ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ
Лабораторная работа №1
Автоматизированный априорный анализ статистической совокупности в среде MS Excel
Вариант № 6
Исполнитель: Ржавичева Татьяна Владимировна
Специальность: финансы и кредит
Группа: дневная III курс
№ зачетной книжки: 08ФФД40351
Руководитель: Леонова Светлана Николаевна
Орел 2009г.
Алгоритмы выполнения Задания 1
Задача 1. Построение диаграммы рассеяния изучаемых признаков.
1. Выделить мышью исходные данные (табл.1) (В4:С35);
2. Вставка Диаграмма Готово.
Рис 1. Аномальные значения признаков на диаграмме рассеяния.
Задача 2. Визуальный анализ диаграммы рассеяния, выявление и фиксация аномальных значений признаков, их удаление из первичных данных.
Точки соответствующие аномальным наблюдениям:
Две единицы наблюдения с аномальными значениями признаков, имеет следующий вид.
Таблица 2 |
||
Аномальные единицы наблюдения |
||
Номер предприятия |
Среднегодовая стоимость основных производственных фондов, млн.руб. |
Выпуск продукции, млн. руб. |
11 |
230,00 |
600,00 |
30 |
750,00 |
200,00 |
Алгоритмы выполнения Задания 2
Этап 1. Расчет описательных параметров выборочной и генеральной совокупностей с использованием инструмента Описательная статистика
Алгоритм 1.1. Расчет описательных статистик
1. Сервис=>Анализ данных=>Описательная статистика=>OK;
2. Входной интервал<= диапазон ячеек таблицы, выделенный для значений признаков Стоимость основных фондов и Выпуск продукции (B4:С33);
3. Группирование =>по столбцам;
4. Итоговая статистика - Активизировать;
5. Уровень надежности - Активизировать;
6. Уровень надежности <= 95,4 (или 95.4);
7. Выходной интервал <= адрес ячейки заголовка первого столбца табл.3 (А46);
8. OK;
9. При появлении окна с сообщением "Выходной интервал накладывается на имеющиеся данные" =>ОК.
Результат работы алгоритма 2.1 представлен в табл.3
Таблица 3 |
|||
Описательные статистики |
|||
По столбцу "Среднегодовая стоимость основных производственных фондов, млн.руб." |
По столбцу "Выпуск продукции, млн.руб" |
||
Столбец1 |
|
Столбец2 |
|
Среднее |
550 |
Среднее |
521,7333333 |
Стандартная ошибка |
17,66404231 |
Стандартная ошибка |
21,07168571 |
Медиана |
556 |
Медиана |
518 |
Мода |
570 |
Мода |
520 |
Стандартное отклонение |
96,74994431 |
Стандартное отклонение |
115,4143759 |
Дисперсия выборки |
9360,551724 |
Дисперсия выборки |
13320,47816 |
Эксцесс |
-0,344943844 |
Эксцесс |
-0,205332365 |
Асимметричность |
-0,152503649 |
Асимметричность |
0,042954448 |
Интервал |
400 |
Интервал |
480 |
Минимум |
350 |
Минимум |
280 |
Максимум |
750 |
Максимум |
760 |
Сумма |
16500 |
Сумма |
15652 |
Счет |
30 |
Счет |
30 |
Уровень надежности(95,4%) |
36,82619052 |
Уровень надежности(95,4%) |
43,93048311 |
Этап 2. Оценка предельных ошибок выборки для различных уровней надежности в режиме Описательная статистика.
Алгоритм 2.1. Расчет предельной ошибки выборки при P=0,683
1. Сервис=>Анализ данных=>Описательная статистика=>OK;
2. Входной интервал<= диапазон ячеек таблицы, выделенный для значений признаков Стоимость основных фондов и Выпуск продукции (В4:С33);
3. Итоговая статистика – НЕ активизировать (снять флажок);
4. Уровень надежности – Активизировать;
5. Уровень надежности<= 68,3 (или 68.3);
6. Выходной интервал <= адрес ячейки, выделенной для предельной ошибки выборки при P=0,683 (А67);
7. OK;
8. При появлении окна с сообщением "Выходной интервал накладывается на имеющиеся данные" =>ОК.
|
Таблица 4 |
||
Предельные ошибки выборки |
|||
По столбцу "Среднегодовая стоимость основных производственных фондов, млн.руб." |
По столбцу "Выпуск продукции, млн.руб" |
||
Столбец1 |
|
Столбец2 |
|
Уровень надежности(68,3%) |
17,98563012 |
Уровень надежности(68,3%) |
21,45531235 |
Этап 3. Расчет описательных параметров выборочной совокупности с использованием инструмента Мастер функций
Алгоритм 3.1. Расчет значений выборочных параметров
Вычисление показателей для обоих признаков осуществляется с использованием соответствующих статистических функций СТАНДОТКЛОНП, ДИСПР, СРОТКЛ инструмента Мастер функций. В макете табл.5. приведены их имена вместе с адресами аргументов.
1. В ячейках (В83 – В84), выделенных для значений выборочных показателей признака Среднегодовая стоимость основных производственных фондов:
1.1. Перед именами функций поставить знак равенства «=»;
1.2. Enter;
2. В ячейках (D83 – D84), выделенных для значений выборочных показателей признака Выпуск продукции:
2.1. Перед именами функций поставить знак равенства «=»;
2.2. Enter;
Таблица 5* |
|||
Выборочные показатели вариации |
|||
По столбцу "Среднегодовая стоимость основных производственных фондов, млн.руб." |
По столбцу "Выпуск продукции, млн.руб" |
||
Стандартное отклонение |
95,12377901 |
Стандартное отклонение |
113,4745003 |
Дисперсия |
9048,533333 |
Дисперсия |
12876,46222 |
Коэффициент вариации, % |
B87B83/B48*100 |
Коэффициент вариации, % |
D83/D48*100 |
Алгоритм 3.2. Расчет коэффициентов вариации для обоих признаков
В макете табл.5. приведены расчетные формулы коэффициента вариации .
