Содержание
Задание 1. 3
Задание 2. 6
Задание 3. 9
Задание 4. 11
Задание 5. 14
Список литературы.. 17
Задание 1
1. Определите, на какой диаграмме показаны временные данные, а на какой пространственные (рис.1 и рис. 2).
Рисунок 1 – Структура использования денежных доходов за 2001 г
Рисунок 2 – Структура использования денежных доходов за 2001 г
Ответ:
Прогнозы часто осуществляются на основе некоторых статистических показателей, которые изменяются во времени. Если эти показатели имеют значения на определенные промежутки времени, следующие друг за другом, то образуются некоторые ряды данных с определенными тенденциями. Ряд расположенных в хронологической последовательности значений статистических показателей, представляют собой временной (динамический) ряд.
Динамическим рядом называется ряд чисел или ряд однородных статистических величин, показывающих изменения размеров какого-либо явления или признака во времени.
Каждый временной ряд состоит из двух элементов: отрезки времени (периоды), в рамках которых был зафиксирован определенный статистический показатель и статистические показатели, характеризующие объект исследования (уровни ряда). Эти данные представлены на рис. 1.
На рис. 2 представлены пространственные данные, т.е. совокупность каких-либо параметров (в данном случае структуры денежных расходов) за один временной период (за декабрь).
2. Дайте определение регрессии.
Исследуя природу, общество, экономику, необходимо считаться со взаимосвязью наблюдаемых процессов и явлений. При этом полнота описания так или иначе определяется количественными характеристиками причинно-следственных связей между ними. Оценка наиболее существенных из них, а также воздействия одних факторов на другие является одной из основных задач статистики.
Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значений зависимой переменной.
Аппроксимация данных с учетом их статистических параметров относится к задачам регрессии. Они обычно возникают при обработке экспериментальных данных, полученных в результате измерений процессов или физических явлений, статистических по своей природе (как, например, измерения в радиометрии и ядерной геофизике), или на высоком уровне помех (шумов). Задачей регрессионного анализа является подбор математических формул, наилучшим образом описывающих экспериментальные данные.
Математическая постановка задачи регрессии заключается в следующем. Зависимость величины (числового значения) определенного свойства случайного процесса или физического явления Y от другого переменного свойства или параметра Х, которое в общем случае также может относиться к случайной величине, зарегистрирована на множестве точек xk множеством значений yk, при этом в каждой точке зарегистрированные значения yk и xk отображают действительные значения Y(хk) со случайной погрешностью sk, распределенной, как правило, по нормальному закону. По совокупности значений yk требуется подобрать такую функцию f(xk, a0, a1, … , an), которой зависимость Y(x) отображалась бы с минимальной погрешностью. Отсюда следует условие приближения:
yk = f(xk, a0, a1, … , an) + sk.
Функцию f(xk, a0, a1, … , an) называют регрессией величины y на величину х. Регрессионный анализ предусматривает задание вида функции f(xk, a0, a1, … , an) и определение численных значений ее параметров a0, a1, … , an, обеспечивающих наименьшую погрешность приближения к множеству значений yk. Как правило, при регрессионном анализе погрешность приближения вычисляется методом наименьших квадратов (МНК). Для этого выполняется минимизация функции квадратов остаточных ошибок:
s(a0, a1, … , an) =[f(xk, a0, a1, … , an) - yk]2.
Для определения параметров a0, a1, … , an функция остаточных ошибок дифференцируется по всем параметрам, полученные уравнения частных производных приравниваются нулю и решаются в совокупности относительно всех значений параметров. [3]
Таким образом, регрессия – это односторонняя вероятностная зависимость между случайными величинами: y = f(x)
3. Определите виды регрессий:
y = 12,5 – 1,44 x1 + 5 x2 – 2.27 x3 + e
y = 1/ (11+10,.45x1 – 9,44 x2 + 3.33 x3 – 1.37x4 + e)
y = e45.45+100x + e
Покажите, где здесь результирующая, а где объясняющие переменные. Что обозначает е в уравнениях регрессии?
