Оглавление

1. Физическая и химическая характеристика звезд………………………   3

2. Строение звезд……………………………………………………………..5

3. Эволюция звезд от рождения до смерти………………………………….8

4. Проблемное задание: роль Солнца в системе…………………………..10

Список литературы………………………………………………………….12

1. Физическая и химическая характеристика звезд

Основными характеристиками звезды, которые могут быть тем или иным способом определены из наблюдений, являются мощность ее излучения (в астрономии она называется светимостью), масса, радиус, температура и химический состав атмосферы. Зная данные параметры, можно рассчитать возраст звезды. Перечисленные выше параметры изменяются в очень широких пределах. Кроме того, они взаимосвязаны. Звезды самой высокой светимости, как правило, обладают наибольшей массой, и наоборот, маломассивные звезды светят очень слабо. Все параметры звезды зависят от ее возраста, массы и химического состава.

История изучения химического состава звезд начинается с середины XIX в. Еще в 1835 г. французский философ Огюст Конт писал, что химический состав звезд навсегда останется для нас тайной. Но вскоре был применен метод спектрального анализа, который теперь позволяет узнать, из чего состоят не только Солнце и близкие звезды, но и самые удаленные галактики и квазары. Спектральный анализ дал неоспоримые доказательства физического единства мира. На звездах не обнаружено ни одного неизвестного химического элемента. Единственный элемент – гелий – был открыт сначала на Солнце и лишь потом на земле. Но неизвестные на Земле физические состояния вещества (сильная ионизация, вырождение) наблюдаются именно в атмосферах и недрах звезд [5].

Наиболее обильным элементом в звездах является водород. Приблизительно втрое меньше содержится в них гелия. Говоря о химическом составе звезд, чаще всего имеют в виду содержание элементов тяжелее гелия. Доля тяжелых элементов невелика (около 2%), но они, по выражению американского астрофизика Дэвида Грея, подобно щепотке соли в тарелке супа, придают особый вкус работе исследователя звезд. От их количества во многом зависят и размер, и температура, и светимость звезды.

После водорода и гелия на звездах наиболее распространены те же элементы, которые преобладают в химическом составе Земли: кислород, углерод, азот, железо и др. Химический состав оказался различным у звезд разного возраста. В самых старых звездах доля элементов тяжелее гелия значительно меньше, чем на Солнце. В некоторых звездах содержание железа меньше солнечного в сотни и тысячи раз. А вот звезд, где этих элементов было бы больше, чем на Солнце, сравнительно немного. Эти звезды (многие из них двойные), как правило, являются необычными и по другим параметрам: температуре, напряженности магнитного поля, скорости вращения. Некоторые звезды выделяются по содержанию какого-нибудь одного элемента или группы элементов. Таковы, например, бариевые или ртутно-марганцевые звезды. Причины подобных аномалий пока малопонятны.

На первый взгляд может показаться, что исследование этих малых добавок немного дает для понимания эволюции звезд. Но на самом деле это не так. Химические элементы тяжелее гелия образовались в результате термоядерных и ядерных реакций в недрах очень массивных звезд, при вспышках новых и сверхновых звезд предыдущих поколений. Изучение зависимости химического состава от возраста звезд позволяет пролить свет на историю их образования в различные эпохи, на химическую эволюцию Вселенной в целом [4].

Важную роль в жизни звезды играет ее магнитное поле. С магнитным полем связаны практически все проявления солнечной активности: пятна, вспышки, факелы и др. На звездах, магнитное поле которых значительно сильнее солнечного, эти процессы протекают с большей интенсивностью. В частности, переменность блеска некоторых таких звезд объясняют появлением пятен, аналогичных солнечным, но закрывающих десятки процентов их поверхности. Однако физические механизмы, обусловливающие активность звезд, еще не до конца изучены. Наибольшей интенсивности магнитные поля достигают на компактных звездных остатках – белых карликах и особенно нейтронных звездах.