1. В ячейке В85, выделенной для значений коэффициента вариации по признаку Среднегодовая стоимость основных производственных фондов, перед формулой поставить знак равенства «=»;
2. Enter;
3. В ячейке D85, выделенной для значений коэффициента вариации по признаку Выпуск продукции, перед формулой поставить знак равенства «=»;
4. Enter.
В результате работы алгоритмов 3.1-3.2 осуществляется вывод выборочных параметров и в соответствующие ячейки рабочего листа. Табл. 5.
Таблица 5 |
|||
Выборочные показатели вариации |
|||
По столбцу "Среднегодовая стоимость основных производственных фондов, млн.руб." |
По столбцу "Выпуск продукции, млн.руб" |
||
Стандартное отклонение |
95,12377901 |
Стандартное отклонение |
113,4745003 |
Дисперсия |
9048,533333 |
Дисперсия |
12876,46222 |
Коэффициент вариации, % |
17,29523255 |
Коэффициент вариации, % |
21,74952089 |
Задание 3. Построение и графическое изображение интервального вариационного ряда распределения единиц совокупности по признаку
Алгоритмы выполнения Задания 3
Этап 1. Построение промежуточной таблицы.
Алгоритм 1.1. Расчет нижних границ интервалов
1. Сервис=>Анализ данных=>Гистограмма=>ОК;
2. Входной интервал<= диапазон ячеек, выделенный для столбца значений первого признака (В4:В33);
3. Интервал карманов оставить незаполненным;
4. Выходной интервал <= адрес заголовка первого столбца первичной промежуточной табл.6 (А90);
5. OK.
Алгоритм 1.2. Переход от нижних границ к верхним
1. Выделить курсором верхнюю левую ячейку табл.6 (A91) и нажать клавишу [Delete];
2. Ввести в последнюю ячейку табл.6 (A96) вместо "Еще" значение хmax первого признака из табл.3 – Описательные статистики (Термин "Максимум").
Таблица 6 |
|
Карман |
Частота |
350 |
1 |
430 |
3 |
510 |
5 |
590 |
11 |
670 |
7 |
Еще |
3 |
|
|
|
Таблица 6 |
Карман |
Частота |
1 |
|
430 |
3 |
510 |
5 |
590 |
11 |
670 |
7 |
750 |
3 |
|
|
а) первичная Преобразуется в б) итоговая
Рис.2. Схема перехода от нижних границ интервалов к верхним
Этап 2. Генерация выходной таблицы и графиков
Алгоритм 2.1. Построение выходной таблицы, столбиковой диаграммы и кумуляты
1. Сервис=>Анализ данных=>Гистограмма=>ОК;
2. Входной интервал<= диапазон ячеек, выделенный для столбца значений первого признака (В4:В33);
3. Интервал карманов <= диапазон карманов итоговой промежуточной табл.6 с верхними границами (А92:А96);
4. Выходной интервал <= адрес заголовка («Карман») первого столбца выходной табл.7 (А102);
5. Интегральный процент – Активизировать;
6. Вывод графика – Активизировать;
7. ОК;
8. При появлении сообщения о наложении данных – ОК.
Выходная таблица имеет следующий вид:
Таблица 7 |
||
Интервальный ряд распределения предприятий по стоимости основных производственных фондов |
||
Группа предприятий по стоимости основных фондов |
Число предприятий в группе |
Накопленная частость группы.% |
Карман |
Частота |
Интегральный % |
430 |
4 |
13,33% |
510 |
5 |
30,00% |
590 |
11 |
66,67% |
670 |
7 |
90,00% |
750 |
3 |
100,00% |
Еще |
0 |
100,00% |
Столбиковая диаграмма и кумулята приведены ниже:
Этап 3. Приведение выходной таблицы и диаграммы к виду, принятому в статистике.
Алгоритм 3.1. Преобразование выходной таблицы в результативную
1. Строку 102, содержащую термин «Карман», выделить мышью (вместе с ее номером);
2. Правка => Удалить;
3. Строку 107, содержащую термин «Еще», выделить мышью и очистить, нажав клавишу [Delete];
4. Строки первого столбца привести к виду «нижняя граница интервала - верхняя граница интервала», учитывая совпадение верхних границ предыдущего интервала с нижней границей последующего интервала (нижняя граница первого интервала равна хmin первого признака из табл.3 – Описательные статистики – Термин "Минимум").
5. Добавить и заполнить итоговую строку 108 (ячейки А108:В108).
Excel-формат результативной таблицы выглядит следующим образом.
Таблица 7 |
||
Интервальный ряд распределения предприятий по стоимости основных производственных фондов |
||
Группа предприятий по стоимости основных фондов |
Число предприятий в группе |
Накопленная частость группы.% |
350-430 |
4 |
13,33% |
430-510 |
5 |
30,00% |
510-590 |
11 |
66,67% |
590-670 |
7 |
90,00% |
670-750 |
3 |
100,00% |
|
0 |
100,00% |
Итого |
30 |
Алгоритм 3.2. Преобразование столбиковой диаграммы в гистограмму
1. Осуществив «захват мышью», переместить график, расположив его вслед за табл.7.
2. Исключить зазоры, выполнив следующие действия:
1. Нажать правую кнопку мыши на одном из столбиков диаграммы;
2. Формат рядов данных=>Параметры;
3. Ширина зазора<= 0;
4. ОК;
3. Подвести курсор на угол поля графика и, используя прием "захват мышью", установить визуально соотношение ширины и высоты фигуры гистограммы в пропорции 1 : 0,6.
