Содержание

3. Перечислите тепловые характеристики диэлектриков. Укажите материалы, из которых они изготовляются. 3

31. Укажите, какие сплавы на основе железа применяются в электровакуумной технике. Поясните их особенности и назначение. 8

46. Укажите способы изготовления постоянных магнитов. 10

57. Укажите особенности слюдяных, стеклянных, стеклоэмалевых и стеклокерамических конденсаторов. 14

Список литературы.. 16

3. Перечислите тепловые характеристики диэлектриков. Укажите материалы, из которых они изготовляются

Диэлектрики - тела, плохо проводящие ток. В диэлектриках в отличие от проводников практически нет свободных зарядов, способных перемещаться на значительные расстояния по всему объему тела.

Диэлектрики состоят либо из нейтральных молекул (к такому типу диэлектриков относят все газовые диэлектрики, жидкие диэлектрики, а также часть твердых), либо из заряженных ионов, размещенных в узлах кристаллической решетки в определенных положениях равновесия. Ионные решетки могут быть разбиты на элементарные ячейки, каждая из которых содержит равное количество положительных и отрицательных зарядов и в целом нейтральна. Таким образом, в целом можно определить диэлектрик как вещество, построенное из нейтральных молекул, причем в случае ионной решетки под нейтральной молекулой следует понимать элементарную ячейку.

Под воздействием внешнего электрического поля заряды, входящие в состав диэлектрика не срываются полем со своих мест, образуя электрический ток, а лишь смещаются на незначительные расстояния в некоторые новые равновесные положения.

К важнейшим свойствам диэлектриков относятся нагревостойкость, холодостойкость, теплопроводность и тепловое расширение.

     Нагревостойкость.  Способность электроизоляционных материалов и изделий без вреда для них как кратковременно, так и длительно выдерживать воздействие высокой температуры называют нагревостойкостью. Нагревостойкость неорганических диэлектриков определяют, как правила, по началу существенного изменения электрических свойств, например по заметному росту tg d или снижению удельного электрического сопротивления. Нагревостойкость оценивают соответствующими значениями температуры (в ° С), при которой появились эти изменения. Нагревостойкость органических диэлектриков часто определяют по началу механических деформаций растяжения или изгиба, погружению иглы в материал под давлением при нагреве (определение "теплостойкости"). Однако и для них возможно определение нагревостойкости по электрическим характеристикам.

     В качестве примера давно существующего способа оценки нагревостойкости электроизоляционных материалов можно отметить способ Мартенса. По этому способу нагревостойкость пластмасс и подобных материалов характеризуют таким значением температуры, при котором  изгибающее напряжение 5 Мпа вызывает заметную деформацию испытуемого образца. При этом скорость повышения температуры должна составлять около 1 К/мин. Для различных диэлектриков по этому получаются следующие численные значения:

     Эбонит – 65-75° C

     Полистирол - 70-85° С

     Гетинакс - 150-180° С

     В качестве примера употребляющегося в практике способа оценки температуры размягчения электроизоляционных материалов можно отметить способ кольца и шара. Испытуемый материал заливают в металлическое кольцо и помещают на него стальной шарик определенного диаметра; отмечается температура, при которой испытуемый материал настолько размягчается, что шарик может его продавить и пройти сквозь кольцо.

     Температурой вспышки называют температуру жидкости, при нагреве до которой смесь паров ее с воздухом вспыхивает при поднесении к ней небольшого пламени. Температура воспламенения - еще более высокая температура, при которой при поднесении пламени испытуемая жидкость загорается.

     Эти характеристики представляют особый интерес при оценке качества трансформаторного масла, а также растворителей, применяемых в производстве электроизоляционных лаков.

     Если ухудшение качества изоляции может обнаружится лишь при длительном воздействии повышенной температуры вследствие медленно протекающих химических процессов, это явление называют тепловым старением изоляции. Старение может проявляться, например, у лаковых пленок и целлюлозных материалов в виде повышения твердости и хрупкости, образования трещин и т.п. для проверки стойкости электроизоляционных материалов к тепловому старению образцы этих материалов длительно выдерживают при сравнительно невысокой температуре, не вызывающей медленного разрушения материала. Свойства образцов, старевших определенное время, сравнивают со свойствами исходного материала. При прочих равных условиях скорость теплового старения органических и элементоорганических полимеров значительно возрастает с повышением температуры старения, подчиняясь общим закономерностям изменения скорости химических реакций.

