Содержание

 

 

 

Введение. 3

1. Зарождение эмпирического научного знания. 4

2. Принцип возрастания энтропии. 9

3. Теория Опарина о происхождении жизни на Земле. 11

Заключение. 15

Список литературы.. 16

Введение

Естествознание – это раздел науки основанный на воспроизводимой эмпирической проверке гипотез и создании теорий или эмпирических обобщений, описывающих природные явления. Предмет естествознания - факты и явления, воспринимаемые нашими органами чувств. Задача ученого обобщить эти факты и создать теоретическую модель изучаемого явления природы включающую законы управляющие им. Явления, например закон всемирного тяготения, даются нам в опыте, законы науки, например закон всемирного тяготения, представляют собой варианты объяснения этих явлений. Факты, будучи установлены, сохраняют свое значение всегда, законы могут быть пересмотрены или скорректированы в соответствии с новыми данными или новой концепцией их объясняющей. Факты действительности являются необходимой составляющей научного исследования. Основной принцип естествознания гласит: знания о природе должны допускать эмпирическую проверку. Это не означает, что научная теория должна немедленно подтверждаться, но каждое ее положение должно быть таким, чтобы такая проверка была возможна в принципе.

От технических наук естествознание отличает то, что оно преимущественно направлено не на преобразование мира, а на его познание. От математики естествознание отличает то, что оно исследует природные, а не знаковые системы. Однако пытаться изолировать естественные, социальные и общественные науки не следует, поскольку существует целый ряд дисциплин, занимающих промежуточное положение или являющихся комплексными.

Таким образом, целью данной работы является рассмотрение следующих вопросов:

-             Зарождение эмпирического научного знания (Египет, Вавилон, Индия и Китай);

-             Принцип возрастания энтропии;

-             Теория Опарина о происхождении жизни на Земле.

1. Зарождение эмпирического научного знания

Ведущими цивилизациями древнего мира путем эксперимента были собраны самые необходимые знания, которые в последствии обусловили необходимость в передачи и обобщении этих знаний, что привело сегодня к научной – эмпирической форме познания действительности.

Эмпирические знания древнего Египта

Египтологи не могут прийти к единому мнению в вопросе о том, как древние египтяне осуществляли строительство грандиозных сооружений, используя для этого математические знания и расчеты, сравнимыми с сегодняшними и даже превосходящие их[1]. Это загадка, но факт остается фактом: древние египтяне эмпирическим путем добывали знания, которые тут же использовались при строительстве, например, пирамид. Несмотря на то, что до нас дошли некоторые фрагменты, предположительно имеющие отношение к математике, сами тексты настолько сильно пострадали в результате перевода, что современный западный учёный не в состояние в них разобраться. [2]

Судя по всему, древние осознавали реальность явлений, связанных с энергиями космоса и вполне довольствовались пониманием фундаментальных принципов, не нуждаясь в физическом их подтверждении. Поэтому они ставили различные эмпирические опыты, которые откладывались в виде технологий, составляя круг мировоззрения Древнего Египта.

Помимо медицинского применения, эмпирические опыты также использовались и в древних науках, завещанных сириусианскими или атлантийскими источниками миллиардов земных жителей. Так, в V в. до н.э. путем экспериментальных вычислений. началось интенсивное развитие наблюдательной астрономии.

Было обнаружено неравенство четырех времен года; измерен наклон эклиптики (круг, вдоль которого движутся Солнце, Луна и планеты) к небесному экватору (~24); создан лунно-солнечный календарь; установлено, что планеты движутся по небу по необычайно сложным траекториям, которые включают в себя нерегулярные колебательные движения, попятное петлеобразное движение и др. Одновременно в недрах математики и философии вызревали теоретические предпосылки моделирования астрономических явлений, создания математических моделей Вселенной. Математика Древнего Египта также носила отчасти Эмпирический характер, потому что все ее модели тут же использовались в строительстве, космологических и космогонических моделях.

Таким образом, зарождение эмпирических знаний в Древнем Египте было связано, прежде всего, с развитием таких наук как астрономии, геометрии и медицина.

Эмпирическая наука древнего Вавилона

Древний Вавилон был крупнейшим цивилизационно-культурным центром своего времени, он собрал под своей сенью многих магов, астрологов, прорицателей-целителей и жрецов. Это обусловлено тогдашним выгодным экономическим положением полиса, соответственно ростом его населения, и как следствие, средоточием многих актуальных тогда культов, искусства и наук.

