Содержание
1. Особенности второй научной революции. Учение Галилея и Коперника. 3
2. Самоорганизация и эволюция систем. Синергетика. 7
3. Понятие о поле жизни зеленой растительности в биосфере. 10
4. Задачи. 13
1. Планетарная модель атома, ее недостатки. 13
2. …6s1 5d2 15
3. Основные характеристики ионной связи. 15
4. Дать понятие конденсированного состояния вещества. 16
Список литературы.. 17
1. Особенности второй научной революции. Учение Галилея и Коперника
Ускорившееся развитие науки (после первой промышленной революции) заставило по-новому оценить идеалы и нормы классического естествознания. Четко обозначилась роль гипотезы в теоретическом исследовании, все чаще возникали ситуации, когда различные теоретические объяснения соотносились с одной и той же областью опытных фактов, выявилась недостаточность критериев опытной подтверждаемости и самоочевидности для обоснования постулатов создаваемых теорий.
Радикальные перемены в этой целостной и относительно устойчивой системе оснований естествознания произошли в конце XVIII — первой половине XIX века. Их можно расценить как вторую глобальную научную революцию, определившую переход к новому состоянию естествознания — дисциплинарно организованной науке. В это время механическая картина мира утрачивает статус общенаучной. В биологии, химии и других областях знания формируются специфические картины реальности, нередуцируемые к механической. Одновременно происходит дифференциация дисциплинарных идеалов и норм исследования. Например, в биологии и геологии возникают идеалы эволюционного объяснения, в то время как физика продолжает строить свои знания, абстрагируясь от идеи развития. Но и в ней, с разработкой теории поля, начинают постепенно размываться ранее доминировавшие нормы механического объяснения. Все эти изменения затрагивали главным образом слой организации идеалов и норм исследования, выражающий специфику изучаемых объектов. Что же касается общих познавательных установок классической науки, то они еще сохраняются в данный исторический период.[1]
Учение Галилея
В 1604 году Галилей объявил о том, что он верит в правоту Коперника, однако в то время у него не было способа доказать это. В 1609 году он узнал об изобретении телескопа в Голландии. Хотя у него было только описание этого прибора, он обладал гениальностью такого свойства, которая позволила ему самому изобрести телескоп. Причем, его телескоп был гораздо совершеннее. Пользуясь этим новым прибором, он обратил свой талант наблюдателя к небесам и уже через год сделал целую серию важных открытий.
С помощью сконструированного телескопа Галилей обнаружил кратеры и хребты на Луне (в его представлении - "горы" и "моря"), разглядел бесчисленные, скопления звезд, образующих Млечный Путь, увидел спутники Юпитера. Это было ясное доказательство того, что астрономическое тело может вращаться не только вокруг Земли, но вокруг любой другой планеты. Он смотрел на Солнце и видел там солнечные пятна. В действительности и другие люди наблюдали солнечные пятна до Галилея, однако ему удалось более широко оповестить общественность о своих открытиях и привлечь к солнечным пятнам внимание научного мира. Он заметил, что у Венеры фазы подобны фазам Луны. Все вместе это стало значительным свидетельством в пользу теории Коперника о том, что Земля и Другие планеты вращаются вокруг Солнца.
Философское значение законов механики, открытых Галилеем было громадным. Галилей открыл законы механики в соответствии со строго математической трактовкой понятия этих законов. Тем самым впервые в истории развития человеческого познания понятие закона природы приобретало строго научное содержание.
Законы механики были применены Галилеем и для доказательства теории Коперника, которая была непонятна большинству людей, незнавших этих законов. Например, с точки зрения "здравого рассудка" кажется совершенно естественным, что при движении Земли в мировом пространстве должен возникнуть сильнейший вихрь, сметающий все с ее поверхности. В этом и состоял один из самых "сильных" аргументов против теории Коперника. Галилей же установил, что равномерное движение тела нисколько не отражается на процессах, совершающихся на его поверхности. Например, на движущемся корабле падение тел происходит так же, как и на неподвижном.[2]
Другие открытия Галилея
Огромную роль сыграли работы Галилея в области механики. Господствовавшая в его эпоху схоластическая физика, основавшаяся на поверхностных наблюдениях и умозрительных выкладках, была засорена представлениями о движении вещей в соответствии с их "природой" и целью, о естественной тяжести и легкости тел, о "боязни пустоты", о совершенстве кругового движения и другими ненаучными домыслами, которые сплелись в запутанный узел с религиозными догматами и библейскими мифами. Галилей путем ряда блестящих экспериментов постепенно распутал его и создал важнейшую отрасль механики динамику, т.е. учение о движении тел.
