КСЕ


Содержание


1. Основные черты современной науки. Кризис современной науки........ 3

2. Современные проблемы астрофизики....................................................... 6

3. Современные концепции происхождения и сущности жизни. Голобиоз и генобиоз.............................................................................................................. 9

Список использованной литературы........................................................... 15





1. Основные черты современной науки. Кризис современной науки


Современная наука – это наука, связанная с квантово-релятивистской картиной мира. Почти по всем своим характеристикам она отличается от классической науки, поэтому современную науку иначе называют неклассической наукой. Как качественно новое состояние науки она имеет свои особенности.

1. Отказ от признания классической механики в качестве ведущей науки, замена ее квантово-релятивистскими теориями привели к разрушению классической модели мира-механизма. Ее сменила модель мира-мысли, основанная на идеях всеобщей связи, изменчивости и развития.

Механистичность и метафизичность классической науки: сменились новыми диалектическими установками:

-          классический механический детерминизм, абсолютно исключающий элемент случайного из картины мира, сменился современным вероятностным детерминизмом, предполагающим вариативность картины мира;

-          пассивная роль наблюдателя и экспериментатора в классической науке сменилась новым деятельностным подходом, признающим непременное влияние самого исследователя, приборов и условий на проводимый эксперимент и полученные в ходе него результаты;

-          стремление найти конечную материальную первооснову мира сменилось убеждением в принципиальной невозможности сделать это, представлением о неисчерпаемости материи вглубь;

-          новый подход к пониманию природы познавательной деятельности основывается на признании активности исследователя, не просто являющегося зеркалом действительности, но действенно формирующего ее образ;

-          научное знание более не понимается как абсолютно достоверное, но только как относительно истинное, существующее в множестве теорий, содержащих элементы объективно-истинного знания, что разрушает классический идеал точного и строгого (количественно неограниченно детализируемого) знания, обусловливая неточность и нестрогость современной науки.

2. Картина постоянно изменяющейся природы преломляется в новых исследовательских установках:

-          отказ от изоляции предмета от окружающих воздействий, что было свойственно классической науке;

-          признание зависимости свойств предмета от конкретной ситуации, в которой он находится;

-          системно-целостная оценка поведения предмета, которое признается обусловленным как логикой внутреннего изменения, так и формами взаимодействия с другими предметами;

-          динамизм – переход от исследования равновесных структурных организаций к анализу неравновесных, нестационарных структур, открытых систем с обратной связью;

-          антиэлементаризм – отказ от стремления выделить элементарные составляющие сложных структур, системный анализ динамически действующих открытых неравновесных систем.

3. Развитие биосферного класса наук, а также концепции самоорганизации материи доказывают неслучайность появления Жизни и Разума во Вселенной; это на новом уровне возвращает нас к проблеме цели и смысла Вселенной, говорит о запланированном появлении разума, который полностью проявит себя в будущем.

4. Противостояние науки и религии дошло до своего логического конца. Без преувеличения можно сказать, что наука стала религией XX века. Соединение науки с производством, научно-техническая революция, начавшаяся с середины столетия, казалось, предъявили ощутимые доказательства ведущей роли науки в обществе.

Парадокс заключался в том, что именно этому ощутимому свидетельству суждено было оказаться решающим в достижении обратного эффекта.

В современной науке изменилось понимание предмета знания: им стала теперь не реальность в чистом виде, фиксируемая живым созерцанием, а некоторый ее срез, полученный в результате определенных теоретических и эмпирических способов освоения этой реальности. Наука перешла от изучения вещей, которые рассматривались как неизменные и способные вступать в определенные связи, к изучению условий, попадая в которые вещь не просто ведет себя определенным образом, но только в них может быть или не быть чем-то. Поэтому современная научная теория начинается с выявления способов и условий исследования объекта. Зависимость знаний об объекте от средств познания и соответствующей им организации знания определяет особую роль прибора, экспериментальной установки в современном научном познании. Без прибора нередко отсутствует сама возможность выделить предмет науки (теории), так как он выделяется в результате взаимодействия объекта с прибором. Анализ конкретных проявлений сторон и свойств объекта в различное время, в различных ситуациях приводит к объективному "разбросу" конечных результатов исследования. Свойства объекта также зависят от его взаимодействия с прибором. Отсюда вытекает правомерность и равноправие различных видов описания объекта, различных его образов. Если классическая наука имела дело с единым объектом, отображаемым единственно возможным истинным способом, то современная наука имеет дело с множеством проекций этого объекта, но эти проекции не могут претендовать на законченное всестороннее его описание. Отказ от созерцательности и наивной реалистичности установок классической науки привел к усилению математизации современной науки, сращиванию фундаментальных и прикладных исследований, изучению крайне абстрактных, абсолютно неведомых ранее науке типов реальностей – реальностей потенциальных (квантовая механика) и виртуальных (физика высоких энергий), что привело к взаимопроникновению факта и теории, к невозможности отделения эмпирического от теоретического.