Эмпирическое знание древнего Вавилона развивалось преимущественно в сфере оккультных наук, но тем не менее это дало большие плоды и ценный практический опыт, для точных наук будущего. Почему именно Вавилон оформил магию как систему, и чем это обосновано? Магия - это синтез одновременно большого числа эмпирических наук и знаний, таких как алхимия, астрология, колдовство (культовое жречество, получившее свой наибольший рассвет и славу именно в Древнем Вавилоне - вспомним истинно магические обряды в вавилонских храмах древнейших богов), нумерология, прообраз арабской математики, огромное значение также оказали древние персы с их огненным культом и собственными астрологическими традициями, несомненно, повлиявшими на развитие вавилонской и позднее, арабской экспериментальной астрологии.[3]

Также нельзя не упомянуть и медицину, тогда еще практически совершенно народно-нетрадиционную, но тем не менее эксперименты по лечению внутренних органов, пересадки органов осуществляли уже в те времена. Этот синтез эмпирических знаний и оккультных наук физически состоялся в древнем Вавилоне, и с тех пор магия есть могущественной и сложной по составу системой культовых знаний, а магом принято называть того, кто работает с этой вавилонской смесью культов и древних эмпирических наук.

Эмпирические знания древней Индии

В древней Индии был накоплен огромный опыт использования лекарственных растений, широко занимались врачеванием буддийские монахи. Врачи-индийцы славились в конце древности и в средние века во всем мире. Специальные трактаты по естественно-экспериментальным наукам датируются рубежом древности и средневековья. Ряд важнейших астрономических идей несомненно навеян общими философскими концепциями, но также некоторые знания получены из экспериментальных расчетов и внимательного наблюдения за звездным небом и светилом.

Так, знаменитый Арьябхатта (V в. н.э.), исходя из принципа относительности движения, расчитал вращение Земли вокруг собственной оси и движение ее вокруг Солнца. С понятием "пустоты" в буддийской философии, возможно, связано введение нуля в математике (и, соответственно, позиционной системы счисления). Так называемые “арабские цифры”, которые используются доныне, происходят из Индии.

Древние индийцы достигли в экспериментальной медицине высокого уровня мастерства. По свидетельству английского исследователя Уильяма Хантера "индийская медицина включала в себя все области этой науки. Она описывала строение организма, органы, связки, мышцы, сосуды и ткани. Лекарственные вещества включали широкий спектр средств минерального, растительного и животного происхождения. Фармакологии были известны сложные способы изготовления лекарственных препаратов и их классификация с подробными указаниями по их назначению и применению."

Высокий уровень развития, которого достигла индийская астрономия, уже является доказательством успехов индийцев в математике, а также их высоким вниманием к наблюдению за космическими объектами. Древность астрономии подтверждает еще большую древность математики. Индийцы изобрели числительные, немецкий филолог Шлегель отмечает, что "десятичная система счисления, являющаяся наряду с письменностью одним из важнейших достижений человечества, с общего согласия авторитетных историков признана изобретением индийцев" .

Индийцы эмпирическим путем доказали предварение равноденствий и о том, что за сутки земля совершает оборот вокруг своей оси. Жрецы-брахманы говорили об этом в 5 в. до н.э. Астрономия возникла в Индии очень давно. Знаменитые ученые написали множество трактатов по астрономии и астрологии, которой придавалось не меньшее значение. Известными учеными были Парашар (12 в. до н.э.), Арьябхата и Варахамихира. "Индийские астрономы знали о делении эклиптики на лунные дома, о предварении равноденствий, обороте луны вокруг своей оси, расстояние от нее до Земли, размеры орбит планет, способы вычисления дат затмений" (Вильсон, "История Индии"). Древние знали, что Земля имеет форму шара. В астрономическом трактате "Арьябхатейя" мы читаем: "Земля расположена в центре вселенной, она состоит из пяти элементов и имеет сферическую форму". Теория гравитации излагается в труде мудреца Бхаскарачарьи "Сиддхантха сиромани" следующим образом: "Благодаря силе тяготения Земля притягивает к себе все предметы, и кажется, что они падают на землю". Другой древний ученый, Гаргья, первым перечислил созвездия и разделил зодиакальный пояс на 27 равных частей. Говорят, что Варахамихира, сын Гаутамы, первым обнаружил планету Юпитер (в индийской традиции Брихаспати), ссылки на что есть в Ригведе.