Занимаясь вопросами механики, Галилей открыл ряд ее фундаментальных законов: пропорциональность пути, проходимого падающими телами, квадратам времени их падения; равенство скоростей падения тел различного веса в безвоздушной среде (вопреки мнению Аристотеля и схоластиков о пропорциональности скорости падения тел их весу); сохранение прямолинейного равномерного движения, сообщенного какому-либо телу, до тех пор, пока какое-либо внешнее воздействие не прекратит его (что впоследствии получило название закона инерции), и др.
Классический принцип относительности был сформулирован Галилео Галилеем: "Если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе, движущейся прямолинейно и равномерно относительно первой". Такие системы называются инерциальными, поскольку движение в них подчиняется закону инерции, гласящему: "Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, если только оно не вынуждено изменить его под влиянием движущихся сил".
Учение Коперника
Свою систему мира великий польский астроном Николай Коперник (1473-1543) изложил в книге “О вращениях небесных сфер”, вышедшей в год его смерти. В этой книге он доказал, что Вселенная устроена совсем не так, как много веков утверждала религия.
Гениально просто Коперник объяснял, что мы воспринимаем движение далеких небесных тел так же, как и перемещение различных предметов на Земле, когда сами находимся в движении.
Мы скользим в лодке по спокойно текущей реке, и нам кажется, что лодка и мы в ней неподвижны, а берега “плывут” в обратном направлении. Точно так же нам только кажется, что Солнце движется вокруг Земли. А на самом деле Земля со всем, что на ней находится, движется вокруг Солнца и в течение года совершает полный оборот по своей орбите.
И точно так же, когда Земля в своем движении вокруг Солнца обгоняет другую планету, нам кажется, что планета движется назад, описывая петлю на небе. В действительности планеты движутся вокруг Солнца по орбитам правильной, хотя и не идеально круговой формы , не делая никаких петель. Коперник, как и древнегреческие ученые, что орбиты, по которым движутся планеты, могут быть только круговыми.
Коперник полагал, что Вселенная ограничена сферой неподвижных звезд, которые расположены на невообразимо огромных, но все-таки конечных расстояниях от нас и от Солнца. В учении Коперника утверждалась огромность Вселенной и бесконечность ее. Коперник также впервые в астрономии не только дал правильную схему строения Солнечной системы, но и определил относительные расстояния планет от солнца и вычислил период их обращения вокруг него.
Звезды Коперник считал неподвижными. Сторонники Птолемея настаивали на неподвижности Земли, утверждали, что если бы Земля двигалась в пространстве, то при наблюдении неба в разное время нам должно было бы казаться, что звезды смещаются, меняют свое положение на небе. Но таких смещений звезд за много веков не заметил ни один астроном. Именно в этом сторонники учения Птолемея хотели видеть доказательство неподвижности Земли.
Однако Коперник утверждал, что звезды находятся на невообразимо огромных расстояниях. Поэтому ничтожные смещения их не могли быть замечены. Действительно, расстояния от нас даже до ближайших звезд оказались настолько большими, что еще спустя три века после Коперника они поддавались точному определению. Только в 1837 г. русский астроном Василий Яковлевич Струве положил начало точному определению расстояний до звезд.[3]
Понятно, какое потрясающее впечатление должна была произвести книга, в которой Коперник объяснил мир, не считаясь с религией и даже отвергая всякий авторитет церкви в делах науки. Деятели церкви не сразу поняли, какой удар по религии наносит научный труд Коперника, в котором он низвел Землю на положение одной из планет. Некоторой время книга свободно распространялась среди ученых. Прошло не много лет, и революционное значение великой книги проявилось
2. Самоорганизация и эволюция систем. Синергетика
Самоорганизация (неравновесное упорядочение) является одним из двух фундаментальных элементарных процессов природы, различающихся по их физическим принципам. При неравновесном упорядочении степень неравновесия возрастает и затрачивается энергия, а при равновесном упорядочении (организации) степень неравновесия уменьшается и энергия выделяется. Оба процесса взаимосвязаны и имеют разную видимую долю проявлений в сложных явлениях. Существуют два типа самоорганизации: континуальный для индивидуальных (микро-) систем и когерентный для коллективных (макро-) открытых систем; прогрессивная эволюция с естественным отбором возможна только как саморазвитие континуальной самоорганизации индивидуальных систем.
