающие функционирование производственного процесса и изготовление качественной продукции.
Каждый этап процесса изготовления сопровождается своими информационными процессами, цели и содержание которых обусловлены спецификой решаемых задач. Однако на любом этаже при решении конкретных технологических и производственных задач ведут сбор, запрос, поиск, хранение, переработку, преобразование, передачу и использование информации.
Технологическая информация, поступающая на рабочее место, является исходной в информационном процессе, совершаемом при выполнении операции. Как выполнение любой операции, связанное с решением множества технологических задач (установка заготовки, настройка станка, наблюдение за ходом процесса обработки и управления им), так и анализ полученных результатов требует получения, преобразования, передачи и других действий над информацией.
Выполнение производственного процесса связано с решением многих производственных и технологических задач. Любая из них расчленяется на несколько действий, и каждое из них должно быть обеспечено своим информационным процессом. Информационное обеспечение задачи всегда предшествует ее решению.
Цель данной работы – раскрыть сущность технологического процесса изготовления станин.
Задачи:
- изучить формирование свойств материала и размерных связей в процессе изготовления цилиндрических зубчатых колес;
- рассмотреть разработку технологических процессов изготовления;
- раскрыть достижение требуемой точности деталей в процессе изготовления и жесткость технологической системы.
1. Формирование свойств материала и размерных связей в процессе изготовления цилиндрических зубчатых колес
Для того чтобы получить качественную деталь необходимо при ее конструировании и изготовлении решить две задачи:
- обеспечить требуемые свойства материала детали;
- обеспечить необходимую точность размеров, расстояний, относительных поворотов и формы поверхностей детали.
Материал детали выбирает конструктор исходя из служебного назначения детали, механических свойств материала, физических свойств материала, химических свойств материала, технологических свойств материала.
К механическим свойствам относятся временное сопротивление при растяжении и сжатие, предел текучести, относительное удлинение, структура остаточных напряжений и другие.
К физическим свойствам относятся удельный вес, плотность, модуль объемного сжатия, модуль Юнга, температура плавления, температура кристаллизации, теплопроводность, коэффициент линейного расширения, электрическое сопротивление.
Химические свойства материала, прежде всего, определяются его коррозионной стойкостью.
К технологическим свойствам относятся обрабатываемость резанием, обрабатываемость давлением, свариваемость, упрочняемость.
Требования к свойствам материала должны задаваться системой номинальных значений и допусками, ограничивающими отклонения показателей их номинальных значений.
На машиностроительных предприятиях детали машин изготавливают из полуфабрикатов. Полуфабрикатами в основном являются изделия металлургических предприятий: прокат; заготовки, полученные отрезкой из проката, литьем, пластическим деформированием, сваркой; металлические порошки и др.
При изготовлении детали заготовки подвергаются силовым, тепловым, химическим и другими воздействиями. Вследствие этого на каждом из этапов технологического процесса могут меняться химический состав, структура, зернистость материала заготовки, а, следовательно, механические свойства, физические свойства, химические свойства, состояние поверхностного слоя.
Таким образом, для достижения требуемых свойств материала детали необходимо учитывать следующее:
- строить технологический процесс изготовления детали так, чтобы обеспечить необходимые свойства материала детали наряду с ее геометрической точностью;
- исходя из требуемых свойств материала детали и с учетом изменения этих свойств в процессе изготовления, предъявить комплекс требований к материалу заготовки (например, жидкотекучесть, хорошая обрабатываемость);
- обеспечить соблюдение требований к материалу заготовки в технологическом процессе ее изготовления (литья, ковки, штамповки отрезки)[1].
Для того чтобы осознанно выбрать технологический процесс получения заготовки и обеспечить необходимое качество материала детали в процессе ее, изготовления, необходимо знать, как формируются свойства материала в процессе получения заготовки и в процессе изготовления детали.
Вид заготовки и способ ее получения выбирают с учетом ее последующей обработки на основе технико-экономического анализа.
На выбор заготовки влияет марка материала и конструкции детали. На выбор способа получения заготовки кроме материала и конструкции детали влияют размеры детали, требуемая точность размеров детали, качество поверхности заготовки, объем выпуска, тип производства, характер последующей механической и других видов обработки заготовки.
Разные способы получения заготовок приводят к разным свойствам их материала. Структура и размер зерен материала отливки зависит от многих факторов: количества и свойства примесей в чистом металле или легирующих элементов в сплаве, температуры разливки, скорости охлаждения при кристаллизации, конфигурации, теплопроводности, состояния внутренних поверхностей литейной формы[2].