2. Строение звезд

Звезды не останутся вечно такими же, какими мы их видим сейчас. Во Вселенной постоянно рождаются новые звезды, а старые умирают. Чтобы понять, как эволюционирует звезда, как меняются с течением времени ее внешние параметры – размер, светимость, масса, необходимо проанализировать процессы, протекающие в недрах звезды. А для этого надо знать, как устроены эти недра, каковы их химический состав, температура, плотность, давление. Но наблюдениям доступны лишь внешние слои звезд – их атмосферы. Проникнуть в глубь даже ближайшей звезды – Солнца – мы не можем. Приходится прибегать к косвенным методам: расчетам, компьютерному моделированию. При этом пользуются данными о внешних слоях, известными законами физики и механики, общими как для Земли, так и для звездного мира [5].

Условия в недрах звезд значительно отличаются от условий в земных лабораториях, но элементарные частицы – электроны, протоны, нейтроны – там те же, что и на Земле. Звезды состоят из тех же химических элементов, что и наша планета. Поэтому к ним можно применять знания, полученные в лабораториях.

Наблюдения показывают, что большинство звезд устойчивы, т. е. они заметно не расширяются и не сжимаются в течение длительных промежутков времени. Как устойчивое тело звезда может существовать только в том случае, если все действующие на ее вещество внутренние силы уравновешиваются.

Звезда – раскаленный газовый шар, а основным свойством газа является стремление расшириться и занять любой предоставленный ему объем. Это стремление вызвано давлением газа и определяется его температурой и плотностью. В каждой точке внутри звезды действует сила давления газа, которая старается расширить звезду. Но в каждой же точке ей противодействует другая сила – сила тяжести вышележащих слоев, пытающаяся сжать звезду. Однако ни расширения, ни сжатия не происходит, звезда устойчива. Это означает, что обе силы уравновешивают друг друга. А так как с глубиной вес вышележащих слоев увеличивается, то давление, а следовательно, и температура возрастают к центру звезды [2].

Звезда излучает энергию, вырабатываемую в ее недрах. Температура в звезде распределена так, что в любом слое в каждый момент времени энергия, получаемая от нижележащего слоя, равняется энергии, отдаваемой слою вышележащему. Сколько энергии образуется в центре звезды, столько же должно излучаться ее поверхностью, иначе равновесие нарушится. Таким образом, к давлению газа добавляется еще и давление излучения.

 Лучи, испускаемые звездой, получают свою энергию в недрах, где располагается ее источник, и продвигаются через всю толщу звезды наружу, оказывая давление на внешние слои.

Температура внутри звезды тем ниже, чем больше концентрация частиц в газе, т. е. чем меньше его средняя молекулярная масса. Средняя молекулярная масса газа, состоящего из атомов водорода, равна 1, а из атомов гелия – 4, натрия – 23, железа – 56.

Чем больше водорода и гелия по сравнению с более тяжелыми элементами, тем ниже температура в центре звезды. Чисто водородное Солнце, например, имело бы температуру в центре 10 млн. градусов, гелиевое – 26 млн. градусов, а состоящее целиком из более тяжелых элементов – 40 млн. градусов.

Чтобы получить представление о структуре звезды, пользуются методом последовательных приближений. Задавая некоторое соотношение водорода, гелия и более тяжелых элементов и зная массу звезды, вычисляют ее светимость. Эту процедуру повторяют до тех пор, пока для определенной смеси вычисленная и полученная из наблюдений светимости не совпадут. Данный состав и считается близким к реальному. Оказалось, что для большинства звезд на долю водорода и гелия приходится не менее 98% массы [3].

После длительных поисков было установлено, что звезды большую часть своей жизни светят за счет совершающихся в них преобразований четырех ядер водорода (протонов) в одно ядро гелия. Масса четырех протонов больше массы ядра гелия, этот избыток массы и превращается в энергию в термоядерных реакциях. Такая реакция идет медленно и поддерживает свечение звезды на протяжении миллиардов лет.

Строение звезд зависит от массы. Если звезда в несколько раз массивнее Солнца, то глубоко в ее недрах происходит интенсивное перемешивание вещества (конвенция), подобно кипящей воде. Такую область называют конвективным ядром звезды. Чем больше звезда, тем большую ее часть составляет конвективное ядро. Остальная часть звезды сохраняет при этом равновесие. Источник энергии находится в конвективном ядре. По мере превращения водорода в гелий молекулярная масса вещества ядра возрастает, а его объем уменьшается. Внешние же области звезды при этом расширяются, она увеличивается в размерах, а температура ее поверхности падает. Горячая звезда – голубой гигант – постепенно превращается в красный гигант [5].

