Содержание
1. Естествознание эпохи Средневековья. 3
2. Теория Большого Взрыва. 6
3. Молекулярно-генетические основы наследственности и изменчивости. 10
4. Список литературы....................................................................................... 16
Естествознание эпохи Средневековья
Понять и представить себе естествознание можно только в его развитии. Дело в том, что современное естествознание включает в себя не только такие науки, как физика, химия, биология и психология, каждая из которых отражает свои собственные специфические явления природы (чисто физические явления, химические превращения, жизнь растений и животных, сознание разумных индивидуумов), но еще и такие области знаний, как древнегреческая натурфилософия, естествознание Средневековья, наука Нового времени, классическое естествознание примерно до начала XX века, «пост классическое естествознание». И несмотря, на то, что эти области естественно-научных знаний появились не одновременно, а последовательно друг за другом, все они в современном естествознании слились воедино, образуя опять-таки целостную научную систему. Но более того, все они, в еще большей степени, чем физика, химия, биология и психология, подчинены закону субординации: каждая предыдущая из них входит в преобразованном, модернизированном виде в последующую.
Эпоха средних веков характеризовалась в Европе закатом классической греко-римской культуры и резким усилением влияния церкви на всю духовную жизнь общества. В эту эпоху философия тесно сближается с теологией (богословием), фактически становится ее «служанкой». Возникает непреодолимое противоречие между наукой, делающей свои выводы из результатов наблюдение опытов, включая и обобщение этих результатов, и схоластическим богословием, для которого истина заключается в религиозных догмах. [8.С.77]
Вот что писал об этой эпохе Ф. Энгельс: «Догматы церкви стали одновременно и политическими аксиомами, а библейские тексты получили на всяком суде силу закона... Это верховное господство богословия во всех областях умственной деятельности было в то же время необходимым следствием того положения, которое занимала церковь в качестве наиболее общего синтеза и наиболее общей санкции существующего феодального строя».[8.С.54]
Пока европейская христианская наука переживала длительный период упадка (вплоть до ХИ-ХШ вв.), на Востоке, наоборот, наблюдался прогресс науки. Со второй половины VIII в. научное лидерство явно переместилось из Европы на Ближний Восток. В IX веке, наряду с главным трудом Птолемея «Математическая система» (в арабском названии «Альмагест»), на арабский язык были переведены «Начала» Евклида и сочинения Аристотеля. Таким образом, древнегреческая научная мысль получила известность в мусульманском мире, способствуя развитию астрономии и математики. В истории науки этого периода известны имена таких арабских ученых, как Мухаммед аль-Баттани (850-929 гг.), астроном, составивший новые астрономические таблицы, Ибн-Юнас (950-1009 гг.), достигший заметных успехов в тригонометрии и сделавший немало ценных наблюдений лунных и солнечных затмений, Ибн аль-Хайсам (965-1020 гг.), получивший известность своими работами в области оптики, Ибн-Рушд (1126-1198 гг.) — виднейший философ и естествоиспытатель своего времени, считавший Аристотеля своим учителем.
Средневековой арабской науке принадлежат и наибольшие успехи в химии. Опираясь на материалы александрийских алхимиков I века и некоторых персидских школ, арабские химики достигли значительного прогресса в своей области. В их работах алхимия постепенно превращалась в химию. А уже отсюда (благодаря, главным образом, испанским маврам) в позднее средневековье возникла европейская химия.
В XI в. страны Европы пришли в соприкосновение с богатствами арабской цивилизации, а переводы арабских текстов стимулировали восприятие знаний Востока европейскими народами.
Большую роль в подъеме западной христианской науки сыграли университеты (Парижский, Болонский, Оксфордский, Кембриджский и другие.), которые стали образовываться начиная с XII век. И хотя эти университеты первоначально предназначались для подготовки духовенства, но в них уже тогда начинали изучаться предметы математического и естественнонаучного направления, а само обучение носило, более чем когда-либо раньше, систематический характер.