Виды регрессии обычно называются по типу аппроксимирующих функций: полиномиальная, экспоненциальная, логарифмическая и т.п.
Таким образом, можно говорить о том, что
y = 12,5 – 1,44 x1 + 5 x2 – 2.27 x3 + e – это полиномиальная регрессия
y – результирующая переменная
x1, x2, x3 - объясняющие переменные
e – ошибка регрессии
y = 1/ (11+10,.45x1 – 9,44 x2 + 3.33 x3 – 1.37x4 + e) - это гипербола
y – результирующая переменная
x1, x2, x3, х4 - объясняющие переменные
e – ошибка регрессии
y = e45.45+100x + e – это экспоненциальная регрессия
y – результирующая переменная
x - объясняющая переменные
e – ошибка регрессии
Задание 2
1. Дайте определение парной регрессии.
Аналитическое выражение связей между признаками может быть представлена виде уравнений регрессии:
yx = a0+a1x
где х – значение факторного признака
у – значение результативного признака (эмпирические)
ух – теоретические значения результативного признака, полученные по уравнению регрессии.
а0 и а1 – это коэффициенты регрессии, которые определяются путем решения следующей системы уравнений:
na0+a1∑x = ∑y
a0∑x+a1∑x = ∑xy2
В основе решения данной системы уравнений лежит метод наименьших квадратов, сущность которого заключается в минимизации суммы квадратов отклонений эмпирических значений признака от теоретических, полученных по уравнению регрессии:
∑(yi-yx)2 → min
а0 - показывает влияние неучтенных в модели факторов и четкой интерпретации не имеет
а1 – показывает на сколько в среднем изменяется значение результативного признака при изменении факторного признака на единицу собственного измерения [5]
2. По Российской Федерации за 2001 год известны значения двух признаков (табл. 1):
Таблица 1
Месяц |
Расходы на покупку продовольственных товаров в общих расходах, % (y) |
Средний денежный доход на душу населения, руб. (x) |
Январь |
69 |
1954,7 |
Февраль |
65,6 |
2292,0 |
Март |
60,7 |
2545,8 |
Апрель |
… |
… |
Май |
… |
… |
Июнь |
… |
… |
Июль |
… |
… |
Август |
… |
… |
Сентябрь |
… |
… |
Октябрь |
53,3 |
3042,8 |
Ноябрь |
50,9 |
3107,2 |
Декабрь |
47,5 |
4024,7 |
Для оценки зависимости y от x построена парная линейная регрессионная модель с помощью метода наименьших квадратов:
y = a + bx + e, где а = 196/4, b = 1/196
Парный коэффициент корреляции rxy = 1/ (-196) * 78
Средняя ошибка аппроксимации: А = 196/46 + 4,6
Известно, что Fтабл. = 4,96, а Fфакт = 196/2 + 5
Определите коэффициент детерминации. Определите линейную модель через среднюю ошибку аппроксимации и F-критерий Фишера.
Решение:
Найдем коэффициенты парной линейной регрессионной модели:
а = 196/4 = 49
b = 1/196 = 0,0051
Получим уравнение регрессии:
y = 49 + 0,0051x + e,
Значит, с увеличением среднего денежного дохода на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,0051 %.
Линейный коэффициент парной корреляции
rxy = 1/ (-196) * 78 = -0,39
(связь умеренная, обратная)
Найдем коэффициент детерминации
rxy2 = (-0,39)2 = 0,158. Вариация результата на 15,8 % объясняется вариацией фактора x.
Средняя ошибка аппроксимации А = 196/46 + 4,6 = 8,86, что говорит о высокой ошибке аппроксимации (недопустимые пределы). В среднем расчетные значения отклоняются от фактических на 8,86 %.
Проверяем F-критерий Фишера. Для этого сравним Fтабл. и Fфакт.
Fтабл. = 4,96
Fфакт.=103
Fтабл. < Fфакт. (4,96<103), значит гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность с вероятностью 0,95.