В основе каждого закона лежит фундаментальный принцип причинности. Он с помощью базовых уравнений и соотношений вводит ту или иную структуру отношений в фазовом пространстве систем, накладывает те или иные связи на составляющие систему элементы, т.е. является универсальным. Тоже самое можно сказать по закону самоорганизации. Процесс организации и процесс самоорганизации выступают источником и основой эволюции, т.к. происходят самопроизвольно и обусловлены имманентными свойствами любой системы: природной, социальной, космической и т.д. А долгое время считалось, что нарушения второго закона возможны лишь при сознательном вмешательстве человека, для обозначения естественных антиэнтропийных процессов упорядочения, имеющих другую природу, чем процесс равновесной организации (например, кристаллизации), стал применяться термин самоорганизация. Приставка само – одновременно подчеркивает и имманентные причины явления и наличие различий природы неравновесного и равновесного упорядочения, связанных с активной или пассивной их ролью в становлении соответствующего порядка.[4]
Можно утверждать, что именно синергетика на настоящий момент является наиболее общей теорией самоорганизации. Она формулирует общие принципы самоорганизации, действительные для всех структурных уровней материи, на языке математики описывает механизмы структурогенеза, в ее рамках способность к самоорганизации выступает как атрибутивное свойство материальных систем.
Термин “синергетика” происходит от греческого “синергена” - содействие, сотрудничество. Предложенный Г. Хакеном, этот термин акцентирует внимание на согласованности взаимодействия частей при образовании структуры как единого целого.
Большинство существующих ныне учебников, справочников и словарей обходят неологизм Хакена молчанием.
Итак, главные смыслы, вносимые научным сообществом в термин "синергетика" следующие:
1) парадигма – система идей, принципов, образов, представлений, из которых, возможно, со временем вырастет фундаментальная научная теория, или общенаучная теория, или даже мировоззрение;
2) ряд частнонаучных теорий (в физике, химии, биохимии, биологии, социологии, психологии и других науках), объединяемых идеями нелинейности, открытости, переходности, неравновесности процессов, идущих в системах;
3) общенаучная теория (которая пока еще складывается), т.е. как теория диссипативных структур (в смысле Пригожина), либо теория самоорганизующихся систем (в смысле Хакена), либо теория переходных процессов, взаимопревращения хаоса и порядка и т. п.;
4) новое мировоззрение, преодолевающее господствующее пока в науке мышление "ставшими", неизменными понятиями (платонистская традиция) и утверждающее мышление, основанное на "становящихся", переходных, нестабильных, фрактальных формах, образах.
Согласно работе можно выделить следующие 4 принципа частных теорий синергетики:
1. Нелинейность означает несохранение аддитивности в процессе развития представляемых систем. Любое явление понимается как момент эволюции, как процесс движения по полю развития.
2. Неустойчивость означает несохранение "близости" состояний системы в процессе ее эволюции.
3. Открытость означает признание обмена системы веществом, энергией, информацией с окружающей средой и, следовательно, признание системы как состоящей из элементов, связанных структурой, так и включенности в качестве подсистемы, элемента в иное целое.
4. Подчинение означает, что функционирование и развитие системы определяются процессами в ее подсистеме ("сверхсистеме") при возникновении иерархии масштабов времени. Это принцип "самоупрощения" системы, т.е. сведения ее динамического описания к малому числу параметров порядка.