XIII век характерен для европейской науки началом эксперимента и дальнейшей разработкой статики Архимеда. Здесь наиболее существенный прогресс был достигнут группой ученых Парижского университета во главе с Иорданом Неморарием (вторая половина XIII в.). Они развили античное учение о равновесии простых механических устройств, решив задачу, с которой античная механика справиться не могла, — задачу о равновесии тела на наклонной плоскости.
В XIV веке в полемике с античными учеными рождаются новые идеи, начинают использоваться математические методы, то есть идет процесс подготовки будущего точного естествознания. Лидерство переходит к группе ученых Оксфордского университета, среди которых наиболее значительная фигура — Томас Брадвардин (1290-1349). Ему принадлежит трактат «О пропорциях» (1328), который в истории науки оценивается как первая попытка написать «Математические начала натуральной философии» (именно так почти триста шестьдесят лет спустя назовет свой знаменитый труд Исаак Ньютон). [6.С.117]
Это свидетельствует о том, что на протяжении многовековой, довольно мрачной эпохи, именуемой Средневековьем, интерес к познанию явлений окружающего мира все же не угасал и процесс поиска истины продолжался.
Появлялись все новые и новые поколения ученых, стремящихся, несмотря ни на что, изучать природу. Вместе с тем научные знания этой эпохи ограничивались в основном познанием отдельных явлений и легко укладывались в умозрительные натурфилософские схемы мироздания, выдвинутые еще в период античности (главным образом в учении Аристотеля). В таких условиях наука еще не могла подняться до раскрытия объективных законов природы.
Теория Большого Взрыва
Наиболее актуальной теорией возникновения Вселенной на данный момент является – теория большого взрыва. В нулевой момент времени Вселенная возникла из сингулярности. В течение первой миллионной доли секунды, когда температура значительно превышала 1012К, а плотность была немыслимо велика, должны были неимоверно быстро сменять друг друга экзотические взаимодействия, недоступные пониманию в рамках современной физики. Можно лишь размышлять над тем, каковы были те первые мгновения, возможно, что четыре фундаментальные силы природы были вначале слиты воедино. Однако есть основания полагать, что к концу первой миллионной доли секунды уже существовал первичный «бульон» богатых энергией («горячих») частиц излучения (фотонов) и частиц вещества. Эта самовзаимодействующая масса находилась в состоянии так называемого теплового равновесия.
В те первые мгновения все имевшиеся частицы должны были непрерывно возникать и аннигилировать. В условии сверхплотного состояния материи, характерного для раннего этапа жизни Вселенной, частицы и античастицы должны были тотчас же после своего рождения снова сталкиваться, превращаясь в гамма-излучение. Это взаимное превращение частиц в излучение и обратно продолжалось до тех пор, пока плотность энергии фотонов превышала значение пороговой энергии образования частиц.
Когда возраст Вселенной достиг одной сотой доли секунды, ее температура упала примерно до 1011К, став ниже порогового значения, при котором могут рождаться протоны и нейтроны, но некоторые из этих частиц все-таки избежали взаимной аннигиляции со своими античастицами - иначе в современной нам Вселенной не было бы вещества. Через 1 с после Большого взрыва температура понизилась примерно до 1010К, и нейтрино, по существу, перестали взаимодействовать с веществом: Вселенная стала практически прозрачной для нейтрино. Электроны и позитроны еще продолжали аннигилировать и возникать снова, но примерно через 10с уровень плотности энергии излучения упал ниже и их порога, и огромное число электронов и позитронов превратилось в излучение в катастрофическом процессе взаимной аннигиляции, оставив после себя лишь незначительное количество электронов, достаточное, однако, для того, чтобы, объединившись с протонами и нейтронами, дать начало тому количеству вещества, которое мы наблюдаем сегодня во Вселенной.