Продолжительность старения tсвязана с абсолютной температурой старения T зависимостью вида

где А и В - величины, постоянные для данного материала и данных условий старения.

     Помимо температуры существенное влияние на скорость старения могут оказать изменение давления воздуха или концентрации кислорода, присутствие озона, являющегося более сильным окислителем, чем кислород, а также различных химических реагентов, ускоряющих или замедляющих старение. Тепловое старение ускоряется от освещения образца ультрафиолетовыми лучами, воздействия электрического поля, механических нагрузок и т.п.

     Для ряда электроизоляционных материалов, в особенности хрупких, весьма важна стойкость по отношению к резким сменам температуры (термоударам), в результате которых в материале могут образовываться трещины.

     В результате испытаний устанавливается стойкость материала к тепловым воздействиям, причем она в различны случаях может быть  неодинаковой: например, материал, выдерживающий кратковременный нагрев до некоторой температуры, может оказаться неустойчивым, по отношению к тепловому старению при длительном воздействии даже при более низкой температуры и т.п. как указывалось, испытание на действие повышенной температуры иногда приходится указывать с одновременным воздействием повышенной влажности воздуха или электрического поля.

     Холодостойкость. Во многих случаях эксплуатации важна холодостойкость, т.е. способность изоляции работать без ухудшения эксплуатационной надежности при низких температурах, например от -60 до -70° С. При низких температурах, как правило, электрические свойства изоляционных материалов улучшаются, однако многие материалы, гибкие и эластичные в нормальных условиях, при низких температурах становятся хрупкими и жесткими, что создает затруднения для работы изоляции. Испытания электроизоляционных материалов и изделий из них на действие низких температур нередко проводятся при одновременном воздействии вибраций.

     Теплопроводимость. Практическое значение теплопроводимости объясняется тем, что тепло, выделяющееся вследствие потерь мощности в окруженных электрической изоляции проводниках и магнитопроводах, а также вследствие диэлектрических потерь в изоляции, переходит в окружающую среду через различные материалы. Теплопроводимость влияет на электрическую прочность при тепловом пробое и на стойкость материала к тепловым импульсам. Теплопроводность материалов характеризуют теплопроводностью gт, входящей в уравнение Фурье

где, ∆Pt  - мощность теплового потока сквозь площадку  ∆S, нормальную к потоку , dT/dl - градиент температуры.

     Значения удельной теплопроводимости некоторых диэлектриков приведены в таблице 1.

Таблица 1

Значения теплопроводимости некоторых диэлектриков

Материал

gt,

Вт/(м*К)

Фарфор

Стеатит

Двуокись титана

Кристаллический кварц

Алюминооксид

Окись магния

Окись бериллия

1,6

2,2

6,5

12,5

30

36

218

Значения gt электроизоляционных материалов за исключением окиси бериллия меньше, чем большинства металлов. Наименьшими значениям gt, обладают пористые электроизоляционные материалы  с воздушными включениями. При пропитке, а также при уплотнении материалов внешним давлением  gt увеличивается. Как правило кристаллические диэлектрики имеют более высокие значения  gt, чем аморфные. Величина  gt несколько зависит от температуры.

     Тепловое расширение диэлектриков, как и других материалов, оценивают температурным коэффициентом линейного расширения (ТКЛР), измеряемым в К-1 :

Материалы, обладающие малыми значениями ТКЛР, имеют, как правило, наиболее высокую нагревостойкость и наоборот. 

     В качестве примера в табл. 2 приведены средние ТКЛР некоторых электроизоляционных материалов в интервале 20-100° С.