К описанным 4 принципам добавляются принципы специфические для той или иной объектной области – неживых систем, живых организмов, человека. Так, для неживых (физических и химических) систем в той или иной форме вводится принцип нелокальности (дальнодействия, коррелированности на расстоянии), означающий такое взаимодействие между элементами системы, которое воспринимается как передача информации с бесконечной скоростью (о чем напоминают прежде всего квантовомеханические неравенства Дж. Белла. Для живых (биологических и приближающихся к ним технических) систем вводится принцип биополя, определяющий особое поле, объединяющее элементы в целое и направляющее развитие организма к предустановленным образцам (аттракторам).
3. Понятие о поле жизни зеленой растительности в биосфере
Поле жизни зеленой растительности в составе биосферы – это совокупность живых организмов, преобразующих в процессе фонтосинтеза солнечную энергию в кислород.
Функция зеленой растительности в биосфере прежде всего энергетическая – аккумулирование энергии и ее перераспределение по пищевым цепям.[5]
Жизнь возникает в соответствии с принципом Ле Шателье-Брауна, как ответ на рост энтропии, то есть на рассеяние энергии в окружающей среде. Поэтому концентрация энергии - это наиболее естественная функция жизни. Наличие живой оболочки планеты препятствует остыванию ее поверхности, аккумулируя в себе энергию, излучаемую в космос. Правда, сейчас жизнь биосферы развивается в основном в потоке солнечной энергии, аккумулируя ее в себе и препятствуя прямому отражению ее в космос. Эта энергия передается по пищевой цепи от одной формы жизни к другой. По мере этого движения ее энтропия значительно возрастает. В конечном итоге она переходит в тепловую форму и излучается за пределы планеты. Поэтому энтропия излучения, отраженного с поверхности планеты, оказывается существенно больше энтропии излучения, поглощаемого планетой. Именно за счет этой разницы энтропий существует жизнь на планете.
Таким образом, основным механизмом накопления энергии в биосфере является реакция фотосинтеза. Имеется также довольно незначительный процент хемосинтезирующих живых существ, чей жизненный цикл опирается на энергию химических соединений. Это прежде всего зеленая растительность – лес.
Редкий древостой еще не составляет поле леса, так как не создает определенной среды: почвенной, гидрологической, метеорологической и т.д. Известны попытки насадить леса в зонах, для которых они мало характерны, например в степи. Деревья почему-то не приживались. Успеха удавалось добиться только после того, как на место посадки завозили почву из лесов, богатую грибницей. Нити грибницы опутывают корни, образуя с ними симбиоз - микрозу. Грибы при взаимодействии с тканью корня образуют своего рода “сложные органы”, повышающие способность растения извлекать из почвы питательные вещества. В свою очередь грибы получают некоторые продукты фотосинтеза растений. Поток энергии через микрозу является одним из главных элементов пищевой цепи и дерева и грибницы. Многие деревья не могут расти без микрозы. В то же время сосны, например, со здоровой микрозой могут расти на такой бедной почве, которая по сельскохозяйственным стандартам не пригодна для посевов зерновых культур.[6]
Почва леса сама по себе обладает всеми признаками живого организма. Она, как любая живая ткань, обладает богатым набором ферментов (биологические катализаторы) и других катализаторов, благодаря которым в ней протекают сложные процессы обмена веществ и энергии, непрерывное “производство” определенных органических веществ, а также процессы перехода сложных соединений в формы, доступные усвоению растениями.
В поле леса создаются особые условия, отличные от условий на открытой местности. В частности это повышенная влажность и меньший диапазон суточных и годовых колебаний температуры, более низкое содержание углекислоты на уровне полога, повышенное содержание ее в припочвенном слое и т.д. Над лесами чаще идут дожди. В то же время замечено, что крупные города тучи часто обходят стороной, что объясняется, вероятно, наличием над городами локальных зон повышенного атмосферного давления. Леса способствуют умеренному накоплению влаги в почве. Именно они подпитывают малые реки и ручьи, делая большие реки спокойными и полноводными. Например, в районе города Шуи есть речка Сеха. Из истории известно, что во время монголо-татарского нашествия их войско переправлялось через нее на плотах. Сейчас об этом напоминают лишь крутые высокие склоны по бокам котловины, по дну которой течет мелкий ручей, который в некоторых местах можно перешагнуть. Правда, в своих разговорах мы все же называем Сеху рекой, наверное, по давней местной привычке. Причина такой деградации очевидна: вытекая из полуосушенного болота, современная Сеха окружена сплошными полями.