Вывод: линейная парная модель плохо описывает изучаемую закономерность.
Задание 3
В табл. 2 приведены данные, формирующие цену на строящиеся квартиры в двух различных районах.
Таблица 2
Район, а/б |
Жилая площадь, м2 |
Площадь кухни, м2 |
Этаж, средние/крайние |
Дом, кирпич/панель |
Срок сдачи, через сколько мес. |
Стоимость квартиры, тыс. долл |
1 |
17,5 |
8 |
1 |
1 |
6 |
17,7 |
1 |
20 |
8,2 |
1 |
2 |
1 |
31,2 |
2 |
23,5 |
11,5 |
2 |
2 |
9 |
13,6 |
… |
… |
… |
… |
… |
… |
… |
1 |
77 |
17 |
2 |
1 |
1 |
56,6 |
2 |
150,5 |
30 |
2 |
2 |
2 |
139,2 |
2 |
167 |
31 |
2 |
1 |
5 |
141,5 |
Имеется шесть факторов, которые могут оказывать влияние на цену строящегося жилья:
1) район, где расположена строящаяся квартира (а или б);
2) жилая площадь квартиры;
3) площадь кухни;
4) этаж (средний или крайний);
5) тип дома (панельный или кирпичный);
6) срок сдачи квартиры (через сколько месяцев).
Определите минимальный объем выборки Nmin. Для оценки зависимости y от х построена линейная множественная регрессионная модель с помощью метода наименьших квадратов:
y = a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x3 + e
где a0 = -196/11,5
a1 = -196/8-10
a2 = 1/196+0,79
a3 = 0,1-1/196
a4 = 196/5 - 16
a5 = 0,12*196
a6 = 1/196-0,4
Какие фиктивные переменные были использованы в модели? Дайте экономическую интерпретацию полученной модели.
Решение:
Найдем минимальный объем выборки Nmin. Число факторов, включаемых в модель, m = 6, а число свободных членов в уравнении n = 1.
Nmin. = 5 (6+1) = 35
Найдем коэффициенты линейной множественной модели:
a1 = -196/8-10 = -34,5
a2 = 1/196+0,79 = 0,79
a3 = 0,1-1/196 = 0,095
a4 = 196/5 – 16 = 23,2
a5 = 0,12*196 = 23,52
a6 = 1/196-0,4 = -0,39
Получили уравнение регрессии:
y = a0 – 34,55x1 + 0,79x2 + 0,095x3 + 23,2x4 + 23,52x5 -0,39x3 + e
Экономическая интерпретация полученной модели: квартиры в районе а стоят на 34,55% дешевле, чем в районе b. При увеличении жилой площади на 0,79 % стоимость квартиры возрастает на 0,095 %. Квартиры на средних этажах стоят на 0,095 % дороже, чем на крайних. Квартиры в кирпичных домах стоят на 23,2 % дороже, чем в панельных. При увеличении срока сдачи дома на 1 % стоимость квартиры уменьшается на 0,39%.
Фиктивные переменные – это район (принимает значения а или б), этаж (средний или крайний); тип дома (панельный или кирпичный).
Задание 4
Постройте модель сезонных колебаний дохода торгового предприятия, используя первую гармонику ряда Фурье, по данным, приведенным в табл. 2, изобразите графически.
Таблица 2
Месяц |
Доход, тыс. руб. |
Январь |
58,33+112* (1/196) = 58,90 |
Февраль |
52+112* (1/196) = 52,57 |
Март |
43,67+112* (1/196) = 44,24 |
Апрель |
41,02+112* (1/196) = 41,59 |
Май |
42,77+112* (1/196) = 43,34 |
Июнь |
50,01+112* (1/196) = 50,58 |
Июль |
56,6+112* (1/196) = 57,17 |
Август |
64,74 + 112* (1/196) = 65,31 |
Сентябрь |
71,04+112* (1/196) = 71,61 |
Октябрь |
73,54+112* (1/196) = 74,11 |
Ноябрь |
72,16+112* (1/196) = 72,73 |
Декабрь |
66,3+112* (1/196) = 66,87 |
Воспользуйтесь вспомогательной таблицей 3.