Ближе к современной эпохе, в 1727 г. н.э., родился махараджа Джай Синх II, строитель Джайпура, одного из наиболее старых городов, следующих единому плану строительства, и создатель знаменитых обсерваторий в Джайпуре, Дели, Варанаси, Матхуре и Удджайне. Часть приборов в этих обсерваториях до сих пор работает точно. Солнечные часы в Джайпуре сообщают время с точностью до двух секунд. Джай Синх также внес исправления в индийский календарь.[4]

Экспериментальная химия

Экспериментальное изучение физики и химии были тесно связаны с религией и теологией. Физика в древней индии известна своей атомной теорией, но индийские атомные теории основывались, безусловно, не на опытах, а на интуиции и логике.  

Но вот в химии индийские металлурги достигли высокого мастерства в добыче металлов из руды и литье металлов. Химия в древней Индии была вспомогательной эмпирической наукой, подчиненной, однако, не развитию технологий, а медицине. Индийцы преуспели в получении многих щелочей, кислот и солей металлов при помощи обычных экспериментальных процессов кальцинирования и возгонки.

Эмпирические знания древнего Китая

Сохранившиеся материальные и литературные источники позволяют проследить процесс развития китайской эмпирической науки.

Мы видим, как  развиваются градостроительство, архитектура, пластическое искусство; создаются сокровищницы поэзии и прозы; возникают значительные произведения изобразительного искусства, в том числе и портретная живопись; образуется общенациональная форма театра, а позднее и музыкальная драма. Особым экспериментальным достижением является получение китайского фарфора, вышивок, расписных эмалей, резных изделий из камня, дерева, слоновой кости по своему изяществу и художественной ценности претендуют на одно из ведущих мест среди подобных изделий в мире.

Значительными были и естественно - научные достижения в области астрономии, магнетизма, медицины, книгопечатания и т.д.

Экспериментальная наука Китая оказала большое влияние сначала на развитие культуры многочисленных соседних народов, населявших обширные территории позднейших Монголии, Тибета, Индокитая, Кореи и Японии. Позднее на большое число ведущих держав средневекового мира. Значительную лепту китайская эмпирическая наука внесла и в развитие мировой культуры. Её самобытность и оригинальность, высокая художественная и нравственная ценность говорят о творческой одаренности и глубоких корнях  китайского народа.

2. Принцип возрастания энтропии

Второе начало термодинамики определяет важную тенденцию в эволюции физического мира – с течением времени в замкнутой изолированной системе энтропия должна возрастать. В результате энергии распределяются по рангам так, что высший занимают те, которые способны превратиться в большее число энергии. Тогда низший ранг останется теплоте, превращения которой ограничены принципом Карно.

Энтропия связана с вероятностями: S = k InW. Здесь W выражает число микросостояний, определяемое квантовыми законами. Рассмотрим, например, некоторую сложную систему и проследим ее эволюцию. Эта неустойчивая система начнет разрушаться, переходя во все более вероятные и устойчивые состояния. Энтропия при этом, как и вероятность будет расти. Пусть эта система представляет собой находящийся в сосуде газ, состоящий из огромного числа беспрерывно движущихся молекул. Мы не знаем точного положения и скорости в каждый момент времени каждой частицы газа. Нам могут быть известны только макропараметры: давление, объем, температура и состав газа. Эти величины можно измерить, вычислить энтропию системы и число «микроскопических комплекций». Формула, приведенная выше, связывает энтропию с хаосом. Слева стоит ключевое понятие второго начала термодинамики, характеризующее любые самопроизвольные изменения системы, а справа – величина, связанная с хаосом и служащая мерой рассеяния энергии, ее деградации во вселенной.

Фактически, мы должны рассчитать число способов, которыми можно осуществить внутренние перестройки в системе, чтобы наблюдатель не заметил изменений, или чтобы они не изменили характеристики макросостояния системы. При этом предполагается неотличимость атомов друг от друга.

Если в системе, состоящей из одного атома, произошло его энергетическое возбуждение, нам может быть известно об этом по значению температуры. При этом возможно только одно распределение возбуждения в системе, W = 1, логарифм единицы равен нулю, и S = 0. Такой локализованный сгусток энергии обладает нулевой энтропией, или идеальным качеством. Если возбуждение передается по системе, и мы не можем отличить, какому именно атому, то в системе из ста атомов это  может быть осуществлено ста способами, т. е. W = 100, In 100 = 4,61, отсюда и S = 4,61k. Итак, энтропия системы выросла, система стала хаотичной, поскольку мы не знаем, где находится в каждый момент возбужденный атом.