Таблица 2

Температурный коэффициент линейного расширения некоторых диэлектриков

Материал

al*106,

К-1

Поливинилацетат

Поливинилхлорид

Полиэтилен

Ацетат целлюлозы

Найлон

Политетрафторэтилен

Нитроцеллюлоза

Полиметилметакрилат

Полистирол

265

160

145

120

115

100

100

70

68

31. Укажите, какие сплавы на основе железа применяются в электровакуумной технике. Поясните их особенности и назначение

Железо и его сплавы являются основой современной технологии и техники, в том числе электровакуумной технике. В ряду конструкционных металлов железо стоит на первом месте и не уступит его еще долгое время, несмотря на то, что цветные металлы, полимерные и керамические  материалы находят все большее применение. Железо и его сплавы составляют более 90 % всех металлов, применяемых в современном производстве. Самым важнейшим из сплавов железа является его сплав с углеродом. Углерод придает прочность сплавам железа. Эти сплавы образуют большую группу чугунов и сталей. Сталями называют сплавы железа  с углеродом, содержание которого не превышает 2,14 %. Сталь – важнейший конструкционный материал для машиностроения, транспорта и т. д. 

Электровакуумные приборы (ЭВП) служат для различного рода преобразований электромагнитной энергии (генерации, усиления). К ЭВП относятся: вакуумные электронные приборы (электронные лампы, магнетроны, клистроны, электронно-лучевые приборы, рентгеновские трубки), газоразрядные электронные приборы (ионные приборы).

Для практического применения в электровакуумной технике сплавов на основе железа важен следующий факт. Некоторые  металлы, например железо, титан и олово, способны по достижении определенных температур заменять свое кристаллическое строение, перестраивая тип элементарной ячейки. Так ОЦК железо, будучи нагрето до 9110С, перестраивает кристаллическую решетку при этой температуре и становится ГЦК железо. Это строение сохраняется до 1392 0С, после чего решетка снова перестраивается  и приобретает ОЦКстроение, сохраняя его вплоть до температуры плавления 1539 0С. Если у металла по достижении  какой-то определенной температуры изменение типа кристаллической решетки обеспечивает снижение запасов свободной энергии, то такой металл претерпевает  превращение. Разные  формы  металла обозначают буквами греческого алфавита, при этом низкотемпературные модификации обозначают буквой ά, а последующие в порядке роста температуры- буквами β,γ,δ и так далее. Наличие у металлов таких  свойств имеет важное  практическое значение, так как благодаря им у металла  изменяются такие свойства, как плотность, способность растворять в своей решетке другие элементы. В связи с этим именно благодаря  кристаллизации сплавы на основе железа можно подвергать термической обработке для целенаправленного изменения их свойств.

Большое применение в электровакуумной технике получили антифрикционные материалы системы Fe—Na—Ca, а также сплавы Fe—Ca, служащие для изготовления оболочки электрических кабелей. Сплав Fe—Si—Ca (ферросиликокальций) применяется как раскислитель и дегазатор.

Еще одной особенностью использования сплавов на основ железа в электровакуумной технике является то, что сплав железа и молибдена, используемый для изготовления сеток электровакуумных приборов, содержит один или несколько элементов, выбранных из группы, отличается повышенной пластичностью.

46. Укажите способы изготовления постоянных магнитов

Порошковые магнитотвердые материалы применяют для изготовления постоянных магнитов сложной формы. Их подразделяют на металлокерамические, металлопластические, оксидные и микропорошковые.

Металлокерамические магниты по магнитным свойствам лишь немного уступают литым магнитам, но дороже их.

Получают металлокерамические магниты в результате прессования металлических порошков без связующего материала и спекания их при высоких

температурах. Для порошков используют сплавы ЮНДК (сплав системы Fe-Ni-Al-,легированный кобальтом); на основе платины (Pt-Co, Pt-Fe); на основе редкоземельных металлов.

Металлокерамические магниты на основе сплавов ЮНДК обладают  магнитными свойствами по параметрам Br и (max на 10…20% ниже, чем у литых магнитов благодаря повышенной пористости спеченного порошкового материала до 5%; по механической прочности в 3…6 раз превосходят литые.

Магниты на основе платиновых сплавов обладают высокими значениями коэрцитивной силы Нс, которые в 1,5…2 раза выше Нс бариевых магнитов; высокой стабильностью параметров; по максимальной магнитной энергии  сравнимы со сплавом ЮНДК 24.