По окончании работы алгоритма 3.2 выполнить настройку диаграммы:
1. Изменить название осей (алгоритм 3.3);
2. Изменить текст легенды (алгоритм 3.4).
Алгоритм 3.3. Изменение названия осей
1. Выделить мышью построенную диаграмму;
2. Диаграмма => Параметры диаграммы;
3. В появившемся диалоговом окне Параметры диаграммы выбрать вкладку Заголовки и в поле Ось Х ввести заголовок оси – "Среднегодовая стоимость основных производственных фондов", а в поле Ось Y – "Число предприятий в группе";
4. ОК.
Алгоритм 3.4. Изменение текста легенды
1. Выделить мышью построенную диаграмму;
2. Диаграмма => Исходные данные;
3. В появившемся диалоговом окне Исходные данные выбрать вкладку Ряд, в поле Ряд выбрать заголовок "Интегральный %" и в поле Имя ввести – "Накопленная частость ";
4. ОК.
Гистограмма и кумулята выглядят следующим образом
ПРИЛОЖЕНИЕ
табл. 1. Выборочные исходные данные
|
A |
B |
C |
3 |
Номер предприятия |
Среднегодовая стоимость основных производственных фондов, млн.руб. |
Выпуск продукции, млн. руб. |
4 |
1 |
422,00 |
412,00 |
5 |
2 |
498,00 |
452,00 |
6 |
3 |
514,00 |
504,00 |
7 |
4 |
542,00 |
560,00 |
8 |
5 |
350,00 |
280,00 |
9 |
6 |
570,00 |
480,00 |
10 |
7 |
586,00 |
648,00 |
11 |
8 |
438,00 |
440,00 |
12 |
9 |
538,00 |
516,00 |
13 |
10 |
622,00 |
644,00 |
14 |
11 |
682,00 |
680,00 |
15 |
12 |
230,00 |
600,00 |
16 |
13 |
518,00 |
536,00 |
17 |
14 |
570,00 |
584,00 |
18 |
15 |
654,00 |
708,00 |
19 |
16 |
750,00 |
760,00 |
20 |
17 |
558,00 |
512,00 |
21 |
18 |
618,00 |
608,00 |
22 |
19 |
490,00 |
380,00 |
23 |
20 |
626,00 |
520,00 |
24 |
21 |
698,00 |
700,00 |
25 |
22 |
478,00 |
396,00 |
26 |
23 |
378,00 |
372,00 |
27 |
24 |
638,00 |
596,00 |
28 |
25 |
570,00 |
520,00 |
29 |
26 |
530,00 |
492,00 |
30 |
27 |
410,00 |
320,00 |
31 |
28 |
554,00 |
500,00 |
32 |
29 |
642,00 |
548,00 |
33 |
30 |
610,00 |
520,00 |
34 |
31 |
750,00 |
200,00 |
35 |
32 |
446,00 |
464,00 |
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ
Лабораторная работа №2
Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel
Вариант № 6
Исполнитель: Ржавичева Татьяна Владимировна
Специальность: финансы и кредит
Группа: дневная III курс
№ зачетной книжки: 08ФФД40351
Руководитель: Леонова Светлана Николаевна
Орел 2009г.
Задание 1 Построение аналитической группировки для выявления корреляционной зависимости результативного признака от факторного и оценка тесноты взаимосвязи признаков
Алгоритмы выполнения Задания 1
Задача 1. Построение аналитической группировки предприятий по признаку Среднегодовая стоимость основных производственных фондов.
Алгоритм 1.1. Ранжирование исходных данных по факторному признаку
1. Выделить исходные данные (вместе с заголовком) табл. 2.1 (А3:С33);
2. Данные => Сортировка;
3. Сортировать по <= заголовок столбца, по которому выполняется сортировка, т.е. Среднегодовая стоимость основных производственных фондов;
4. По возрастанию/по убыванию – устанавливается в положение по возрастанию;
5. Затем и В последнюю очередь по – НЕ активизировать;
6. Идентифицировать поля по подписям/обозначениям столбцов листа – устанавливается в положение подписям;
7. ОК.
В результате указанных действий в таблице 2.1 размещаются данные, ранжированные по возрастанию признака Среднегодовая стоимость основных производственных фондов.
Алгоритм 1.2. Выделение групп предприятий с помощью заливки контрастным цветом
1. Из всего диапазона отсортированных данных A4:C33 выделить мышью диапазон ячеек первой группы, для чего необходимо отсчитать в ранжированном ряду количество строк, соответствующее числу предприятий первой группы (графа 3 табл.2.2);
2. Нажать на панели инструментов кнопку для выбора цвета заливки;
3. Выбрать цвет заливки по собственному усмотрению;
4. Выполнить действия 1–3 для всех групп, выбирая контрастные цвета для цветовой заливки очередной группы.
Результаты работы алгоритмов 1.1 и 1.2 представлены в табл.2.1(из приложения)
Алгоритм 1.3. Расчет суммарных групповых значений результативного признака
1. В ячейке (D41), выделенной для суммарного значения результативного признака Выпуск продукции первой группы, перед формулой поставить знак равенства «=»;
2. В качестве аргумента функции СУММ() указать диапазон ячеек из табл. 2.1 с результативными значениями уi первой группы (визуально легко определяется по цвету заливки диапазона);
3. Enter;
4. Выполнить действия 1–3 поочередно для всех групп, используя цветовые заливки диапазонов.
Алгоритм 1.4. Расчет средних групповых значений результативного признака
В таблице 2.2 приведены формулы для расчета средних групповых значений результативного признака Выпуск продукции.