От структуры и зернистости материала отливки зависят его механические свойства.
Свойства материала литой заготовки во многом зависит от ее конфигурации. Конструкция отливки должна создавать возможность одновременного или последовательно направленного затвердения ее частей. Нужно стремиться при проектировании к равномерным сечениям стенок или постепенному увеличению массивности стенок в предполагаемом направлении затвердения материала.
Неравномерность охлаждения различных частей отливок, сопротивление формы и стержней свободной усадки металла приводят к образованию трещин, усадочных раковин и остаточных напряжений.
Быстрое охлаждение тонких стенок приводит к «отбелу» поверхностей.
Пластическое деформирование материала, также сопровождается изменением его физико-механических свойств. При прокатке и ковке слитков металла происходит деформирование его дендритной структуры, зерна металла вытягиваются, и его механические свойства в продольном и поперечном направлениях становятся различными, что служит причиной снижения прочности заготовок и появления остаточных напряжений. При пластичном деформировании большое значение имеет температура нагревания. Нарушение теплового режима приводит к образованию трещин, крупнозернистой, дефектной структуре (перегретая сталь) и к неисправимому браку - пережогу (оплавлению и окислению металла по граница зерен). Если деформирование осуществляется без предварительного нагрева, то в металле происходит ряд явлений (возникают остаточные напряжения, разрушаются отдельные кристаллы), в результате которых деталь приобретет наклеп. Наклеп затрудняет пластическое деформирование и приводит к разрушению металла.
2. Разработка технологических процессов изготовления
Задача разработки технологического процесса изготовления детали заключается в нахождении для данных производственных условий оптимального варианта перехода от полуфабриката, поставляемого на машиностроительный завод, к готовой детали. Выбранный вариант должен обеспечивать требуемое качество детали при наименьшей ее себестоимости. Технологический процесс изготовления детали рекомендуется разрабатывать в следующей последовательности:
- изучить по чертежам служебное назначение детали и проанализировать соответствие ему технических требований и норм точности;
- выявить число деталей, подлежащих изготовлению в единицу времени и по неизменяемому чертежу, наметить вид и форму организации производственного процесса;
- выбрать полуфабрикат, из которого должна быть изготовлена деталь;
- выбрать технологический процесс получения заготовки, если неэкономично или физически невозможно изготовлять деталь непосредственно из полуфабриката;
- обосновать выбор технологических баз и установить последовательность обработки поверхностей заготовки;
- выбрать способы обработки поверхностей заготовки и установить число переходов по обработке каждой поверхности исходя из требований к качеству детали;
- рассчитать припуски и установить межпереходные размеры и допуски на отклонения всех показателей точности детали;
- оформить чертеж заготовки;
- выбрать режимы обработки, обеспечивающие требуемое качество детали и производительность;
- пронормировать технологический процесс изготовления детали;
- сформировать операции из переходов и выбрать оборудование для их осуществления;
- выполнить размерный анализ технологического процесса;
- выявить необходимую технологическую оснастку для выполнения каждой операции и разработать требования, которым должен отвечать каждый вид оснастки;
- разработать другие варианты технологического процесса изготовления детали, рассчитать их себестоимость и выбрать наиболее экономичный вариант;
- оформить технологическую документацию;
- разработать технические задания на конструирование нестандартного оборудования, приспособлений, режущего и измерительного инструмента[3].
При разработке технологического процесса изготовления детали используют чертежи сборочной единицы, в состав которой входит деталь, чертежи самой детали, сведения о количественном выпуске деталей, стандарты на полуфабрикаты и заготовки, типовые и групповые технологические процессы, технологические характеристики оборудования и инструментов, различного рода справочную литературу. Руководящие материалы, инструкции, нормативы.
Технологический процесс разрабатывают либо с привязкой к действующему, либо для создаваемого производства. В последнем случае технолог обладает большей свободой в принятии решений по построению технологического процесса и выбору средств для его осуществления.
Деталь является элементарной частью сборочной единицы. Поэтому, приступая к формулировке ее служебного назначения, необходимо изучить чертеж и служебное назначение сборочной единицы, в которую входит данная деталь.
Формулируя служебное назначение детали, необходимо не только четко сформулировать задачи, для решения которых предназначена деталь, но и описать условия, в которых деталь должна выполнять свое служебное назначение в течение всего срока службы.
Выясняя служебное назначение детали и ее роль в работе СЕ, необходимо разобраться в функциях, выполняемых ее поверхностями, которые могут быть: исполнительными, основными, вспомогательными или свободными.