Судя по всему, должна была существовать некоторая диспропорция между частицами (протонами, нейтронами, электронами) и античастицами (антипротонами, антинейтронами, позитронами), так как все частицы (а не только все античастицы) исчезли бы в процессе аннигиляции. В окружающей нас части Вселенной вещества несравнимо больше, чем антивещества, которое лишь изредка встречается в виде отдельных античастиц. Не исключено, конечно, что на ранней стадии эволюции Вселенной в ней были области, где доминировало вещество, и области с преобладанием антивещества - в этом случае возможно существование звезд и целых галактик, состоящих из антивещества; на больших расстояниях они были бы неотличимы от привычных нам звезд и галактик из вещества. Однако у нас нет никаких свидетельств в пользу этого предположения, поэтому более разумным кажется считать, что с самого начала возник небольшой, но заметный дисбаланс частиц и античастиц. [2.С.37]
Через 3 мин после Большого взрыва температура Вселенной понизилась до 109 К и возникли подходящие условия для образования атомов гелия: на это были затрачены практически все имевшиеся в наличии нейтроны. Спустя примерно еще минуту почти все вещество Вселенной состояло из ядер водорода и гелия, находившихся примерно в той же количественной пропорции, какую мы наблюдаем сегодня. Начиная с этого момента, расширение первичного огненного шара происходило без существенных изменений до тех пор, пока через 700000 лет электроны и протоны не соединились в нейтральные атомы водорода, тогда Вселенная стала прозрачной для электромагнитного излучения - возникло то, что сейчас наблюдают как реликтовое фоновое излучение.
После того как вещество стало прозрачным для электромагнитного излучения, в действие вступило тяготение: оно начало преобладать над всеми другими взаимодействиями между массами практически нейтрального вещества, составлявшего основную часть материи Вселенной. Тяготение создало галактики, скопления, звезды и планеты - все эти объекты образовались из первичного вещества, которое, в свою очередь, выделилось из быстро остывавшего и терявшего плотность первичного огненного шара; тяготению же предстоит определить путь эволюции и исход жизни всей Вселенной в целом.
Есть два основных взгляда на проблему формирования галактик. Первый состоит в том, что в любой момент времени в расширяющейся смеси вещества и излучения могли существовать случайно распределенные области с плотностью выше средней. В результате действия сил тяготения эти области сначала отделились в виде очень протяженных сгустков вещества, в которых затем начался процесс фрагментации, приведший к образованию облаков меньших размеров, которые позднее превратились в скопления и отдельные галактики, наблюдаемые сегодня. Далее в этих меньших - галактических размеров - сгустках опять-таки под действием притяжения в случайных неоднородностях плотности началось формирование звезд. Существует и другая точка зрения на ход развития событий: вначале из флуктуаций плотности в расширяющемся первичном шаре сформировались многочисленные (малые) галактики, которые с течением времени объединились в скопления, в сверхскопления и, возможно, даже в более крупные иерархические структуры.
Главным пунктом в этом споре является вопрос, имел ли процесс Большого взрыва вихревой, турбулентный, характер или протекал более гладко. Турбулентности в крупномасштабной структуре сегодняшней Вселенной отсутствуют. Вселенная выглядит удивительно сглаженной в крупных масштабах; несмотря на некоторые отклонения, в целом далекие галактики и скопления распределены по всему небу в высшей степени равномерно, а степень изотропности фонового излучения также довольно высока (выше, чем 1:3000). Все эти факты, видимо, говорят о том, что Большой взрыв был безвихревым, упорядоченным процессом расширения.
Согласно общепринятой точке зрения, микроволновое фоновое излучение дает нам информацию о той эпохе, когда возраст Вселенной насчитывал примерно 700 000 лет, чему соответствует красное смещение около 1000. Самый далекий от нас квазар имеет смещение 3,6, то есть наблюдаемый свет этого квазара был испущен им, когда возраст Вселенной составлял чуть меньше 2 млрд. лет. В промежутке времени от 700 000 до 2 млрд. лет во Вселенной должно было произойти многое, в том числе сформировались галактики. Тем не менее, последние данные, скорее всего, свидетельствует в пользу второй из двух упомянутых выше гипотез, согласно которой образование галактик предшествовало формированию скоплений и сверхскоплений. [2.С.74]
Успешное объяснение ряда явлений с помощью модели Большого взрыва привело к тому, что, как правило, не вызывает сомнения реальность происхождения микроволнового фонового излучения из расширяющегося первичного огненного шара в тот момент, когда вещество Вселенной стало прозрачным. Возможно, однако, что это слишком простое объяснение.