Таблица 3
t |
соs t |
sin t |
0 |
1,00 |
0,00 |
0,523599 |
0,87 |
0,50 |
1,047198 |
0,50 |
0,87 |
1,570796 |
0,00 |
1,00 |
2,0944395 |
-0,50 |
0,87 |
2,617994 |
-0,87 |
0,50 |
3,141593 |
-1,00 |
0,00 |
3,665191 |
-0,87 |
-0,50 |
4,18879 |
-0,50 |
-0,87 |
4,712389 |
0,00 |
-1,00 |
5,235988 |
0,50 |
-0,87 |
5,759587 |
0,87 |
-0,50 |
Решение:
Если мы рассматриваем год как цикл, то n = 12. Параметры уравнения могут быть найдены по формулам:
a0 = ∑y/n
a1 =2/n ∑y соs t
b1 =2/n ∑y sin t
Составим вспомогательную табл. 4.
Таблица 4
Доход, тыс. руб. |
соs t |
y соs t |
sin t |
y sin t |
58,90 |
1,00 |
58,85 |
0,00 |
0,00 |
52,57 |
0,87 |
45,69 |
0,50 |
26,26 |
44,24 |
0,50 |
22,09 |
0,87 |
38,44 |
41,59 |
0,00 |
0,00 |
1,00 |
41,54 |
43,34 |
-0,50 |
-21,64 |
0,87 |
37,66 |
50,58 |
-0,87 |
-43,96 |
0,50 |
25,56 |
57,17 |
-1,00 |
-57,12 |
0,00 |
0,00 |
65,31 |
-0,87 |
-56,77 |
-0,50 |
-32,63 |
71,61 |
-0,50 |
-35,78 |
-0,87 |
-62,26 |
74,11 |
0,00 |
0,00 |
-1,00 |
-74,06 |
72,73 |
0,50 |
36,34 |
-0,87 |
-63,23 |
66,87 |
0,87 |
58,13 |
-0,50 |
-33,41 |
∑= 699,02 |
5,83 |
96,13 |
Получили:
a0 = 699,02/12 = 58,25
a1 =2/12 *5,83 = 0,97
b1 =2/12 *96,13 = 16,02
Получили yt = 58,25+0,97 соs t + 16,02 sin t
Подставим фактические значения t в полученную первую гармонику ряда Фурье (табл. 5).
Таблица 5
Месяц |
t |
yt |
Январь |
0 |
58,25+0,97*1 +16,02 *0 = 59,22 |
Февраль |
0,523599 |
58,25+0,97*0,87 +16,02 *0,5 = 67,1 |
Март |
1,047198 |
58,25+0,97*0,5 +16,02 *0,87 = 72,67 |
Апрель |
1,570796 |
58,25+0,97*0 +16,02 *1 = 74,27 |
Май |
2,0944395 |
58,25+0,97*(-0,5) +16,02 *0,87 = 71,7 |
Июнь |
2,617994 |
58,25+0,97*(-0,87) +16,02 *0,5 = 65,41 |
Июль |
3,141593 |
58,25+0,97*(-1) +16,02 *0 = 57,28 |
Август |
3,665191 |
58,25+0,97*(-0,87) +16,02 *(-0,5) = 49,40 |
Сентябрь |
4,18879 |
58,25+0,97*(-0,5) +16,02 *(-0,87) = 43,82 |
Октябрь |
4,712389 |
58,25+0,97*(0) +16,02 *(-1) = 42,23 |
Ноябрь |
5,235988 |
58,25+0,97*(0,5) +16,02 *(-0,87) = 44,79 |
Декабрь |
5,759587 |
58,25+0,97*(0,87) +16,02 *(-0,5) = 51,08 |
Строим график исходных данных и первой гармоники ряда Фурье (рис. 3)
Рисунок 3 – Первая гармоника ряда Фурье
Задание 5
В торгово-розничную сеть поступило 3 вида взаимозаменяемой продукции разных производителей: А1, А2, А3. Предположим, что покупатели приобретают продукцию только одного из них. Пусть в среднем они стремятся поменять ее не более одного раза в год, и вероятности таких изменений постоянны.