Для того чтобы деталь могла экономично выполнять свое служебное назначение, она должна обладать необходимым качеством. Важнейшим и самым трудоемким при достижении показателем качества детали, как и СЕ, является ее точность. Характеризуется она рядом технических требований.
Учитывая значимость технических требований, служащих основанием для принятия важнейших решений при проектировании технологического процесса изготовления детали, необходимо каждое техническое требование проанализировать с учетом решений, принятых при разработке технологического процесса сборки СЕ, в которую входит данная деталь. Таким образом, при анализе технических требований на деталь необходимо учитывать: СН сборочной единицы, технические требования на СЕ, методы достижения требуемой точности по каждому техническому требованию на СЕ, ТП сборки СЕ.
3. Достижение требуемой точности деталей в процессе изготовления цилиндрических зубчатых колес
Настройка технологической системы начинается с установки приспособлений. Для упрощения процесса установки приспособлений на исполнительных поверхностях станков делают пазы. Центрирующие пояски, посадочные гнезда и т.п., а у приспособлений – шпонки, выточки, цилиндрические или конические хвостовики и т.д.
Наиболее простым средством сокращения затрат времени на настройку станка является ранее изготовленная деталь или специальный эталон. Особенно часто этот способ применяют при обработке заготовок несколькими инструментами. Заключается он в том, что инструмент режущими кромками приводят до соприкосновения с эталоном и закрепляют.
При обработке заготовок сложного профиля, больших габаритных размеров и массы используют, для настройки, специально изготовленные габариты. Габарит представляет собой профиль детали, который изготовляют в виде отливки или сварной конструкции небольшой толщины. Рабочие поверхности защищают калеными накладными пластинками.
При изготовлении деталей простых форм иногда для настройки используют плоскопараллельные меры, которые устанавливают на специальные площадки приспособлений.
Для защиты поверхностей используются щупы или папиросная бумага. Точность настройки по эталонам и габаритам невысока (0,05—0,10 мм). Для повышения точности настройки станки снабжают специальными измерительными средствами. В большей степени точность настройки зависит от квалификации оператора.
Необходимость поднастройки возникает из-за того, что под воздействием систематических факторов точность первоначальной настройки теряется и возможно появление брака.
Отклонения, возникающие в процессе обработки заготовки, называются погрешностями динамической настройки.
Одним из мощных факторов динамического характера является сила резания Р и ее колебания. Из известных формул можно определить, что значительное влияние на силу резания оказывает глубина (t) и свойства материала заготовки, характеризуемое коэффициентом КМ. Глубина резания определяется припуском на обработку, колебания значений которого является одним из решающих факторов, влияющих на точность детали[4].
Отклонения припусков на обработку. Значения и колебания значений припусков зависят в основном от точности заготовок, поступающих на обработку. Причем колебания припуска наблюдаются не только у различных заготовок данного наименования, но и в пределах одной поверхности. Поэтому силы резания могут меняться не только при переходе к обработке другой заготовки, но и при обработке разных участков поверхности одной и той же заготовки. Неравномерный припуск на отдельной поверхности приводит к отклонениям формы поверхности. Колебания припусков в партии заготовок является причиной рассеяния размеров деталей. Избыточный и неравномерный припуск заставляет назначать дополнительные рабочие ходы, что ведет к снижению производительности процесса изготовления детали и повышению ее себестоимости. Необходимо стремиться к уменьшению припусков.
Отклонения свойств материала заготовок. Также как и припуски, неоднородные свойств материала заготовок влияют на точность деталей через изменения сил резания. Связь сил резания принято учитывать коэффициентом КМ, поставленным в зависимость от твердости материала. Например: для горячекатаных и отожженных сталей - КМ=1, для алюминия и силумина - КМ=2 и т. д.
Значения припусков и характеристики свойств материала в технологическом процессе изготовления детали выступают как случайные величины. Поэтому и сила резания является случайной.
Связь точности изготовления деталей с припусками и свойствами материала заготовок сводится к следующему. Значение припуска и характер свойств материала заготовок определяет значение силы резания.
Сила резания через жесткость технологической системы трансформируется в относительное упругое перемещение режущего инструмента и заготовки, являющееся основной частью ωд.