Молекулярно-генетические основы наследственности и изменчивости
Молекулярная генетика, раздел генетики и молекулярной биологии, ставящий целью познание материальных основ наследственности и изменчивости живых существ путём исследования протекающих на субклеточном, молекулярном уровне процессов передачи, реализации и изменения генетической информации, а также способа её хранения.
Большую роль в быстром развитии молекулярной генетики сыграло перенесение центра тяжести генетических исследований с высших организмов (эукариотов) — основных объектов классической генетики, на низшие (прокариоты) — бактерии и многие другие микроорганизмы, а также вирусы. Преимущества использования более простых форм жизни для решения генетических проблем заключаются в быстрой смене поколений у этих форм и возможности изучать одновременно огромное число особей; благодаря этому сильно возрастает разрешающая способность генетического анализа и повышается его точность. Кроме того, сравнительная простота организации бактерий и особенно вирусов облегчает выяснение молекулярной природы генетических явлений. Молекулярная генетика изучает молекулярные основы генетических процессов как у низших, так и у высших организмов и не включает частной генетики прокариотов, занимающей видное место в генетике микроорганизмов.
Молекулярная генетика достигла значительных успехов, углубив и расширив представления о природе наследственности и изменчивости, и превратилась в ведущее и наиболее быстро развивающееся направление генетики. [1.С.29]
Одно из главных достижений молекулярной генетике — выяснение химической природы гена. Классическая генетика установила, что все наследственные потенции организмов (их генетическая информация) определяются дискретными единицами наследственности — генами, локализованными главным образом в хромосомах клеточного ядра, а также в некоторых органеллах цитоплазмы (пластидах, митохондриях). Однако методы классической генетики не позволяли вскрыть химическую природу генов, что было отмечено ещё в 1928 выдающимся советским биологом Н. К. Кольцовым, обосновавшим необходимость изучения механизма наследственности на молекулярном уровне. Первый успех в этом направлении был достигнут при изучении генетической трансформации у бактерий. В 1944 американский учёный О. Т. Эйвери с сотрудниками обнаружил, что наследственные признаки одного штамма пневмококков могут быть переданы другому, генетически отличному штамму путём введения в его клетки дезоксирибонуклеиновой кислоты (ДНК), выделенной из первого штамма. Впоследствии подобная генетическая трансформация с помощью ДНК была осуществлена у других бактерий, а в последнее время — и у некоторых многоклеточных организмов (цветковые растения, насекомые).
Таким образом, было показано, что гены состоят из ДНК. Этот вывод был подтвержден опытами с ДНК-содержащими вирусами: для размножения вируса достаточно введения молекул вирусной ДНК в клетку восприимчивого хозяина; все другие компоненты вируса (белки, липиды) лишены инфекционных свойств и генетически инертны. Аналогичные опыты с вирусами, содержащими вместо ДНК рибонуклеиновую кислоту (РНК), показали, что у таких вирусов гены состоят из РНК. Выяснение генетической роли ДНК и РНК послужило мощным стимулом для изучения нуклеиновых кислот биохимическими, физико-химическими и рентгеноструктурными методами. В 1953 американский учёный Дж. Уотсон и английский учёный Ф. Крик предложили модель структуры ДНК, предположив, что её гигантские молекулы представляют собой двойную спираль, состоящую из пары нитей, образованных нуклеотидами, расположенными апериодически, но в определённой последовательности.
