Вопрос 6.

ФОРМУЛЫ ПОЛНОЙ ВЕРОЯТНОСТИ И БАЙЕСА

Формула полной вероятности.

1.             (2)

                Известно, что 90% выпускаемой продукции соответствует стандарту. Упрощенная схема контроля признает пригодной стандартную продукцию с вероятностью 0,9 и нестандартную с вероятностью 0,2. Определить вероятность того, что изделие прошло упрощенный контроль.

                Ответы:   1. 0,83

                                              

2.             (2)

                Известно, что 90% выпускаемой продукции соответствует стандарту. Упрощенная схема контроля признает пригодной стандартную продукцию с вероятностью 0,9 и нестандартную с вероятностью 0,2. Определить вероятность того, что изделие не прошло упрощенный контроль.

                                                               2. 0,17

                                                              

3.             (4)

                В группе 4 отличника, 10 хорошо успевающих и 6 занимающихся слабо студентов. На предстоящем экзамене отличники могут получить только отличные оценки. Хорошо успевающие студенты могут получить с равной вероятностью хорошие и отличные оценки. Слабо занимающиеся студенты могут получить с равной вероятностью хорошие, удовлетворительные и неудовлетворительные оценки. На экзамен наугад приглашается один студент. Какова вероятность того, что он получит хорошую оценку?

                Правильный ответ: 0,35.

4.             (4)

                В группе 4 отличника, 10 хорошо успевающих и 6 занимающихся слабо студентов. На предстоящем экзамене отличники могут получить только отличные оценки. Хорошо успевающие студенты могут получить с равной вероятностью хорошие и отличные оценки. Слабо занимающиеся студенты могут получить с равной вероятностью хорошие, удовлетворительные и неудовлетворительные оценки. На экзамен наугад приглашается один студент. Какова вероятность того, что он получит отличную оценку?

                Правильный ответ: 0,45.

5.             (2)

                В обувную мастерскую для ремонта приносят сапоги и туфли в соотношении 2:3. Вероятность качественного ремонта для сапог равна 0,9, а для туфель 0,85. Какова вероятность того, что отобранная для проверки пара отремонтирована качественно?

                                                               2. 0,87

                                                              

6.             (2)

                В обувную мастерскую для ремонта приносят сапоги и туфли в соотношении 2:3. Вероятность качественного ремонта для сапог равна 0,9, а для туфель 0,85. Какова вероятность того, что отобранная для проверки пара отремонтирована некачественно?

                Ответы:   1. 0,13

                                              

7.             (4)

                В двух одинаковых коробках лежат карандаши. В первой 12 красных и 8 синих, во второй 6 красных и 4 синих. Из случайно выбранной коробки наугад берется один карандаш. Найти вероятность того, что он окажется красным.

                Правильный ответ: 0,6.

8.             (4)

                В двух одинаковых коробках лежат карандаши. В первой 12 красных и 8 синих, во второй 6 красных и 4 синих. Из случайно выбранной коробки наугад берется один карандаш. Найти вероятность того, что он окажется синим.

                Правильный ответ: 0,4.

9.             (2)

                На сборку поступают детали с двух автоматов. Первый дает в среднем 6% брака, второй 3% брака. Найти вероятность того, что наугад взятая деталь окажется качественной, если с первого автомата поступило 1000 деталей, а со второго 2000 деталей.

Ответы:   1. 0,96

                                2. 0,03

                                3. 0,12

                                4. Верного ответа среди перечисленных нет

Правильный ответ: 1.

10.           (2)

                На сборку поступают детали с двух автоматов. Первый дает в среднем 6% брака, второй 3% брака. Найти вероятность того, что наугад взятая деталь окажется бракованной, если с первого автомата поступило 1000 деталей, а со второго 2000.

Ответы:   1. 0,04

                               

11.           (4)

                Из цифр 1, 2, 3, 4, 5 последовательно наудачу выбирают две цифры. Найти вероятность того, что вторая выбранная цифра будет нечетной.

