Содержание

1. Миграция свинца. 3

2. Биогеохимическая функция свинца. 4

3. Геохимическая характеристика свинца. 4

4. Ресурсный цикл свинца. 5

5. Производства по добыче свинца. 6

6. Санитарно-гигиеническая характеристика свинца. 8

7. Роль свинца в эволюции жизни и формировании периодов взаимодействия природы и общества. 9

8. Влияния свинца на здоровье человека. 9

9. Модель устойчивого развития системы «природа-общество». 10

Список литературы.. 12

1. Миграция свинца

Свинец – химический элемент IV группы периодической таблицы. Относительная атомная масса (Ar = 207,2) является усредненной из масс нескольких изотопов: 204Pb (1,4%), 206Pb (24,1%), 207Pb (22,1%) и 208Pb (52,4%). Последние три нуклида – конечные продукты естественных радиоактивных превращений урана, актиния и тория. Известно также более 20 радиоактивных изотопов свинца, из которых наиболее долгоживущие – 202Pb и 205Pb (с периодами полураспада 300 тысяч и 15 млн. лет). В природе образуются также и короткоживущие изотопы свинца с массовыми числами 209, 210, 212 и 214 с периодами полураспада соответственно 3,25 ч, 27,1 года, 10,64 ч и 26,8 мин. Соотношение различных изотопов в разных образцах свинцовых руд может несколько различаться, что не дает возможности определить для свинца значение Ar с большей точностью.

В земной коре свинца немного – 0,0016% по массе, но этот один из самых тяжелых металлов распространен гораздо больше, чем его ближайшие соседи – золото, ртуть и висмут. Это связано с тем, что разные изотопы свинца являются конечными продуктами распада урана и тория, так что содержание свинца в земной коре медленно увеличивалось в течение миллиардов лет. [1]

Главный рудный минерал свинца – галенит (свинцовый блеск), представляющий собой сульфид свинца; он часто содержит также примесь серебра, которое извлекается попутно. Галенит обычно ассоциирует со сфалеритом – рудным минералом цинка и нередко с халькопиритом – рудным минералом меди, образуя полиметаллические руды.

Добыча свинцовых руд ведется в 48 странах; ведущие производители – Австралия (16% мировой добычи, 1995), Китай (16%), США (15%), Перу (9%) и Канада (8%), в значительных объемах добыча ведется также в Казахстане, России, Мексике, Швеции, ЮАР и Марокко. В США основной производитель свинцовой руды – штат Миссури, где в долине р. Миссисипи 8 рудников дают 89% общей добычи свинца в стране (1995). Другие районы добычи – штаты Колорадо, Айдахо и Монтана. На Аляске запасы свинца связаны с цинковыми, серебряными и медными рудами. Большая часть разрабатываемых месторождений свинца в Канаде находится в провинции Британская Колумбия.

В Австралии свинец всегда ассоциирует с цинком. Основные месторождения – Маунт-Айза (Квинсленд) и Брокен-Хилл (Новый Южный Уэльс).

Крупные свинцово-цинковые месторождения имеются в Казахстане (Рудный Алтай, Казахский мелкосопочник), Узбекистане, Таджикистане, Азербайджане. Основные месторождения свинца в России сосредоточены на Алтае, в Забайкалье, Приморье, Якутии, на Енисее и Северном Кавказе.

Технофильность свинца равна:

4,1*106 / 0,000016 * 4,7*107  = 5452,12*109 т

Биофильность свинца равна:

10-4 / 0,0016 = 0,0625

2. Биогеохимическая функция свинца

Содержание в почве свинца обычно колеблется от 0,1 до 20 мг/кг. Свинец отрицательно влияет на биологическую деятельность в почве, ингибирует активность ферментов уменьшением интенсивности выделения двуокиси углерода и численности микроорганизмов.

3. Геохимическая характеристика свинца

 Свинец накапливается в земной коре не только за счет выплавления его из вещества мантии, но и в результате радиоактивного распада изотопов урана (238U, 235U) и тория (232Th). При выветривании горных пород катионы свинца высвобождаются, большая часть их сорбируется высокодисперсными глинистыми частицами и гидроксидами железа, а меньшая поступает в грунтовые воды. В составе взвесей, а также в виде органических соединений, простых и комплексных ионов свинец выносится с речным стоком и осаждается преимущественно в дельтах и узкой прибрежной полосе шельфа. Небольшое количество свинца, попадающее в океан, выпадает в осадок благодаря биофильтрации морской воды организмами планктона. Таким образом, Мировой океан – глобальный аккумулятор растворимых форм свинца.