1. В ячейке (Е41), выделенной для среднего значения результативного признака Выпуск продукции первой группы, перед формулой поставить знак равенства «=»;
2. Enter;
3. Выполнить действия 1–2 поочередно для всех групп;
4. В ячейках (C46, D46 и E46), выделенных для расчета итоговых сумм:
Перед формулой поставить знак равенства «=»;
Enter.
Результаты работы алгоритмов 1.3 и 1.4 приведены в табл. 2.2
Таблица 2.2 |
||||
Зависимость выпуска продукции от среднегодовой стоимости основных фондов |
||||
Номер группы |
Группы предприятий по стоимости основеных фондов |
Число предприятий |
Выпуск продукции |
|
Всего |
В среднем на одно предприятие |
|||
1 |
350-430 |
4 |
1384,00 |
346,00 |
2 |
430-510 |
5 |
2132,00 |
426,40 |
3 |
510-590 |
11 |
5852,00 |
532,00 |
4 |
590-670 |
7 |
4144,00 |
592,00 |
5 |
670-750 |
3 |
2140,00 |
713,33 |
Итого |
|
30 |
15652,00 |
521,73 |
Задача 2. Оценка тесноты связи изучаемых признаков на основе эмпирического корреляционного отношения
Задача решается в два этапа:
1. Расчет внутригрупповых дисперсий результативного признака.
2. Расчет эмпирического корреляционного отношения.
Алгоритм 2.1. Расчет внутригрупповых дисперсий результативного признака
1. В ячейке, выделенной для внутригрупповых дисперсий первой группы (D52), перед формулой поставить знак равенства «=»;
2. В качестве аргумента функции ДИСПР() указать диапазон ячеек из табл. 2.1 со значениями yi первой группы – визуально легко определяется по цвету заливки диапазона;
3. Enter;
4. Выполнить действия 1–3 поочередно для всех групп, используя цветовые заливки диапазонов.
5. Для расчета итоговой суммы в табл. 2.3 (в ячейке C57) перед формулой необходимо поставить знак равенства «=»;
6. Enter.
Результат работы алгоритма 2.1 представлен в табл.2.3
Таблица 2.3 |
|||
Показатели внутригрупповой вариации |
|||
Номер группы |
Группы предприятий по стоимости основеных фондов |
Число предприятий |
Внутригрупповая дисперсия |
1 |
350-430 |
4 |
2516,00 |
2 |
430-510 |
5 |
1066,24 |
3 |
510-590 |
11 |
2170,18 |
4 |
590-670 |
7 |
4105,14 |
5 |
670-750 |
3 |
1155,56 |
Итого |
|
30 |
|
Алгоритм 2.2. Расчет эмпирического корреляционного отношения
1. В ячейке, выделенной для общей дисперсии (А63), перед формулой поставить знак равенства «=»;
2. Enter;
3. В ячейке, выделенной для средней из внутригрупповых дисперсий (В63), перед формулой поставить знак равенства «=»;
4. Enter;
5. В ячейке, выделенной для значения межгрупповой (факторной) дисперсии (С63), перед формулой поставить знак равенства «=»;
6. Enter;
7. В ячейке, выделенной для эмпирического корреляционного отношения (D63), перед формулой поставить знак равенства «=»;
8. Enter.
Результат работы алгоритма 2.2 представлен в табл.2.4.
Таблица 2.4 |
|||
Показатели дисперсии и эмпирического корреляционного отношения |
|||
Общая дисперсия |
Средняя из внутригрупповых дисперсия |
Межгрупповая дисперсия |
Эмпирическое корреляционное отношение |
12876,46222 |
2382,328889 |
10494,13333 |
0,902765617 |
Задание 2 Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа
Алгоритм выполнения Задания 2
Алгоритм 1. Расчет параметров уравнения линейной регрессии и проверки адекватности модели исходным данным
1. Сервис => Анализ данных => Регрессия => ОК;
2. Входной интервал Y <= диапазон ячеек таблицы со значениями признака Y – Выпуск продукции (С4:С33);
3. Входной интервал X – диапазон ячеек таблицы со значениями признака X – Среднегодовая стоимость основных производственных фондов (В4:В33);
4. Метки в первой строке/Метки в первом столбце – НЕ активизировать;
5. Уровень надежности <= 68,3 (или 68.3);
6. Константа–ноль – НЕ активизировать;
7. Выходной интервал <= адрес ячейки заголовка первого столбца первой выходной результативной таблицы (А75);
8. Новый рабочий лист и Новая рабочая книга – НЕ активизировать;
9. Остатки – Активизировать;
10. Стандартизованные остатки – НЕ активизировать;
11. График остатков – НЕ активизировать;
12. График подбора – НЕ активизировать;
13. График нормальной вероятности – НЕ активизировать;
14. ОК.
В результате указанных действий осуществляется вывод четырех выходных таблиц на Лист 2 Рабочего файла, начиная с ячейки, указанной в поле Выходной интервал диалогового окна инструмента Регрессия (они имеют следующий вид).