Таким образом, лес - это не просто много деревьев, это живая система с большим количеством эмерджентных свойств, способная изменять среду вокруг себя. Высокий коэффициент эмерджентности (степень органичности, неразрывности внутренних связей, невозможности разложить на составляющие) повышает устойчивость экосистемы и ее способность к саморегулированию.
Деятельность человека приводит к нарушению прямых и обратных связей в экосистемах. Например, умеренное загрязнение водоемов органикой приводит к интенсификации размножения микроорганизмов, что в свою очередь приводит к самоочищению водоема. Неумеренное загрязнение ведет к чрезмерному размножению организмов-санитаров, что рано или поздно приводит к обеднению данного водоема кислородом, а значит, к угнетению и гибели этих организмов, разрушению связей, изменению системы и переходу ее на новый вид связей, то есть к заболачиванию.
4. Задачи
1. Планетарная модель атома, ее недостатки
Результат был совершенно неожиданным даже для Резерфорда. Он находился в резком противоречии с моделью атома Томсона, согласно которой положительный заряд распределен по всему объему атома. При таком распределении положительный заряд не может создать сильное электрическое поле, способное отбросить а-частицы назад. Расчет показал, что такое возможно только при условии концентрации заряда и массы атома в очень маленьком объеме, примерно в 100000 раз меньше самого атома. Эти соображения привели Резерфорда к выводу, что атом почти пустой, и весь его положительный заряд сосредоточен в малом объеме. Эту часть атома Резерфорд назвал атомным ядром. Так возникла ядерная модель атома. Рис.1. иллюстрирует рассеяние а-частицы в атоме Томсона и в атоме Резерфорда.[7]
Таким образом, опыты Резерфорда и его сотрудников привели к выводу, что в центре атома находится плотное положительно заряженное ядро, диаметр которого не превышает 10–14–10–15 м. Это ядро занимает только 10–12 часть полного объема атома, но содержит весь положительный заряд и не менее 99,95 % его массы. Веществу, составляющему ядро атома, следовало приписать колоссальную плотность порядка 1015 г/см3. Заряд ядра должен быть равен суммарному заряду всех электронов, входящих в состав атома. Впоследствии удалось установить, что если заряд электрона принять за единицу, то заряд ядра в точности равен номеру данного элемента в таблице Менделеева.
Радикальные выводы о строении атома, следовавшие из опытов Резерфорда, заставляли многих ученых сомневаться в их справедливости. Не исключением был и сам Резерфорд, опубликовавший результаты своих исследований только через два года (в 1911 г.) после выполнения первых экспериментов. Опираясь на классические представления о движении микрочастиц, Резерфорд предложил планетарную модель атома. Согласно этой модели, в центре атома располагается положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Атом в целом нейтрален. Вокруг ядра, подобно планетам, вращаются под действием кулоновских сил со стороны ядра, электроны находиться в состоянии покоя электроны не могут, так как они упали бы на ядро.
Модель |
Описание |
· в центре атома находится положительно заряженное ядро · Вокруг ядра движутся электроны. · Заряд ядра равен номеру элемента в таблице Менделеева. · У нейтрального атома число электронов равно числу протонов в ядре. |
Планетарная модель атома, предложенная Резерфордом, оказалась неспособной объяснить сам факт длительного существования атома, т. е. его устойчивость. По законам классической электродинамики, движущийся с ускорением заряд должен излучать электромагнитные волны, уносящие энергию. За короткое время (порядка 10–8 с) все электроны в атоме Резерфорда должны растратить всю свою энергию и упасть на ядро. То, что этого не происходит в устойчивых состояниях атома, показывает, что внутренние процессы в атоме не подчиняются классическим законам.