В водах Мирового океана его содержится в среднем 0,03 мкг/л (3·10–9%). Мало в среднем свинца и в живом веществе – 10–4%. [3]

На суше свинец поглощается растениями. Во время лесных пожаров значительные массы элемента поступают в атмосферу (в виде дыма). Кроме того, свинец содержится в высокодисперсной минеральной пыли. «Время жизни» свинецсодержащих аэрозолей составляет около 7 суток.

Годовая добыча свинца значительно превышает и вынос растворимых форм, и годовой захват растительностью этого элемента. Техногенное рассеяние свинца, в отличие от рассеяния газообразных веществ, не распространяется на большие пространства, а сосредотачивается, в основном, вдоль автомагистралей, это связано с использованием тетраэтилсвинца в качестве антидетонатора автомобильных бензинов

Дата открытия свинца затерялась в анналах истории. Известно, однако, что египтяне пользовались свинцом для глазурования гончарных изделий, а также для изготовления припоя и декоративных предметов. В висячих садах Вавилона был пол из листов свинца, спаянных так, чтобы удерживать влагу. В древней Индии свинцовый сурик применялся в косметике, а сам металл – для очистки серебра, изготовления талисманов и первых монет.

4. Ресурсный цикл свинца

Известно много рудных месторождений, богатых свинцом, причем металл легко выделяется из минералов. Всего известно более ста свинцовых минералов. Из них основные – галенит (свинцовый блеск) PbS и продукты его химических превращений – англезит (свинцовый купорос) PbSO4 и церуссит («белая свинцовая руда») PbCO3. Реже встречаются пироморфит («зеленая свинцовая руда») PbCl2·3Pb3(PO4)2, миметит PbCl2·3Pb3(AsO4)2, крокоит («красная свинцовая руда») PbCrO4, вульфенит («желтая свинцовая руда») PbMoO4, штольцит PbWO4. В свинцовых рудах часто находятся также другие металлы – медь, цинк, кадмий, серебро, золото, висмут и др. В месте залегания свинцовых руд этим элементом обогащена почва (до 1% Pb), растения и воды.[5]

В сильноокислительной щелочной среде степей и пустынь возможно образование диоксида свинца – минерала платтнерита. И исключительно редко встречается самородный металлический свинец.

5. Производства по добыче свинца

Металлургия. Древние цивилизации получали свинец из руд, выходивших на поверхность. Современная техника позволяет вести разработку на значительной глубине под землей, где этот металл встречается в форме сульфида – минерала галенита (свинцового блеска) PbS, составляющего основу самых важных свинцовых руд. Почти все современные руды – бедные, но галенитовые легче многих других металлических руд обрабатываются и обогащаются – до содержания 40–78% Pb.

Обогащение. Процесс обогащения свинцовых руд состоит из таких этапов, как сухое дробление, мокрое измельчение, грохочение, обогащение на концентрационных столах и флотация. Методы размельчения зависят от характеристик руды. Перед размельчением проводится гравитационное разделение руды, которое дает сырой концентрат галенита, пригодный для дальнейшего обогащения и отделения от минералов цинка флотационным методом. (Метод флотации и был первоначально разработан именно для этого.) Тонко размельченную руду заливают водой, и смесь перемешивают сжатым воздухом в баке, добавив к ней небольшое количество некоторых химикатов и хвойного масла (скипидара). На поверхности образуется галенитовая пена, а пустая порода оседает на дно. Пена сливается из бака и сушится.

Выплавление. Поскольку обычное агломерационное спекание с последующей шахтной плавкой – энергоемкий и малоэффективный процесс, требующий дорогостоящего экологического контроля, выделение свинца основывается на переработке руды в веркблей (черновой свинец). Существуют два основных метода такой прямой плавки – в печи для окислительного обжига во взвешенном состоянии и в кислородном конвертере.