Следует обратить внимание на то, что в формулу Больцмана входит медленно меняющаяся функция, и, если In 100 = 4,61 и In 1500= 7,31, то логарифмы от числа Авогадро равен всего 54,7 или In 1023 = 54,7.

Если система может быть представлена в виде двух взаимодействующих подсистем, то максимум энтропии достигается, когда обе подсистемы приходят в тепловое равновесие. При отсутствии перехода энергии из одной подсистемы в другую, такое состояние может долго существовать, нарушаемое только флуктуациями. Но тепловое равновесие – равновесие динамическое: в его основе лежит непрерывное движение, не воспринимаемое внешним наблюдателем. Это состояние, соответствующее максимуму энтропии, может быть достигнуто максимальным числом способов, и чем большим числом способов оно достигается, тем выше его вероятность.

3. Теория Опарина о происхождении жизни на Земле

«Жизнь – есть способ существования белковых тел, существенным моментом, которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка».[5]

Среди современных теорий происхождения жизни на Земле, наиболее обоснованной является теория академика А. И. Опарина. Согласно этой теории процесс, приведший к возникновению жизни на Земле, может быть разделен на три этапа:

1.     Возникновение органических веществ;

2.     Возникновение белков;

3.     Возникновение белковых тел.

Астрономические исследования показывают, что как звезды, так и планетные системы возникли из газопылевого вещества. В некоторых случаях эта газопылевая материя объединяется в плотный, которые можно видеть невооруженным глазом. Химические исследования находящегося в галактике газопылевого вещества показали, что в нем наряду с металлами и их окислами обнаружено:  водород, аммиак, вода и простейший углеводород – метан.

Второй этап – возникновение белков. Условия для начала процесса формирования белковых структур создались с момента создания первичного океана. Прежде всего в водной среде производные углеводородов могли подвергаться сложным химическим изменениям и превращениям. В результате такого усложнения молекул могли образоваться более сложные органические вещества, а именно углеводы.

Известно, что белковая молекула состоит из отдельных звеньев – аминокислот, которые соединены между собой при помощи полиптеидных связей. Показано, что в результате применения ультрафиолетовых лучей можно искусственно синтезировать не только аминокислоты, но и другие биохимические вещества.

Большой победой современной биохимии является первый полный синтез молекулы белков: синтезирован иксулин-гармон, управляющий углеводным обменом. Все эти эксперименты подтверждают правильность разбираемой теории.

Согласно теории Опарина, дальнейшим шагом по пути к возникновению белковых тел могло явиться образование коацерватных капель, т. е. капель микроскопического размера, выпадающих при смешении двух белковых растворов. Отсюда возникла новая закономерность уже биологического характера – естественный отбор коацерватных капель. Под влиянием естественного отбора качество организации белкового вещества все время менялось. В результате возникла та согласованность процессов синтеза и распада, которая привела к возникновению первых живых организмов.

Гипотеза А.И.Опарина о возникновении жизни на Земле опирается на представление о постепенном усложнении химической структуры и морфологического облика предшественников жизни (пробионтов) на пути к живым организмам. На стыке моря, суши и воздуха создавались благоприятные условия для образования сложных органических соединений. В концентрированных растворах белков, нуклеиновых кислот могут образовываться сгустки подобно водным растворам желатина. А.И.Опарин назвал эти сгустки коацерватными каплями или коацерватами.

В результате многочисленных исследований А.И.Опариным были разработаны рациональные биохимические основы для технологии производства сахара, хлеба, чая, вина, табака. Предложенные им научные принципы технологии широко используются в пищевой промышленности. Режим длительного хранения сахарной свеклы позволил удлинить  сезон работы сахарных заводов в полтора раза. Биохимический контроль на чайных фабриках обеспечивает получение чая более высокого качества.

Правильные методы определения свойств муки и составления мучных смесей широко применяются в хлебопечении. А.И. Опарин создал новое направление в области учения о ферментах, исследующее действие ферментов в живой клетке; его теория обратимости ферментативных реакций в живых растениях позволяет объяснить ряд физических и хозяйственно важных особенностей у культурных растений (их сахаристость, скороспелость, засухоустойчивость и др.).

Разрабатывая теоретические основы биологии, А.И. Опарин выдвинул теорию возникновения жизни на Земле. На основе фактических материалов из области астрономии, химии, геологии и биологии А.И. Опарин предложил гипотезу развития материи, объясняющую возникновение жизни на Земле. Проблему происхождения жизни он рассматривал с материалистической позиции и объяснял возникновение жизни как определенный и закономерный качественный этап в историческом развитии материи.