ВЫВОД ИТОГОВ |
|
Регрессионная статистика |
|
Множественный R |
0,91318826 |
R-квадрат |
0,833912798 |
Нормированный R-квадрат |
0,827981112 |
Стандартная ошибка |
47,86829677 |
Наблюдения |
30 |
Дисперсионный анализ |
|||||
|
df |
SS |
MS |
F |
Значимость F |
Регрессия |
1 |
322135,3993 |
322135,3993 |
140,5861384 |
1,97601E-12 |
Остаток |
28 |
64158,4674 |
2291,373836 |
||
Итого |
29 |
386293,8667 |
|
|
|
|
Коэффициенты |
Стандартная ошибка |
t-статистика |
P-Значение |
Нижние 95% |
Верхние 95% |
Нижние 68,3% |
Верхние 68,3% |
Y-пересечение |
-77,41201619 |
51,28154579 |
-1,509549195 |
0,142361588 |
-182,4574994 |
27,63346706 |
-129,659926 |
-25,16410641 |
Переменная X 1 |
1,089355181 |
0,09187519 |
11,85690257 |
1,97601E-12 |
0,901157387 |
1,277552975 |
0,995748668 |
1,182961694 |
ВЫВОД ОСТАТКА |
||
Наблюдение |
Предсказанное Y |
Остатки |
1 |
303,8622971 |
-23,86229714 |
2 |
334,3642422 |
37,63575779 |
3 |
369,223608 |
-49,223608 |
4 |
382,2958702 |
29,70412983 |
5 |
399,7255531 |
40,27444693 |
6 |
408,4403945 |
55,55960549 |
7 |
443,2997603 |
-47,2997603 |
8 |
456,3720225 |
-76,37202248 |
9 |
465,0868639 |
-13,08686392 |
10 |
482,5165468 |
21,48345318 |
11 |
486,8739675 |
49,12603246 |
12 |
499,9462297 |
-7,946229714 |
13 |
508,6610712 |
7,338928838 |
14 |
513,0184919 |
46,98150811 |
15 |
526,0907541 |
-26,09075406 |
16 |
530,4481748 |
-18,44817478 |
17 |
543,520437 |
-63,52043695 |
18 |
543,520437 |
40,47956305 |
19 |
543,520437 |
-23,52043695 |
20 |
560,9501198 |
87,04988015 |
21 |
587,0946442 |
-67,09464419 |
22 |
595,8094856 |
12,19051436 |
23 |
600,1669064 |
43,83309364 |
24 |
604,5243271 |
-84,52432709 |
25 |
617,5965893 |
-21,59658926 |
26 |
621,95401 |
-73,95400998 |
27 |
635,0262722 |
72,97372785 |
28 |
665,5282172 |
14,47178278 |
29 |
682,9579001 |
17,04209989 |
30 |
739,6043695 |
20,39563048 |
Задание 3 Построение однофакторных нелинейных регрессионных моделей связи признаков с помощью инструмента Мастер диаграмм и выбор наиболее адекватного нелинейного уравнения регрессии
Алгоритмы выполнения Задания 3
Алгоритм 1. Построение уравнений регрессионных моделей для различных видов нелинейной зависимости признаков с использованием средств инструмента Мастер диаграмм
1. Выделить мышью диаграмму рассеяния признаков, расположенную начиная с ячейки Е4, и увеличить диаграмму на весь экран, используя прием "захват мышью";
2. Диаграмма => Добавить линию тренда;
3. В появившемся диалоговом окне Линия тренда выбрать вкладку Тип и задать вид регрессионной модели – полином 2-го порядка;
4. Выбрать вкладку Параметры и выполнить действия:
1. Переключатель Название аппроксимирующей кривой: автоматическое/другое – установить в положение другое и ввести имя тренда– полином 2-го порядка;
2. Поле Прогноз вперед на – НЕ активизировать;
3. Поле Прогноз назад на – НЕ активизировать;
4. Флажок Пересечение кривой с осью Y в точке –
НЕ активизировать;
5. Флажок Показывать уравнение на диаграмме – Активизировать;
6. Флажок Поместить на диаграмму величину достоверности аппроксимации R2 – Активизировать;
7. ОК;
8. Установить курсор на линию регрессии и щелкнуть правой клавишей мыши;
9. В появившемся диалоговом окне Формат линии тренда выбрать по своему усмотрению тип, цвет и толщину линии;
10. ОК;
11. Выделить уравнение регрессии и индекс детерминации R2 и с помощью приема "захват мышью" вынести их за корреляционное поле. При необходимости уменьшить размер шрифта.
5. Действия 2 – 4 (в п.4 шаги 1–11) выполнить поочередно для следующих видов регрессионных моделей:
– полином 3-го порядка, – степенная функция.
По окончании работы алгоритма 1 выполнить следующие действия:
1. Присвоить полученной диаграмме заголовок "Диаграмма 2.1" и удалить линии сетки по оси Y (алгоритм 2);
2. Снять заливку области построения (алгоритм 3);
3. При необходимости изменить масштаб шкалы осей диаграммы (алгоритм 4).
Алгоритм 2. Присвоение полученной диаграмме заголовка "Диаграмма 2.1" и удаление линий сетки по оси Y
1. Выделить мышью построенную диаграмму;
2. Диаграмма => Параметры диаграммы;
3. В появившемся диалоговом окне Параметры диаграммы выбрать вкладку Заголовки и в поле Название диаграммы ввести заголовок диаграммы "Диаграмма 2.1";
4. Выбрать вкладку Линии сетки, в полях Ось Х и Ось Y все флажки – Не активизировать;
5. ОК.
Алгоритм 3. Снятие заливки области построения
1. Выделить мышью Область построения диаграммы;
2. Формат => Выделенная область построения;
3. В появившемся диалоговом окне Формат области переключатель Заливка установить в положение Обычная;
4. ОК.
Алгоритм 4. Изменение масштаба шкалы осей диаграммы
1. Выделить на полученной диаграмме ось, для которой необходимо изменить масштаб (подвести курсор к требуемой оси и щелкнуть левой клавишей мыши);
2. Формат => Выделенная ось;
3. В появившемся диалоговом окне Формат оси выбрать вкладку Шкала;
4. В поле Минимальное значение – ввести минимальное (или несколько ниже) значение признака, соответствующего форматируемой оси;
5. В поле Максимальное значение – ввести максимальное (или несколько выше) значение признака, соответствующего форматируемой оси;
6. ОК.