Результаты маркетинговых исследований покупательского спроса на продукцию дали следующее процентное соотношение:
Х1 % покупателей продукции А1 переходит на продукцию А2,
Х2 % покупателей продукции А2 - на продукцию А3,
Х3 % покупателей продукции А3 – на продукцию А1,
Где Х1 = (196 – 90)/3
Х2 = (315-196)/5
Х3 = (196 – 90)/4
Требуется:
1. Построить граф состояний
2. Составить матрицу переходных вероятностей для средних годовых изменений
3. Предположить, что общее число покупателей постоянно, и определить, какая доля из их числа будет покупать продукцию А1, А2 и А3 через 2 года
4. Определить, какая продукция будет пользоваться наибольшим спросом
Решение:
Найдем значения Х1, Х2 и Х3.
Х1 = (196 – 90)/3 = 35,33
Х2 = (315-196)/5 = 24
Х3 = (196 – 90)/4 = 26,5
Построим граф состояний (рис. 4):
Рисунок 4 – Граф состояний системы
Составим матрицу переходных вероятностей:
||Pij|| = =
Зададим вектор начальных вероятностей
Р(0) =
Т.е. Р1 (0) = 1
Р2 (0) = 1
Р3(0) = 1
Определим вероятности состояния Рi (k) после первого шага (после первого года):
Р1(1) = Р1(0)Р11 + Р2(0)Р21 + Р3(0)Р31 = 1*0,647 + 1*0 + 1*0,265 = 0,912
Р2(1) = Р1(0)Р12 + Р2(0)Р22 + Р3(0)Р32 = 1*0,353 + 1*0,76 + 1*0 = 1,113
Р3(1) = Р1(0)Р13 + Р2(0)Р23 + Р3(0)Р33 = 1*0+ 1*0,24 + 1*0,735 = 0,975
Определим вероятности состояний после второго шага (после второго года):
Р1(2) = Р1(1)Р11 + Р2(1)Р21 + Р3(1)Р31 = 0,912*0,647 + 1,113*0 + 0,975*0,265 = 0,848
Р2(2) = Р1(1)Р12 + Р2(1)Р22 + Р3(1)Р32 = 0,912*0,353 + 1,113*0,76 + 0,975*0 = 1,167
Р3(1) = Р1(1)Р13 + Р2(1)Р23 + Р3(1)Р33 = 0,647*0+ 1,113*0,24 + 0,975*0,735 = 0,983
Вывод: через два года 84,8% покупателей будут приобретать продукцию А1, около 98,3 % покупателей – А3, число покупателей продукции А2 увеличится в 1,67 раза.
Продукция А2 будет пользоваться наибольшим спросом.
Список литературы
1) Бахтин А.Е. Математическое моделирование в экономике. Часть 1,2. – Новосибирск, 1995
2) Интрилигатор М. Математические методы оптимизации и экономическая теория. – М., Прогресс,1975.
3) Кубонива Р. Математическая экономика на персональном компьютере. – М., Финансы и статистика,1991.
4) Лопатников Л.И. Экономико-математический словарь. – М., Наука,1987.
5) Рональд У. Ларсен. Инженерные расчеты в Excel : Научно-популярное издание. – М.: Издательский дом “Вильямс”, 2002. – 544 с.
6) Справочник по математике для экономистов. – М., Высшая школа,1987.
7) Эконометрика: Методические указания и задания контрольной работы/ Сост. канд.. тех.наук, доцент А.А. Алетдинова. – Новосибирск: СибУПК, 2003.