При плавке первым из двух названных методов сухой концентрат вдувают вместе с кислородом или дымовыми газами, обогащенными кислородом, в высокую вертикальную шахту печи, где они образуют суспензию. Свинец и другие металлы, если они присутствуют, преобразуются в оксиды с образованием диоксида серы. Для подавления роста настыли оксида железа (на стенках шахты) и для образования шлака добавляется также флюс – обычно пылевидная высококремнеземистая порода (вместо этого может добавляться порошкообразный известняк или доломит). Наиболее совершенная технология прямой плавки в печи для обжига во взвешенном состоянии – процесс КИВЦЭТ-ЦС, разработанный в СССР. Самая крупная на Западе печь такого типа работает с 1987 в Порто-Весме на о.Сардиния. Первоначально процесс КИВЦЭТ-ЦС разрабатывался как технология плавки смеси сыпучих концентратов разных руд в циклоне. Типичная печь такого рода может плавить 120–130 тыс. т концентратов в год при загрузке около 600 т в сутки и давать 80–90 тыс. т в год веркблея, содержащего до 97% свинца. [3]

Что касается конвертерной плавки, то с 1960-х годов был разработан ряд разных процессов с турбулентной ванной расплава, создаваемой путем продувки кислорода или воздуха, обогащенного кислородом, через донные фурмы или погруженные дутьевые трубы. Примером может служить процесс Кено – Шуманна – Лерджи (QSL, КШЛ), в котором реактор представляет собой длинный горизонтальный вращающийся цилиндр с кирпичной футеровкой. Шлак перемещается к летке на одном конце ванны, а свинец – к летке в зоне окисления. Процесс КШЛ требует предварительного смешивания и мокрого гранулирования концентратов и флюсов. Оптимальная производительность несколько ниже, чем в процессе КИВЦЭТ-ЦС. Установки сравнительно малой производительности, основанные на процессе КШЛ, эксплуатируются в Германии, а с 1991 – в Южной Корее. Более крупные заводы проектируются в КНР и других регионах, производящих свинец.

Значительное повышение содержания Pb в окружающей среде связано со сжиганием углей, применением тетраэтилсвинца в моторном топливе, а также со сточными водами рудообогатительных, некоторых металлургических и химических предприятий. В подземных водах концентрация свинца редко достигает нескольких десятков мкг/л. В кислых рудных водах она составляет десятки и сотни мкг/л, лишь в хлоридных термальных водах достигает иногда нескольких мг/л. Pb очень ядовит, накапливается в костях, печени и почках. ПДК свинца для питьевой воды составляет 0,03 мг/л.

Свинец используется главным образом при изготовлении автомобильных аккумуляторов и присадок тетраэтилата свинца к бензину (в последнее время применение токсичных свинцовых присадок сокращается в связи с ограничениями на использование этилированного бензина). Около четверти добываемого свинца расходуется на нужды строительства, связи, электротехнической и электронной промышленности, на изготовление боеприпасов, красителей (свинцовых белил, сурика и др.), свинцового стекла и хрусталя и керамических глазурей. Кроме того, свинец применяется в керамическом производстве, для изготовления типографских шрифтов, в антифрикционных сплавах, в качестве балластных грузов или гирь, из него делают трубы и контейнеры для радиоактивных материалов. Свинец – основной материал для защиты от ионизирующего излучения. Большая часть свинца подлежит повторному использованию (исключение составляют стеклянные и керамические изделия, химикаты и пигменты). Поэтому потребности в свинце могут покрываться в значительной степени за счет переработки металлолома.

6. Санитарно-гигиеническая характеристика свинца

Соединения свинца ядовиты. Но очевидным это стало далеко не сразу. В прошлом покрытия гончарных изделий свинцовой глазурью, изготовление свинцовых водопроводных труб, использование свинцовых белил (особенно в косметических целях), применение свинцовых трубок в конденсаторах паров на винокуренных заводах – все это приводило к накоплению свинца в организме. Древние греки знали, что вино и кислые соки нельзя держать в глазурованных глиняных сосудах (глазурь содержала свинец), а вот римляне этим правилом пренебрегали. Джемс Линд, рекомендовавший в 1753 английскому адмиралтейству лимонный сок как средство против цинги для моряков в дальнем плавании, предостерегал от хранения сока в гончарных глазурованных изделиях. Тем не менее случаи отравления, в том числе и смертельные, наблюдались по той же причине и двести лет спустя.

Свинец проникает в организм через желудочно-кишечный тракт или дыхательную систему и разносится затем кровью по всему организму. Причем вдыхание свинцовой пыли значительно опаснее присутствия свинца в пище. В воздухе городов содержание свинца составляет в среднем от 0,15 до 0,5 мкг/м3. В районах, где расположены предприятия по переработке полиметаллических руд, эта концентрация выше. [4]

7. Роль свинца в эволюции жизни и формировании периодов взаимодействия природы и общества.