Каждый нуклеотид одной нити спарен с противолежащим нуклеотидом второй нити по правилу комплементарности. Многочисленные экспериментальные данные подтвердили гипотезу Уотсона и Крика. Несколько позже было установлено, что аналогичной структурой обладают молекулы разных РНК, только они большей частью состоят из одной полинуклеотидной нити. Классическая генетика рассматривала ген как дискретную и неделимую единицу наследственности. Важное значение в пересмотре этой концепции имели работы советского генетика А. С. Серебровского и его учеников, в 1930-х годах впервые указавших на возможность делимости гена. Однако разрешающая способность методов классической генетики была недостаточной для изучения тонкого строения гена. Только с развитием молекулярной генетики удалось в 50—60-х годах решить эту проблему. Многими работами, проведёнными сначала на бактериях и вирусах, а затем и на многоклеточных организмах, было выяснено, что ген обладает сложным строением: он состоит из десятков или сотен участков — сайтов, способных независимо мутировать и рекомбинировать. Пределом дробимости гена, а следовательно, и минимальным размером сайта является одна пара нуклеотидов (у вирусов, которые содержат одну нить РНК, — один нуклеотид). Установление тонкого строения генов позволило значительно углубить представление о механизме генетической рекомбинации и закономерностях возникновения генных мутаций, оно способствовало также выяснению механизма функционирования генов. [7.С.139]
Данные о химической природе и тонком строении генов позволили разработать методы их выделения. Впервые это было выполнено в 1969 американским учёным Дж. Бэквитом с сотрудниками для одного из генов кишечной палочки. Затем то же удалось осуществить у некоторых высших организмов (земноводных). Ещё более значительный успех молекулярной генетики — первый химический синтез гена (кодирующего аланиновую транспортную РНК дрожжей), осуществленный Х. Корана в 1968. Работы в этом направлении ведутся в ряде лабораторий мира. Для внеклеточного синтеза более крупных генов успешно применены новейшие биохимические методы, основанные на явлении т. н. обратной транскрипции. Используя эти методы, С. Спигелмен, Д. Балтимор, П. Ледер и их сотрудники (США) далеко продвинулись по пути искусственного синтеза генов, определяющих структуру белка в молекулах гемоглобина у кролика и человека. [7.С.84] Такие же работы проведены в последнее время и в ряде других лабораторий, в том числе и в СССР.
Таким образом, молекулярная генетика. уже выяснила в принципе вопрос о том, как записана и хранится генетическая информация, получаемая потомками от родителей, хотя расшифровка конкретного содержания этой информации для каждого отдельного гена требует ещё огромной работы.
Установление структуры ДНК открыло возможности для экспериментального исследования биосинтеза молекул ДНК — их репликации. Этот процесс лежит в основе передачи генетической информации от клетки к клетке и от поколения к поколению, то есть определяет относительное постоянство генов. Изучение репликации ДНК привело к важному выводу о матричном характере биосинтеза ДНК: для его осуществления необходимо наличие готовой молекулы ДНК, на которой, как на шаблоне (матрице), синтезируются новые молекулы ДНК. При этом двойная спираль ДНК раскручивается, и на каждой её нити синтезируется новая, комплементарная ей нить, так что дочерние молекулы ДНК состоят из одной старой и одной новой нити (полуконсервативный тип репликации). Выделен белок, вызывающий раскручивание двойной спирали ДНК, а также ферменты, осуществляющие биосинтез нуклеотидов и их соединение («сшивание») друг с другом. Несомненно, что в клетке имеются механизмы, регулирующие синтез ДНК. Пути такой регуляции ещё во многом неясны, но очевидно, что она в большой степени определяется генетическими факторами.
Молекулярная генетика достигла выдающегося успеха и в решении важнейшей задачи, сформулированной ещё классической генетикой, — каким образом ген определяет признак, или как происходит реализация генетической информации. Раскрытие химической структуры ДНК и белка дало возможность сопоставить эти два типа биополимеров, что привело к концепции генетического кода, согласно которой порядок чередования 4 сортов нуклеотидов в ДНК определяет порядок чередования 20 сортов аминокислот в белковой молекуле. От последовательности расположения аминокислот в белковой молекуле (её первичной структуры) зависят все её свойства.
Расшифровка принципов, на которых основан генетический код, была осуществлена в 1962 Ф. Криком с сотрудниками в генетических опытах с мутантами одного бактериального вируса. Оказалось, что каждая тройка нуклеотидов в цепи ДНК (триплет, кодон) определяет, какая именно из 20 аминокислот займёт данное место в полипептидной цепи синтезируемого белка, то есть каждый триплет кодирует определённую аминокислоту.