Строение красного гиганта уже иное. Когда в процессе сжатия конвективного ядра весь водород превратится в гелий, температура в центре повысится до 50-100 млн. градусов и начнется горение гелия. Он в результате ядерных реакций превращается в углерод. Ядро горящего гелия окружено тонким слоем горящего водорода, который поступает из внешней оболочки звезды. Следовательно, у красного гиганта два источника энергии. Над горящим ядром находится протяженная оболочка.

Вместе с оболочкой в межзвездную среду уносятся различные химические элементы, образовавшиеся в недрах звезды за время ее жизни. Новое поколение звезд, рождающихся из межзвездного газа, будет содержать уже больше тяжелых химических элементов.

Срок жизни звезды напрямую зависит от ее массы. Звезды с массой в 100 раз больше солнечной живут всего несколько миллионов лет. Если масса составляет две-три солнечных, срок жизни увеличивается до миллиарда лет [1].

В звездах-карликах, массы которого меньше массы Солнца, конвективное ядро отсутствует. Водород в них горит, превращаясь в гелий, в центральной области, не выделяющейся из остальной части звезды наличием конвективных движений. В карликах этот процесс протекает очень медленно, и они практически не изменяются в течение миллиардов лет. Когда водород полностью сгорает, они медленно сжимаются и за счет энергии сжатия могут существовать еще очень длительное время.

Солнце и подобные ему звезды представляют собой промежуточный случай. У Солнца имеется маленькое конвективное ядро, но не очень четко отделенное от остальной части. Ядерные реакции горения водорода протекают как в ядре, так и в его окрестностях. Возраст Солнца примерно 4,5-5 млрд. лет, и за это время оно почти не изменило своего размера и яркости. После исчерпания водорода Солнце может постепенно вырасти в красный гигант, сбросить чрезмерно расширившуюся оболочку и закончить свою жизнь, превратившись в белый карлик. Но это случится не раньше, чем через 5 млрд. лет [5].

3. Эволюция звезд от рождения до смерти

Астрономы не в состоянии проследить жизнь одной звезды от начала и до конца. Даже самые короткоживущие звезды существуют миллионы лет – дольше жизни не только одного человека, но и всего человечества. Однако ученые могут наблюдать много звезд, находящихся на самых разных стадиях своего развития, - только что родившиеся и умирающие. По многочисленным звездным портретам они стараются восстановить эволюционный путь каждой звезды и написать ее биографию.

Жизненный путь звезды довольно сложен. В течение своей истории она разогревается до очень высоких температур и остывает до такой степени, что в ее атмосфере начинают образовываться пылинки. Звезда расширяется до грандиозных размеров, сравнимых с размерами орбиты Марса, и сжимается до нескольких десятков километров. Светимость ее возрастает до огромных величин и падает почти до нуля [4].

Жизнь звезды не всегда протекает гладко. Картина ее эволюции усложняется вращением, иногда очень быстрым, на пределе устойчивости (при быстром вращении центробежные силы стремятся разорвать звезду). Некоторые звезды обладают скоростью вращения на поверхности 500-600 км/с. Для Солнца эта величина составляет около 2 км/с. Солнце – звезда относительно спокойная, но даже оно испытывает колебания с различными периодами, на его поверхности происходят взрывы и выбросы вещества. Активность некоторых других звезд несравнимо выше. На определенных этапах своей эволюции звезда может стать переменной, начав регулярно менять свой блеск, сжиматься и опять расширяться. А иногда на звездах происходят сильные взрывы. Когда взрываются самые массивные звезды, их блеск на короткий срок может превысить блеск всех остальных звезд галактики, вместе взятых [3].

В начале ХХ в., в основном благодаря трудам английского астрофизика Артура Эддингтона, окончательно сформировалось представление о звездах как о раскаленных газовых шарах, заключающих в своих недрах источник энергии – термоядерный синтез ядер гелия из ядер водорода.