Свинец является токсичным металлом. Относится к условно эссенциальным элементам  - входит в состав узкоспециализированной группы элементов, “работающей” не у всех видов организмов. Свинец является биогенным элементом.

8. Влияния свинца на здоровье человека

Свинец накапливается в костях, частично замещая кальций в фосфате Са3(РО4)2. Попадая в мягкие ткани – мышцы, печень, почки, головной мозг, лимфатические узлы, свинец вызывает заболевание – плюмбизм. Как и многие другие тяжелые металлы, свинец (в виде ионов) блокирует деятельность некоторых ферментов. Было установлено, что их активность снижается в 100 раз при увеличении концентрации свинца в крови в 10 раз – с 10 до 100 микрограммов на 100 мл крови. При этом развивается анемия, поражаются кроветворная система, почки и мозг, снижается интеллект. Признак хронического отравления – серая кайма на деснах, расстройство нервной системы. Особенно опасен свинец для детей, так как он вызывает задержку в развитии. В то же время десятки миллионов детей во всем мире в возрасте до 6 лет имеют свинцовое отравление; основная причина – попадание в рот краски, содержащей свинец. Антидотом при отравлении может служить кальциевая соль этилендиаминтетрауксусной кислоты. В отравленном организме происходит замещение кальция на ионы свинца, которые удерживаются в этой соли очень прочно и в таком виде выводятся.

Свинец легко может попасть в организм с питьевой водой, если она соприкасалась с металлом: в присутствии углекислого газа в раствор медленно переходит растворимый гидрокарбонат Pb(HCO3)2. В Древнем Риме, где для подачи воды использовали свинцовые трубы, такое отравление было весьма распространенным, на что указывают анализы останков римлян. Причем отравлялись, в основном, богатые римляне, пользовавшиеся водопроводом, хранившие вино, оливковое масло и другие продукты в освинцованных сосудах, использовавшие содержащие свинец косметические средства. Достаточно, чтобы в литре воды был всего один миллиграмм свинца – и питье такой воды становится очень опасным. Это количество свинца так малó, что не изменяет ни запаха, ни вкуса воды, и только точные современные приборы могут его обнаружить.

9. Модель устойчивого развития системы «природа-общество»

Свинцовое загрязнение приобрело в 20-21 вв. глобальный характер. Даже в снегах Гренландии его содержание за сто лет увеличилось в пять раз, а в центрах крупных городов в почве и растениях свинца в 25 раз больше, чем на окраинах! Загрязнение свинцом наблюдается в районах его добычи, а также в местах переработки и автострад, особенно если еще используется этилированный бензин. Немало свинца оседает на дне озер в виде охотничьей дроби. Каждый год в Мировой океан со сточными водами попадает более полумиллиона тонн этого ядовитого металла. А кто не видел выброшенные в мусорные ящики, а то и просто в канавы отработанные аккумуляторы! Пока свинец дешев, собирание и переработка его отходов невыгодна. Малая растворимость большинства соединений свинца, к счастью, не позволяет ему накапливаться в значительных количествах в воде.

Модель устойчивого развития должна обеспечивать защиту окружающей среды от вредного воздействия свинца путем строгого нормирования его содержания в воде и почве.

Список литературы

1.     Дубинин Н.П., Шевченко Ю.Г. Некоторые вопросы биосоциальной природы человека. – М.: Наука, 1976. – 235 с.

2.     Зеленков А.И., Водопьянов П.А. Динамика биосферы и социокультурные традиции. – Мн.: изд-во «Университетское», 1987. – 239 с.

3.     Иванов В.В. Экологическая геохимия элементов. Справочник в 6 кн. / Под ред. Э.К. Буренкова. – М.: Недра, 1994. –

4.     Исаченко А.Г. Оптимизация природной среды (географический аспект). – М.: Мысль, 1980. – 264 с.

5.     Йод и здоровье населения Сибири / М.Ф. Савченков, ВГ. Селятицкая, С.И. Колесников и др. – Новосибирск: Наука, 2002. – 287 с.

6.     Казначеев В.П. Очерки теории и практики экологии человека. – М.: Наука, 1983. – 260 с.

7.     Казначеев В.П. Учение В.И. Вернадского о биосфере и ноосфере. – Новосибирск: Наука. Сиб. Отд-ние, 1989. – 248 с.с.