Последующие работы позволили полностью расшифровать генетический код и установить нуклеотидный состав всех триплетов, кодирующих аминокислоты, а также состав инициирующего кодона, определяющего начало синтеза данной полипептидной цепи, и трёх терминирующих кодонов, определяющих конец синтеза. Было найдено, что генетический код универсален для всего живого, то есть что он один и тот же для любого организма, начиная от вирусов и кончая высшими животными и человеком. Участок молекулы ДНК, составляющий один ген, определяет, как правило, последовательность аминокислот в молекуле одного белка (или в одной полипептидной цепи, если данный белок состоит из нескольких таких цепей).
Расшифровка генетического кода сыграла выдающуюся роль в выяснении механизма биосинтеза белка — процесса, включающего перенос заключённой в ДНК генетической информации на молекулы так называемой информационной, или матричной, РНК (и-РНК). Этот процесс, сущность которого составляет синтез и-РНК на матрице ДНК, получил название транскрипции. Информационная РНК связывается затем с особыми клеточными структурами — рибосомами, на которых и осуществляется синтез полипептидной цепи в соответствии с информацией, записанной в молекуле и-РНК. Этот процесс синтеза полипептидных цепей при посредстве и-РНК назван трансляцией.
Таким образом, передача генетической информации происходит по схеме: ДНК ® РНК ® белок. Это основное положение (догма), правильность которого установлена многими исследованиями на различных организмах, получило в 1970 важное дополнение. Американские учёные Х. Темин и Д. Балтимор обнаружили, что при репродукции некоторых РНК-содержащих вирусов, вызывающих опухоли у животных, генетическая информация передаётся от РНК вируса к ДНК. Подобная обратная транскрипция осуществляется особыми ферментами, содержащимися в этих вирусах. Явление обратной транскрипции было обнаружено также в некоторых здоровых клетках животных и человека. Полагают, что обратная транскрипция играет существенную роль в возникновении по крайней мере некоторых форм злокачественных опухолей и лейкозов, а, возможно, также в процессах дифференцировки при нормальном развитии организмов. Следует подчеркнуть, что открытие обратной транскрипции не противоречит основному положению молекулярной генетики о том, что генетическая информация передаётся от нуклеиновых кислот к белкам, но не может передаваться от белка к нуклеиновым кислотам. [7.С.95]
С развитием молекулярной генетики более глубоким стало понимание мутационного процесса, то есть изменения генетической информации. Было показано, что мутации представляют собой либо замены отдельных нуклеотидов, либо вставки или выпадения нуклеотидов в молекуле ДНК.
Мутации возникают как вследствие случайных ошибок при репликации ДНК, так и в результате повреждающего нуклеиновые кислоты действия различных физических и химических агентов — мутагенов; они возникают также из-за изменений так называемых генов – мутаторов, кодирующих ферменты, участвующие в репликации, исправляющие генетические повреждения.
На данный момент еще много загадок предстоит открыть молекулярной генетики в области наследственности и изменчивости, наука не стоит на месте и еще много предстоит открытий в данной области.
Список литературы
1. Вагнер Р., Митчелл Г., Генетика и обмен веществ, М., 1958 – 365 с.
2. Дж. Силк. Большой взрыв. Рождение и эволюция Вселенной. 1982 – 213 с.
3. И. Николсон. Тяготение, Чёрные дыры и Вселенная. 1983 – 183 с.
4. И. Д. Новиков. Чёрные дыры и Вселенная. 1985 – 319 с.
5. И. Д. Новиков. Эволюция Вселенной. 1982 – 196 с.
6. Карпенков С.Х. Основные концепции естествознания.- М.: Культура и спорт, ЮНИТИ, 1998 – 278 с.
7. Молекулярная генетика, М., 1964 – 341 с.
8. Небел Б. Наука об окружающей среде. Как устроен мир: Учебник. 2-ой том.- М.: Мир, 1993 – 274 с.
9. Суханов А.Д., Голубева О.Н. Концепции современного естествознания. М.: Агар, 2000 – 389 с.