Выделить диаграмму и с помощью приема "захват мышью" переместить ее в конец Рабочего файла.
В результате указанных действий для выбранных видов моделей регрессии осуществляется вывод на диаграмму рассеяния 3-х уравнений регрессии, их графиков и значений соответствующих индексов детерминации R2 (Диаграмма 2.1 приведена на рис. 2.1).
ПРИЛОЖЕНИЕ
табл.2.1
Таблица 2.1 |
||
Исходные данные |
||
Номер предприятия |
Среднегодовая стоимость основных производственных фондов, млн.руб. |
Выпуск продукции, млн. руб. |
5 |
350,00 |
280,00 |
23 |
378,00 |
372,00 |
27 |
410,00 |
320,00 |
1 |
422,00 |
412,00 |
8 |
438,00 |
440,00 |
32 |
446,00 |
464,00 |
22 |
478,00 |
396,00 |
19 |
490,00 |
380,00 |
2 |
498,00 |
452,00 |
3 |
514,00 |
504,00 |
13 |
518,00 |
536,00 |
26 |
530,00 |
492,00 |
9 |
538,00 |
516,00 |
4 |
542,00 |
560,00 |
28 |
554,00 |
500,00 |
17 |
558,00 |
512,00 |
6 |
570,00 |
480,00 |
14 |
570,00 |
584,00 |
25 |
570,00 |
520,00 |
7 |
586,00 |
648,00 |
31 |
610,00 |
520,00 |
18 |
618,00 |
608,00 |
10 |
622,00 |
644,00 |
20 |
626,00 |
520,00 |
24 |
638,00 |
596,00 |
29 |
642,00 |
548,00 |
15 |
654,00 |
708,00 |
12 |
682,00 |
680,00 |
21 |
698,00 |
700,00 |
16 |
750,00 |
760,00 |
рис. 2.1
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ
Лабораторная работа №3
Автоматизированный анализ динамики социально-экономических явлений в среде MS Excel
Вариант № 6
Исполнитель: Ржавичева Татьяна Владимировна
Специальность: финансы и кредит
Группа: дневная III курс
№ зачетной книжки: 08ФФД40351
Руководитель: Леонова Светлана Николаевна
Орел 2009г
Задание 1.Расчёт и анализ показателей ряда динамики выпуска продукции за шестилетний период.
Алгоритмы выполнения Задания 1
Задача 1. . Расчет цепных и базисных показателей динамики: абсолютный прирост (сокращение); темп роста (снижения); темп прироста (сокращения) и абсолютное значение 1 % прироста
Алгоритм 1.1. Расчёт цепных и базисных показателей динамики, характеризующих изменение отдельных уровней ряда динамики
1. В ячейке, выделенной для значения абсолютного прироста цепного за первый год (С26), перед формулой поставить знак равенства «=»;
2. Enter;
3. Установить курсор в правом нижнем углу ячейки (С26) с формулой – образцом (курсор примет форму черного крестика) и, удерживая левую клавишу мыши в нажатом состоянии, переместить курсор до нижней клетки графы. Отпустить клавишу мыши (формула – образец размножилась на всю графу).
4. Выполнить действия 1–2 поочередно для всех аналитических показателей ряда динамики табл.3.2:
абсолютного прироста базисного;
темпа роста цепного и базисного;
темпа прироста цепного и базисного;
абсолютного значения 1% прироста.
Результат работы алгоритма 1.1 в табл. 3.2
Таблица 3.2 |
||||||||
Показатели динамики выпуска продукции |
||||||||
Годы |
Выпуск продукции, млн. руб. |
Абсолютный прирост, млн. руб. |
Темп роста, % |
Темп прироста, % |
Абсолютное значение 1% прироста |
|||
цепной |
базисный |
цепной |
базисный |
цепной |
базисный |
|||
1-й |
3920,00 |
|
|
|
|
|
|
|
2-й |
4160,00 |
240,00 |
240,00 |
106,1 |
106,1 |
6,1 |
6,1 |
39,2 |
3-й |
4550,00 |
390,00 |
630,00 |
109,4 |
116,1 |
9,4 |
16,1 |
41,6 |
4-й |
4430,00 |
-120,00 |
510,00 |
97,4 |
113,0 |
-2,6 |
13,0 |
45,5 |
5-й |
4665,00 |
235,00 |
745,00 |
105,3 |
119,0 |
5,3 |
19,0 |
44,3 |
6-й |
5157,00 |
492,00 |
1 237,00 |
110,5 |
131,6 |
10,5 |
31,6 |
46,65 |
Задача 2. Расчет средних показателей ряда динамики: средний уровень ряда динамики; средний абсолютный прирост; средний темп роста и средний темп прироста
Алгоритм 1.2. Расчёт средних показателей ряда динамики
1. В ячейке, выделенной для значения средний уровень ряда динамики (E34), перед формулой поставить знак равенства «=»;
2. Enter;
3. Выполнить действия 1–2 поочередно для всех средних показателей ряда динамики табл.3.3:
среднего абсолютного прироста;
среднего темпа роста;
среднего темпа прироста.
Результат работы алгоритма 1.2 в табл. 3.3
Таблица 3.3 |
||||
Средние показатели ряда динамики |
||||
|
4480,33 |
|||
|
247,40 |
|||
Средний темп роста, %, |
105,6 |
|||
Средний темп прироста, %, |
5,6 |
Задание 2. Прогноз показателя выпуска продукции на 7-ой год методом экстраполяции.
Алгоритмы выполнения Задания 2
Задача 1. Прогнозирование выпуска продукции предприятием на год вперёд с использованием среднего абсолютного прироста и среднего темпа роста.