А.И. Опарин полагал, что первоначально имело место образование белковоподобных соединений, комплексных  коллоидных систем "коацерватов" и затем первичных живых тел.

Белково-коацерватная теория Опарина

Основным ее постулатом было то, что спонтанно возникавшие в первичном "бульоне" белковоподобные соединения объединялись" в коацерватные капли - обособленные коллоидные системы (золи), плавающие в более разбавленном водном растворе. Это давало главную предпосылку возникновения организмов - обособление некой биохимической системы от окружающей среды, ее компартментализацию. Так как некоторые белковоподобные соединения коацерватных капель могли обладать каталитической активностью, то появлялась возможность прохождения биохимических реакций синтеза внутри капель - возникало подобие ассимиляции, а значит, роста коацервата с последующим его распадом на части - размножением. Ассимилирующий, растущий и размножающийся делением коацерват рассматривался как прообраз живой клетки.

Все было хорошо продумано и научно обосновано в теории, кроме одной проблемы, на которую долго закрывали глаза почти все специалисты в области происхождения жизни. Если спонтанно, путем случайных безматричных синтезов в коацервате возникали единичные удачные конструкции белковых молекул (например, эффективные катализаторы, обеспечивающие преимущество данному коацервату в росте и размножении), то как они могли копироваться для распространения внутри коацервата, а тем более для передачи коацерватам-потомкам?

Теория оказалась неспособной предложить решение проблемы точного воспроизведения - внутри коацервата и в поколениях - единичных, случайно появившихся эффективных белковых структур.

Заключение

В результате проделанной работы были рассмотрены следующие вопросы:

-             Зарождение эмпирического научного знания (Египет, Вавилон, Индия и Китай);

-             Принцип возрастания энтропии;

-             Теория Опарина о происхождении жизни на Земле.

В ходе исторического развития научное знание всегда обращалось к эксперименту, как основному средству получения знания. Древние, обобщая наблюдения за природой и руководствуясь здравым смыслом, пытались связать выявленные факты в причинно – следственные цепочки. Так появляется необходимость все обосновательно доказать и объяснить, так возникало эмпирическое научное знание. На основе эмпирического базиса установились отдельные закономерности, постепенно сводившиеся в единую систему идей.

Принцип возрастания энтропии гласит, что с течением времени в замкнутой изолированной системе энтропия должна возрастать.

Итак, сущность теории Опарина можно сформулировать в виде трёх постулатов:

1.     Жизнь - одна из стадий эволюции Вселенной.

2.     Возникновение жизни закономерный результат химической эволюции соединений углерода. Опарин подчёркивал, что специфическая особенность единственного известного нам варианта земной жизни состоит в том, что в основе его лежала прогрессивная эволюция усложняющихся соединений углерода и формировавшихся из них многомолекулярных систем.

3.     Для перехода от химической эволюции к биологической необходимы формирование и естественный отбор целостных обособленных от среды, но постоянно с ней взаимодействующих многомолекулярных систем, которые были названы пробионтами.

Список литературы

1.                Гоголев  К. Н. История древнего мира - М.: 2001.

2.                Дубнищева Т.Я. Концепции Современного естествознания. Основной курс в вопросах и ответах – Новосибирск: Сибирское университетское издательство, 2003.

3.                Небел Б. Наука об окружающем мире. Как устроен мир. – М.: Мир, 2000.

4.                Пахустов Б.К. Концепции современного естествознания: УМК. – Новосибирск: СибАГС, 2001.

5.                Пригожин И., Стенгерс И. Порядок из хаоса. – М.: Мир, 1999.

6.                Силин А. А. Энтропия, вероятность, информация // В мире науки, 1998. - №9. – С. 12 – 41.

7.                Шредингер Э. Что такое жизнь с точки зрения физики? – М.: Изд – во иностр. Лит-ры, 1999.


[1] Небел Б. Наука об окружающем мире. Как устроен мир. – М.: Мир, 2000. – С. 24.

[2] Дубнищева Т.Я. Концепции Современного естествознания. Основной курс в вопросах и ответах – Новосибирск: Сибирское университетское издательство, 2003. – С. 15.

[3] Гоголев  К. Н. «История древнего мира» - М.: 2001. – С. 64.

[4] Гоголев  К. Н. «История древнего мира» - М.: 2001. – С. 81.

[5] Пахустов Б.К. Концепции современного естествознания: УМК. – Новосибирск: СибАГС, 2001. – С. 251.