В процессе обработки заготовок звенья технологической системы находятся под непрерывным воздействием различных источников теплоты. Основными источниками теплоты являются механическая работа, затрачиваемая на резание, и работа по преодолению сил трения движущимися деталями станка. К этому добавляется теплота, создаваемая работой электрических и гидравлических систем станка, теплота, сообщаемая внешней средой. Неодинаково нагретыми могут быть заготовки, поступающие на обработку. Изменения температуры технологической системы порождают дополнительные пространственные относительные перемещения ее исполнительных поверхностей и, как следствие, добавочные слагаемые погрешности динамической настройки. Перемещения, порождаемые изменениями температуры, получили название температурных деформаций.
Распределение теплоты в технологической системе неравномерно. Одни ее компоненты, даже части отдельных деталей, нагреваются сильнее другие слабее.
Нагрев деталей станка происходит в результате работы его механизмов, гидроприводов и электроустройств. Теплота станку сообщается также СОЖ, нагревательными устройствами, находящимися вблизи станка, воздухом в цехе. Наибольшей степени в станке нагревается шпиндельная бабка. Температура ее корпуса в различных точках может доходить до 30—70oС, а шпинделей и валов — до 40-100oС. Меньше нагревается станина. Соответственно уровню нагрева детали станка деформируются в трех координатных направлениях, нарушая тем самым первоначальную точность станка.
Тепловые деформации режущего инструмента вызывает теплота,
отводимая из зоны резания. Несмотря на то, что доля теплоты, приходящаяся на
инструмент, составляет лишь 2-5%, и ее оказывается достаточно для нагрева
режущих кромок до 900o С. В результате, например, изменение вылета
токарных резцов средних размеров в процессе обработки заготовки могут доходить
до 0,05-
Тепловые деформации станка и инструмента протекают в пространстве и приводят к отклонениям относительного положения заготовки и инструмента, приданного им в процессе настройки технологической системы. Относительное перемещения инструмента и технологических баз заготовки служат причиной непрерывного изменения значения текущего размера, что в свою очередь отражается на всех геометрических показателях точности детали: форме, относительном повороте, расстоянии и размере получаемой поверхности.
Заключение
На основании изложенного можно сделать следующие выводы:
- качество изготавливаемых деталей находится в прямой зависимости от квалификации;
- создание благоприятных условий для труда, облегчающих физическую и умственную деятельность работающего, является одним из средств повышения качества продукции и производительности труда;
- в массовом и крупносерийном производстве при выполнении однообразной и монотонной работы следует периодически делать перестановку рабочих с одних операций на другие, создавая тем самым разнообразие в их труде;
- при конструировании приспособлений следует избегать ручных зажимов и применять пневматические, гидравлические, электромеханические зажимы, обеспечивающие стабильность сил закрепления заготовок[5].
Свойства материала литой заготовки во многом зависит от ее конфигурации. Конструкция отливки должна создавать возможность одновременного или последовательно направленного затвердения ее частей. Нужно стремиться при проектировании к равномерным сечениям стенок или постепенному увеличению массивности стенок в предполагаемом направлении затвердения материала.
Неравномерность охлаждения различных частей отливок, сопротивление формы и стержней свободной усадки металла приводят к образованию трещин, усадочных раковин и остаточных напряжений.
Для технологического процесса изготовления детали, большое значение имеет обрабатываемость материала резанием.
Обрабатываемость резанием – способность поддаваться обработке резанием, зависит, от химического состава материала заготовки, его структуры, зернистости, а также от свойств материала режущего инструмента.
Список литературы
1. Балакшин Б.С. Теория и практика технологии машиностроения. В 2-х кн.- М.: Машиностроение, 1982.
2. Колесов И.М. Основы технологии машиностроения: Учебник для машиностроительных вузов. – М.: Машиностроение, 1997. - 592с.
3. Маталин А.А. Технология машиностроения: Учебник для вузов. Л.: Машиностроение. - 1985. - 512с
4. Основы металловедения. / Под ред. Юрьева Р.М. – М.: Металлургия, 2004. – 364с.
5. Суслов А.Г.Технология машиностроения. – М.: Машиностроение. – 2004. – 400с.
[1] Маталин А.А. Технология машиностроения: Учебник для вузов. Л.: Машиностроение. - 1985. - 512с.
[2] Основы металловедения. / Под ред. Юрьева Р.М. – М.: Металлургия, 2004. – 364с.
[3] Балакшин Б.С. Теория и практика технологии машиностроения. В 2-х кн.- М.: Машиностроение, 1982.
[4] Колесов И.М. Основы технологии машиностроения: Учебник для машиностроительных вузов. – М.: Машиностроение, 1997. - 592с.
[5] Суслов А.Г.Технология машиностроения. – М.: Машиностроение. – 2004. – 400с.