Сплавы на основа редкоземельных металлов (РЗМ) и урана при определенных соотношениях обладают очень высокими значениями коэрцитивной силы Нс (предельное теоретическое значение составляет 1032 кА/м) и рекордными значениями максимальной удельной магнитной энергии (мах (предельное теоретическое значение достигает 112 кДж/м3.

Среди сплавов на основе редкоземельных  наибольшее значение имеют интерметаллические соединения типа RCo5, где R – редкоземельный металл. В марке соединения буква К означает кобальт, С – самарий, П – празеодим.

Сплавы на основе редкоземельных металлов получают холодным прессованием порошка сплава RCo5 до высокой степени плотности, спеканием брикетов из порошков в присутствии жидкой фазы и литьем многокомпонентных сплавов, в которых кобальт замещен медью и железом.

Металлопластические магниты имеют пониженные магнитные свойства по сравнению с литыми магнитами, однако они обладают большим электрическим сопротивлением, малой плотностью, меньшей стоимостью.

Получают металлопластические магниты, как и металлокерамические, из металлических порошков, которые прессуют вместе с изолирующей связкой и нагревают до невысоких температур, необходимых для полимеризации связующего вещества.

Бариевые магниты обладают следующими свойствами:

Значения остаточной магнитной индукции Br в 2…4 раза меньше, чем у литых магнитов;

Большая коэрцитивная сила Нс, что придает им повышенную стабильность при воздействии внешних магнитных полей, ударов и толчков;

Плотность d примерно в 1,5 раза меньше плотности сплавов типа ЮНДК, что существенно снижает массу магнитных систем;

Удельное электрическое сопротивление ( (104…107 Ом*м) в миллионы раз выше, чем сопротивление магнитотвердых сплавов, поэтому ферриты бария

используют в цепях, подвергающихся действию высокочастотных полей;

Не содержат дефицитных и дорогих металлов, поэтому по стоимости бариевые магниты примерно в 10 раз дешевле магнитов из сплава ЮНДК.

К недостаткам бариевых магнитов относят:

·        плохие механические свойства (высокая хрупкость и твердость);

·        большую зависимость магнитных свойств от температуры (температурный коэффициент остаточной магнитной индукции ТКВr в 10 раз больше, чем ТКВr литых магнитов);

·        эффект необратимой потери магнитных свойств после охлаждения магнита до температуры -60(С и ниже (после охлаждения и последующего нагревания до начальной температуры магнитные свойства не восстанавливаются).

В отличие от технологии изготовления магнитомягких ферритов после

сухого помола для лучшего измельчения частиц исходного сырья производят мокрый помол. Полученную массу отстаивают, заливают в пресс-формы и затем прессуют в магнитном поле при медленном увеличении давления и одновременной откачке воды. После прессования изделие размагничивают, для чего включают и выключают ток, который имеет обратное по сравнению с намагничивающим током направление.

Кроме мокрого для изготовления бариевых магнитов применяют также сухое прессование.

Промышленность выпускаем бариевые изотропные БИ и бариевые анизотропные БА магниты.

Кобальтовые магниты обладают следующими свойствами:

·        более высокая стабильность параметров, чем у бариевых;     температурный гистерезис, т.е. зависимость магнитных свойств от температуры, которая появляется не в области отрицательных температур, как у бариевых магнитов, а при нагревании до температуры выше 80;

·        из-за большой хрупкости и низкой механической прочности их крепят с помощью клея; высокая стоимость.

Технология изготовления кобальтовых магнитов отличается от технологии получения бариевых ферритов операцией термомагнитной обработки, которая состоит в нагревании спеченных магнитов до температуры 300…350 в течении 1,5 часов и охлаждения в магнитном поле в течении 2 часов.

Магниты из микропорошков Mn-Bi поучают прессованием специально

подготовленного микропорошка. Для этого марганцево-висмутовый сплав (23% Mn; 77% Bi) подвергают механическому дроблению до получения частиц однодоменных размеров (5…8 мкм). Пропуская порошок через магнитный сепаратор отделяют ферромагнитную фазу Mn-Bi от немагнитных частиц марганца и висмута. В результате прессования микропорошка ферромагнитной фазы при температуре примерно 300 С в магнитном поле получают магниты, которые состоят из отдельных частиц с одинаковой ориентацией осей легкого намагничивания; сохраняют магнитные свойства только до температуры не ниже 20 С (при понижении свойства быстро ухудшаются и для их восстановления необходимо повторное намагничивание), что существенно ограничивает их применение.