                Правильный ответ: 0,6.

               

12.           (4)

                Из цифр 1, 2, 3, 4, 5 последовательно наудачу выбирают две цифры. Найти вероятность того, что вторая выбранная цифра будет не менее трех.

                Правильный ответ: 0,6.

               

Формула Байеса.

 

1.             (2)

                Известно, что 90% выпускаемой продукции соответствует стандарту. Упрощенная схема контроля признает пригодной стандартную продукцию с вероятностью 0,9 и нестандартную с вероятностью 0,2. Определить вероятность того, что изделие, прошедшее упрощенный контроль, удовлетворяет стандарту.

                                                               2. 0,98

                                                              

2.             (2)

                Известно, что 90% выпускаемой продукции соответствует стандарту. Упрощенная схема контроля признает пригодной стандартную продукцию с вероятностью 0,9 и нестандартную с вероятностью 0,2. Определить вероятность того, что изделие, прошедшее упрощенный контроль, не удовлетворяет стандарту.

               

                                               3. 0,02

                                                              

3.             (4)

                В группе 5 отличников, 10 хорошо успевающих и 5 занимающихся слабо студентов. На экзамене отличники могут получить только отличные оценки. Хорошо успевающие студенты могут получить с равной вероятностью хорошие и отличные оценки. Слабо занимающиеся студенты могут получить с равной вероятностью хорошие, удовлетворительные и неудовлетворительные оценки. На экзамен пришел один студент и получил оценку «отлично». Какова вероятность того, что он хорошо успевает по всем предметам?

                Правильный ответ: 0,5.

4.             (4)

                В группе 2 отличника, 12 хорошо успевающих и 6 занимающихся слабо студентов. На экзамене отличники могут получить только отличные оценки. Хорошо успевающие студенты могут получить с равной вероятностью хорошие и отличные оценки. Слабо занимающиеся студенты могут получить с равной вероятностью хорошие, удовлетворительные и неудовлетворительные оценки. На экзамен пришел один студент и получил оценку «хорошо». Какова вероятность того, что он хорошо успевает по всем предметам?

                Правильный ответ: 0,75.

5.             (2)

                В обувную мастерскую для ремонта приносят сапоги и туфли в соотношении 2:3. Вероятность качественного ремонта для сапог равна 0,9, а для туфель 0,85. Наудачу отобранная пара отремонтирована качественно. Какова вероятность того, что это пара сапог?

                Ответы:   1. 0,41

                                              

6.             (2)

                В обувную мастерскую для ремонта приносят сапоги и туфли в соотношении 2:3. Вероятность качественного ремонта для сапог равна 0,9, а для туфель 0,85. Наудачу отобранная пара отремонтирована качественно. Какова вероятность того, что это пара туфель?

               

                                               3. 0,59

                                                              

7.             (4)

                В двух одинаковых коробках лежат карандаши. В первой 12 красных и 8 синих, во второй 6 красных и 4 синих. Из случайно выбранной коробки наугад берется один карандаш. Найти вероятность того, что красный карандаш был взят из первой коробки.

                Правильный ответ: 0,5.

8.             (4)

                В двух одинаковых коробках лежат карандаши. В первой 12 красных и 8 синих, во второй 6 красных и 4 синих. Из случайно выбранной коробки наугад берется один карандаш. Найти вероятность того, что красный карандаш был взят из второй коробки.

                Правильный ответ: 0,5.

9.             (2)

                На сборку поступают детали с двух автоматов. Первый дает в среднем 6% брака, второй 3% брака. Найти вероятность того, что наугад взятая бракованная деталь изготовлена первым автоматом, если с первого автомата поступило 1000 деталей, а со второго 2000.

                                3. 0,5

                               

10.           (2)

                На сборку поступают детали с двух автоматов. Первый дает в среднем 2% брака, второй 3% брака. Найти вероятность того, что наугад взятая бракованная деталь изготовлена вторым автоматом, если с первого автомата поступило 1000 деталей, а со второго 2000.

Ответы:   1. 0,5