2. …6s1 5d2
1s2 2s22p63s23p64s23d104p65s24d105p66s15d2
3. Основные характеристики ионной связи
Ионная связь - химическая связь, основанная на электростатическом притяжении ионов, называется ионной связью
Такая связь возникает при большой разнице в электроотрицательностях связываемых атомов, когда менее электроотрицательный атом почти полностью отдает свои валентные электроны и превращается в катион, а другой, более электроотрицательный атом, эти электроны присоединяет и становится анионом.[8]
Например, в хлориде натрия NaCl разность электроотрицательностей атомов равна:
3.0(Cl) - 0.9(Na) = 2.1.
Атом Na (1 электрон на внешнем уровне) и атом Cl (7 внешних электронов) превращаются в ионы Na+ и Cl- с завершенными внешними электронными оболочками (по 8 электронов), между которыми возникает электростатическое притяжение, т.е. ионная связь.
Иoннaя связь не имеет пространственной направленности, так как каждый ион связан с определенным числом противоионов. Поэтому ионно-связанные соединения не имеют молекулярного строения и представляют собой твердые вещества, образующие ионные кристаллические решетки, с высокими температурами плавления и кипения, они высокополярны, часто солеобразны, в водных растворах электропроводны. Соединений с чисто ионными связями практически не существует.
В органических соединениях ионные связи встречаются довольно редко, т.к. атом углерода не склонен ни терять, ни приобретать электроны с образованием ионов.
4. Дать понятие конденсированного состояния вещества
Конденсированное состояние вещества заключается в изменении формы воды из ее газообразного состояния (водяной пар) в жидкую воду или кристаллы льда. Конденсация в основном происходит в атмосфере, когда теплый воздух поднимается, остывает и теряет способность содержать в себе водяной пар (состояние насыщения). В результате, избыточный водяной пар конденсируется в форме капельных облаков. Восходящее движение, которое образует облака, может быть вызвано конвекцией в неустойчиво стратифицированном воздухе, конвергенцией, ассоциируемой с циклонами, поднятием воздуха фронтами и поднятием над возвышенностями топографии, такими как горы.[9]
Список литературы
1. Дубнищева Т.Я. Пигарев А.Ю. Современное естествознание. Уч. Пособ. – Новосибирск: ООО «Издательство ЮКЭА», 1998.
2. Карпенков С.Х. Концепции современного естествознания: Учебник для вузов: - М.: Культура и спорт, ЮНИТИ, 1997.
3. Небел Б. Наука об окружающем мире. Как устроен мир. – М.: Мир, 2000.
4. Пахустов Б.К. Концепции современного естествознания: УМК. – Новосибирск: СибАГС, 2001.
5. Экология и природопользование. Учебник / Под ред. Алескина А.А. – М.: Инфра-М, 2001.
6. Экология. Учебник. Е.А.Криксунов. – М.: Инфра-М, 2003.
[1] Дубнищева Т.Я. Пигарев А.Ю. Современное естествознание. Уч. Пособ. – Новосибирск: ООО «Издательство ЮКЭА», 1998. – с. 29.
[2] Небел Б. Наука об окружающем мире. Как устроен мир. – М.: Мир, 2000. – с. 67.
[3] Карпенков С.Х. Концепции современного естествознания: Учебник для вузов: - М.: Культура и спорт, ЮНИТИ, 1997. – с. 116.
[4] Пахустов Б.К. Концепции современного естествознания: УМК. – Новосибирск: СибАГС, 2001. – с. 77.
[5] Экология и природопользование. Учебник / Под ред. Алескина А.А. – М.: Инфра-М, 2001. – с. 264.
[6] Экология. Учебник. Е.А.Криксунов. – М.: Инфра-М, 2003. – с. 177.
[7] Небел Б. Наука об окружающем мире. Как устроен мир. – М.: Мир, 2000. – с. 159.
[8] Дубнищева Т.Я. Пигарев А.Ю. Современное естествознание. Уч. Пособ. – Новосибирск: ООО «Издательство ЮКЭА», 1998. – с. 317.
[9] Дубнищева Т.Я. Пигарев А.Ю. Современное естествознание. Уч. Пособ. – Новосибирск: ООО «Издательство ЮКЭА», 1998. – с. 143.