Алгоритм 2.1. Расчёт выпуска продукции на год вперёд с использованием среднего абсолютного прироста и среднего темпа роста
1. В ячейке, выделенной для значений прогнозируемого выпуска продукции по среднему абсолютному приросту (Е41), перед формулой поставить знак равенства «=».
2. Enter;
3. Выполнить действия 1–2 для прогнозируемого выпуска продукции по значению среднего темпа роста (табл.3.4).
Результат работы алгоритма 2.1 в табл. 3.4
Таблица 3.4 |
||||
|
||||
|
5404,40 |
|||
|
5445,79 |
Задача 2. Прогнозирование выпуска продукции предприятием на год вперёд с использованием аналитического выравнивания ряда динамики по прямой, параболе и полиному 3-го порядка.
Алгоритм 2.2. Построение графика динамики выпуска продукции за 6 лет с использованием средств инструмента МАСТЕР ДИАГРАММ
1. Выделить мышью ячейки, содержащие выпуск продукции за 6 лет (диапазон ячеек B7:B12);
2. Вставка=>Диаграмма=>Точечная;
3. В появившемся диалоговом окне Мастер диаграмм (шаг 1 из 4) выбрать вид точечной диаграммы, на которой значения соединены отрезками;
4. Далее;
5. В появившемся диалоговом окне Мастер диаграмм (шаг 2 из 4) выбрать вкладку Ряд и задать имя ряда 1 – «Исходные данные»;
6. Далее;
7. В появившемся диалоговом окне Мастер диаграмм (шаг 3 из 4) выбрать вкладку Заголовки и задать названия диаграммы («Прогнозирование выпуска продукции на 7-ой год») и осей Х («Годы») и У («Выпуск продукции. млн. руб.»;;
8. Готово;
9. Выделить на полученной диаграмме ось Y (подвести курсор к требуемой оси и щелкнуть левой клавишей мыши);
10. Формат => Выделенная ось;
11. В появившемся диалоговом окне Формат оси выбрать вкладку Шкала;
12. В поле Минимальное значение – ввести минимальное (или несколько ниже) значение признака «Выпуск продукции»;
13. ОК.
Выделить диаграмму и с помощью приема "захват мышью" переместить ее в конец Рабочего файла.
Алгоритм 2.3. Нахождение тренда ряда динамики выпуска продукции методом аналитического выравнивания и прогнозирование его на год вперед с помощью инструмента Мастер диаграмм
1. Выделить мышью диаграмму «Прогнозирование выпуска продукции на 7-ой год», расположенную в конце Рабочего файла;
2. Диаграмма => Добавить линию тренда;
3. В появившемся диалоговом окне Линия тренда выбрать вкладку Тип и задать вид линии тренда – линейная;
4. Выбрать вкладку Параметры и выполнить действия:
1. Переключатель Название аппроксимирующей кривой: автоматическое/другое – установить в положение другое и ввести имя тренда– Прямая;
2. В поле Прогноз вперед на…едициц ввести значение «1»;
3. Поле Прогноз назад на…единиц – НЕ активизировать;
4. Флажок Пересечение кривой с осью Y в точке – НЕ активизировать;
5. Флажок Показывать уравнение на диаграмме – Активизировать;
6. Флажок Поместить на диаграмму величину достоверности аппроксимации R2 – Активизировать;
7. ОК;
8. Установить курсор на линию тренда, щелкнуть правой клавишей мыши и выбрать меню Формат линии тренда;
9. В появившемся диалоговом окне Формат линии тренда выбрать вкладку Вид и задать по своему усмотрению тип, цвет и толщину линии;
10. ОК;
11. Выделить уравнение линии тренда и индекс детерминации R2 и с помощью приема "захват мышью" вынести их за корреляционное поле. При необходимости уменьшить размер шрифта.
5. Действия 1 – 4 (в п.4 шаги 1–11) выполнить для линии тренда:
парабола;
полином 3-го порядка.
Результат работы алгоритмов 2.2 – 2.3 представлен на рис.3.1.
Рис.3.1. График динамики выпуска продукции за 6 лет и прогноз выпуска на год вперед
Задание 3. Выявление тенденции развития изучаемого явления (тренда) по данным о выпуске продукции по месяцам за 6-ой год методами скользящей средней и аналитического выравнивания.
Алгоритмы выполнения Задания 3
Алгоритм 3.1. Нахождение значений скользящей средней с помощью инструмента СКОЛЬЗЯЩЕЕ СРЕДНЕЕ надстройки ПАКЕТ АНАЛИЗА
1. Сервис => Анализ данных => Скользящее среднее => ОК;
2. Входной интервал <= диапазон ячеек табл. 3.5 со значениями признака – Выпуск продукции (В47:В58);
3. Метки в первой строке– НЕ активизировать;
4. Интервал – НЕ активизировать;
5. Выходной интервал <= адрес первой ячейки третьего столбца выходной результативной таблицы (С47);
6. Новый рабочий лист и Новая рабочая книга – НЕ активизировать;
7. Вывод графика –Активизировать;
8. Стандартные погрешности – НЕ активизировать;
9. ОК.
Выделить диаграмму и с помощью приема "захват мышью" переместить ее в конец Рабочего файла.
В результате указанных действий осуществляется вывод значений скользящей средней, начиная с ячейки, указанной в поле Выходной интервал диалогового окна инструмента Скользящее среднее, и графика. Они представлены в табл.3.5 и на рис.3.2.