По современным представлениям, жизненный путь одиночной звезды определяется ее начальной массой и химическим составом. Теория звездной эволюции утверждает, что в телах массой меньше чем семь-восемь сотых долей массы Солнца долговременные термоядерные реакции идти не могут. Эта величина близка к минимальной массе наблюдаемых звезд. Их светимость меньше солнечной в десятки тысяч раз. Температура на поверхности подобных звезд не превосходит 2-3 тыс. градусов [3].

В звездах большой массы, напротив, эти реакции протекают с огромной скоростью. Если масса рождающейся звезды превышает 50-70 солнечных масс, то после загорания термоядерного топлива чрезвычайно интенсивное излучение своим давлением может просто сбросить излишек массы. Звезды, масса которых близка к предельной, обнаружены, например, в туманности Тарантул в соседней с нами галактике Большое Магелланово Облако. Есть они и в нашей Галактике. Через несколько миллионов лет, а может быть и раньше, эти звезды могут взорваться как сверхновые (так называют взрывающиеся звезды с большой энергией вспышки).

Благодаря развитию наблюдательных технологий астрономы получили возможность исследовать не только видимое, но и невидимое глазу излучение звезд. Сейчас уже многое известно об их строении и эволюции, хотя немало остается и непонятного.

4. Проблемное задание: роль Солнца в системе

Солнечная система – это спаянная силами взаимного притяжения система небесных тел. В не входят: центральное тело – Солнце, 9 больших планет с их спутниками, несколько тысяч малых планет, или астероидов, несколько сот наблюдавшихся комет и бесчисленное множество метеорных тел.

Основная доля общей массы Солнечной системы (98,7%) приходится на Солнце. Поэтому солнечное тяготение управляет движением почти всех остальных тел системы: планет, комет, астероидов, метеорных тел. Только спутники обращаются вокруг своих планет, притяжение которых из-за их близости оказывается сильнее солнечного.

Все планеты обращаются вокруг Солнца в одном направлении.

Солнечная система образовалась из вращавшегося газопылевого облака. Его сжатие породило центральное сгущение, которое потом превратилось в Солнце. Частицы, вошедшие в состав Солнца, несли с собой свой момент количества движения. И поскольку они двигались по направлению к оси вращения, то скорость обязана была возрастать – для сохранения момента. Протосолнце, а затем и Солнце должно было вращаться все быстрее и быстрее.

Несмотря на то, что на долю Солнца приходится более 99% массы всей Солнечной системы, Солнце вращается очень медленно. Английский астроном Джеймс Джинс предположил, что некогда вблизи Солнца прошла звезда и ее притяжение вызвало выброс солнечного вещества, из которого в дальнейшем образовались планеты [5].  

Солнце освещает и согревает нашу планету, без этого была бы невозможна жизнь на ней не только человека, но даже микроорганизмов. Солнце – главный (хотя и не единственный) двигатель происходящих на Земле процессов. Но не только тепло и свет получает Земля от Солнца. Различные виды солнечного излучения и потоки частиц оказывают постоянное влияние на ее жизнь.

Солнце посылает на Землю электромагнитные волны всех областей спектра – от многокилометровых радиоволн до гамма-лучей. Окрестностей Земли достигают также заряженные частицы разных энергий – как высоких (солнечные космические лучи), так и низких и средних (потоки солнечного ветра, выбросы от вспышек). Наконец, Солнце испускает мощный поток элементарных частиц – нейтрино. Однако воздействие последних на земные процессы пренебрежимо мало: для этих частиц земной шар прозрачен, и они свободно сквозь него пролетают.

Только очень малая часть заряженных частиц из межпланетного пространства попадает в атмосферу Земли (остальные отклоняет или задерживает геомагнитное поле). Но их энергии достаточно для того, чтобы вызвать полярные сияния и возмущения магнитного поля нашей планеты.

Список литературы

1. Бялко А.В. Наша планета – Земля. – М.: Наука,1983.

2. Завельский Р.С. Время и его измерение. – М.: Наука,1987.

3. Киппенхан Р. 100 миллиардов солнц: Рождение, жизнь и смерть звезд. – М.: Мир,1990.

4. Климишин И.А. Астрономия наших  дней. – М.: Наку,1980.

5. Энциклопедия. Т.8. Астрономия. – 2-е изд., испр./ Глав. Ред. М.Д. Аксенова. – М.: Аванта +, 2001.-688с.