Железные и железокобальтовые магниты из микропорошков Fe и Fe-Co

изготавливают с применением химических способов получения частиц нужного

размера (0,01…0,1). Из полученного порошка магниты прессуют и пропитывают раствором смол. Пропитка повышает коррозийную стойкость железосодержащих магнитов.

57. Укажите особенности слюдяных, стеклянных, стеклоэмалевых и стеклокерамических конденсаторов

Стеклянные, стеклокерамические и стеклоэмалевые конденсаторы. Эти конденсаторы относятся к категории высокочастотных. Они состоят из тонких слоев диэлектрика, на которые нанесены тонкие металлические пленки. Для придания конструкции монолитности такой набор спекают при высокой температуре.

Конденсаторы обладают высокой теплостойкостью и могут работать при температурах до 300°С. Существуют три разновидности этих конденсаторов:

К21 - стеклянные,

К22 - стеклокерамические,

К23 - стеклоэмалевые.

Стеклокерамика имеет более высокую диэлектрическую проницаемость, чем стекло. Стеклоэмаль обладает более высокой электрической прочностью.

Слюдяные конденсаторы. Эти конденсаторы имеют пакетную конструкцию, в которой в качестве диэлектрика используются слюдяные пластинки толщиной от 0,02 до 0,06 мм, диэлектрическая проницаемость которых   e»6, а тангенс угла потерь tgd =10-4.В соответствии с принятой в настоящее время маркировкой обозначаются К31. Применяются также ранее разработанные конденсаторы КСО - конденсаторы слюдяные спрессованные. Емкость этих конденсаторов лежит в пределах от 51 пф до 0,01 мкф. Слюдяные конденсаторы применяются в высокочастотных цепях.

Пакетная конструкция представляет собой пакет диэлектрических пластин (слюды) I толщиной около 0,04 мм, на которые напылены металлизированные обкладки 2, соединяемые в общий контакт полосками фольги 3 (рис.1). Собранный пакет спрессовывается обжимами 4, к которым присоединяются гибкие выводы 5, и покрывается влагозащитной эмалью. Количество пластин в пакете достигает 100 .

Емкость такого конденсатора зависит от числа пластин в пакете, пФ ,

Рисунок 1

 

Список литературы

1.                 Богородицкий Н.П. и др. Электротехнические материалы: Учебник для электротехн. и энерг. спец. вузов / Н.П.Богородицкий, В.В.Пасынков, Б.М.Тареев. - 7-е изд., перераб. и доп. - Л.: Энергоатомиздат. Ленингр. отд-ние, 1985. - 304 с

2.                 Геворкян В.Г. Основы сварочного дела - М.: Высш. школа, 1985.-168 с., ил.

3.                 Гуляев А.П. Металловедение. –М. : Металлургия, 1986. – 544 с.

4.                 Зарембо Е.Г. Превращения в структуре и свойства стали. – М.: ВИИИТ, 1990

5.                 Курдюмов Г.В. Явление закалки и отпуска стали. – М.: Металлургиздат, 1960 . – 64 с.

6.                 Лахтин Ю.М. Материаловедение. – М.: Машиностроение, 1993. – 448 с.

7.                 Материаловедение и технология металлов. – М.: Высшая школа, 2001. – 637 с

8.                 Петров К. С. Пассивные компоненты радиоэлектронной аппаратуры.

9.                 http://dvo.sut.ru/libr/eqp/031/index.htm

10.            Справочник по электротехническим материалам: в 3-х т. / Под ред. Ю.В.Корицкого и др. - 3-е изд., перераб. - М.: Энергоатомиздат, Том 1. - 1986. - 368 с., Том 2. - 1987. - 464 с

11.            Стеклов О. И. Основы сварочного производства - М.: Высш. школа, 2003.-224 с., ил.

12.            Хренов К.К.   Сварка, резка и пайка  металлов - М.: Машиностроение, 1973.- 408 с.