Таблица 3.5 |
||
Выпуск продукции за 6-ой год |
||
Месяцы |
Выпуск продукции, млн. руб. |
Скользящее среднее |
январь |
265,00 |
#Н/Д |
февраль |
331,00 |
#Н/Д |
март |
390,00 |
328,67 |
апрель |
360,00 |
360,33 |
май |
420,00 |
390,00 |
июнь |
400,00 |
393,33 |
июль |
456,00 |
425,33 |
август |
431,00 |
429,00 |
сентябрь |
510,00 |
465,67 |
октябрь |
531,00 |
490,67 |
ноябрь |
543,00 |
528,00 |
декабрь |
520,00 |
531,33 |
Рис.3.2. График сглаживания ряда динамики выпуска продукции за 6-ой год, сгенерированный в режиме «скользящее среднее» Пакета анализа
Алгоритм 3.2. Приведение выходной таблицы к виду, принятому в статистике
1. Ячейку С47, содержащую термин " #Н/Д", выделить мышью и очистить, нажав клавишу [Delete];
2. Ячейки результативной таблицы (С49:С58), содержащие значения «Скользящее среднее», вырезать с помощью инструмента ;
3. Вставить в табл. 3.5, начиная с ячейки С48, с помощью инструмента ;
4. Отформатировать таблицу по образцу с помощью инструмента .
Полученная результативная таблица выглядит следующим образом.
Таблица 3.5 |
||
Выпуск продукции за 6-ой год |
||
Месяцы |
Выпуск продукции, млн. руб. |
Скользящее среднее |
январь |
265,00 |
|
февраль |
331,00 |
328,67 |
март |
390,00 |
360,33 |
апрель |
360,00 |
390,00 |
май |
420,00 |
393,33 |
июнь |
400,00 |
425,33 |
июль |
456,00 |
429,00 |
август |
431,00 |
465,67 |
сентябрь |
510,00 |
490,67 |
октябрь |
531,00 |
528,00 |
ноябрь |
543,00 |
531,33 |
декабрь |
520,00 |
График сглаживания ряда динамики выпуска продукции методом скользящей средней представлен на рис. 3.3.
Рис.3.3. График сглаживания скользящей средней ряда динамики выпуска продукции за 6-ой год
Задача 2. Аналитическое выравнивание по прямой и параболе
Алгоритм 3.3. Построение графика динамики выпуска продукции по месяцам за 6-ой год с использованием средств инструмента МАСТЕР ДИАГРАММ
1. Выделить мышью столбец данных в диапазоне B47:В58 (табл. 3.5);
2. Вставка=>Диаграмма=>Точечная;
3. В появившемся диалоговом окне Мастер диаграмм (шаг 1 из 4) выбрать вид точечной диаграммы, на которой значения соединены отрезками;
4. Далее;
5. В появившемся диалоговом окне Мастер диаграмм (шаг 2 из 4) выбрать вкладку Ряд и ввести имя ряда «Исходные данные»;
6. Далее;
7. В появившемся диалоговом окне Мастер диаграмм (шаг 3 из 4) выбрать вкладку Заголовки и задать названия диаграммы («Выпуск продукции за 6-ой год по месяцам») и осей Х («Месяцы») и У («Выпуск продукции. млн. руб.»;
8. Готово.
Выделить диаграмму и с помощью приема "захват мышью" переместить ее в конец Рабочего файла.
Алгоритм 3.4. Сглаживание ряда динамики выпуска продукции методом аналитического выравнивания с помощью инструмента Мастер диаграмм
1. Выделить мышью диаграмму «Выпуск продукции за 6-ой год по месяцам», расположенную в конце Рабочего файла;
2. Диаграмма => Добавить линию тренда;
3. В появившемся диалоговом окне Линия тренда выбрать вкладку Тип и задать вид линии тренда – линейная;
4. Выбрать вкладку Параметры и выполнить действия:
1. Переключатель Название аппроксимирующей кривой: автоматическое/другое – установить в положение другое и ввести имя тренда - Прямая;
2. Поле Прогноз вперед на – НЕ активизировать;
3. Поле Прогноз назад на – НЕ активизировать;
4. Флажок Пересечение кривой с осью Y в точке – НЕ активизировать;
5. Флажок Показывать уравнение на диаграмме – Активизировать;
6. Флажок Поместить на диаграмму величину достоверности аппроксимации R2 – Активизировать;
7. ОК;
8. Установить курсор на линию тренда, щелкнуть правой клавишей мыши и выбрать меню Формат линии тренда;
9. В появившемся диалоговом окне Формат линии тренда выбрать вкладку Вид и задать по своему усмотрению тип, цвет и толщину линии;
10. ОК;
11. Выделить уравнение линии тренда и индекс детерминации R2 и с помощью приема "захват мышью" вынести их за корреляционное поле. При необходимости уменьшить размер шрифта.
5. Действия 1 – 4 (в п.4 шаги 1–11) выполнить для линии тренда парабола.
По окончании работы алгоритма 2.4 выполнить следующие действия:
1. Снять заливку области построения;
2. При необходимости изменить масштаб шкалы осей диаграммы.
Результат работы алгоритмов 3.3 – 3.4 представлен на рис.3.4.
Рис. 3.4. График сглаживания по прямой и параболе ряда динамики выпуска продукции за 6-ой год
ПРИЛОЖЕНИЕ
Таблица 3.1
Таблица 3.1 |
||||
Исходные данные |
||||
Годы |
Выпуск продукции, млн. руб. |
Месяцы |
Выпуск продукции, млн. руб. |
|
1 |
3920,00 |
январь |
265,00 |
|
2 |
4160,00 |
февраль |
331,00 |
|
3 |
4550,00 |
март |
390,00 |
|
4 |
4430,00 |
апрель |
360,00 |
|
5 |
4665,00 |
май |
420,00 |
|
6 |
5157,00 |
июнь |
400,00 |
|
июль |
456,00 |
|||
август |
431,00 |
|||
сентябрь |
510,00 |
|||
октябрь |
531,00 |
|||
ноябрь |
543,00 |
|||
декабрь |
520,00 |
|||
Итого |
5157,00 |