Современную науку отличает повышение уровня ее абстрактности, утрата наглядности, что является следствием математизации науки, возможности оперирования высокоабстрактными структурами, лишенными наглядных прообразов. Изменились также логические основания науки. Наука стала использовать такой логический аппарат, который наиболее приспособлен для фиксации нового деятельностного подхода к анализу явлений действительности. С этим связано использование неклассических (неаристотелевских) многозначных логик, ограничения и отказы от использования таких классических логических. приемов, как закон исключенного третьего.

Еще одной чертой современной науки стало развитие биосферного класса наук и новое отношение к феномену жизни. Жизнь перестала казаться случайным явлением во Вселенной, а стала рассматриваться как закономерный результат саморазвития материи, также закономерно приведший к возникновению разума. Науки биосферного класса, к которым относятся почвоведение, биогеохимия, биоценология, биогеография, изучают природные системы, где идет взаимопроникновение живой и неживой природы, то есть происходит взаимосвязь разнокачественных природных явлений. В основе биосферных наук лежит естественноисторическая концепция, идея всеобщей связи в природе. Жизнь и живое понимаются в них как существенный элемент мира, действенно формирующий этот мир, создавший его в нынешнем виде.

Кризис современной науки и в частности физики, заключается в том, что СОЗНАНИЕ не признано как мировая сила, как самостоятельный фактор, постоянно взаимодействующий с двумя другими: материей и энергией.

2. Современные проблемы астрофизики


Предметом астрофизики является исследование физических процессов во вселенной. При этом, за редким исключением Луны, планет и нескольких малых тел Солнечной системы, доступных прямым исследованиям средствами современной космонавтики, основным источником информации об удаленных космических объектах по-прежнему служит приходящее от них электромагнитное излучение. Поэтому задачей астрофизики является построение моделей, которые могут объяснить появление излучения различных космических объектов с наблюдаемыми характеристиками: интенсивностью, спектром, поляризацией, временным профилем и т.д. Естественно, при решении этой задачи ученые-астрофизики исходят из известной картины физических процессов и законов, которые могут реализоваться или проявиться в тех или иных условиях, которые определяются, в основном, величиной температуры и плотности вещества, наличием магнитного поля и его величиной, возможным влиянием сил тяготения.

Современная астрофизика сформировалась после второй мировой войны. С точки зрения наблюдений, ее основная черта – расширение спектрального диапазона исследуемого излучения. Довоенная астрофизика использовала лишь результаты астрономических наблюдений в видимом свете – сравнительно узкой полосе спектра электромагнитных волн. Ясно, что при этом в центре внимания оказывались прежде всего те объекте во Вселенной, которые излучают в основном видимый свет – звезды, туманности, галактики. Теория их излучения была построена на основании знаний, полученных в земных лабораториях. В настоящее время в астрономии используются практически все диапазоны, от радиоволн до гамма-излучения. Превращение астрономии во всеволновую обогатило знания об известных объектах и, что гораздо важнее, привело к открытию новых объектов, позволило зарегистрировать излучение из таких областей, где материя (то есть вещество и излучение) находятся в таких называемых экстремальных (предельных) условиях. Этот термин обычно используется, чтобы подчеркнуть, что те или иные условия практически невозможно реализовать в лабораториях на Земле. В этих условиях материя нередко приобретает новые физические свойства. В качестве примеров экстремальных астрофизических условий можно указать высокие плотности вещества, реализующиеся на первых этапах развития. Вселенной, в недрах нейтронных звезд и в ближайших окрестностях черных дыр; сильные гравитационные поля в окрестностях черных дыр;  сильные магнитные поля белых карликов и нейтронных звезд. Именно в области исследования объектов, в которых реализуются те или иные экстремальные условия и сосредоточены основные проблемы современной астрофизики[1].

Основные проблемы современной астрофизики связаны с исследованием свойств материи (вещества и излучения) в экстремальных условиях, не достижимых в земных лабораториях: при высоких плотностях и температурах, в сильных магнитных и гравитационных полях. В качестве примера проблем астрофизики можно привести – проблему космических гамма-всплесков.

Одной из интереснейших проблем современной астрофизики считается внутреннее строение и эволюция звезд.

Обозначим основные проблемы астрофизики:

1. Гравитационные волны и их детектирование. Потери энергии, с точностью до 0.1% согласующиеся с формулой Эйнштейна (т.е. с теорией относительности), обнаружены на основе многолетних наблюдений двойного пульсара B1913+16. А вот экспериментальной регистрации гравитационных волн еще не было, хотя завершаются работы по строительству нескольких наземных лазерных детекторов.

2. Космологические проблемы.

3. Связь космологии и физики высоких энергий.

4. Нейтронные звезды и пульсары. Сверхновые.

5. Черные дыры.

6. Космические струны.

7. Квазары и ядра галактик.

8. Образование галактик.

9. Проблема темной материи и ее детектирование.

10. Поиск ультравысокоэнергичных космических лучей. Протоны с энергией E > 3.1019эВ из-за взаимодействия с фотонами реликтового излучения не могут распространяться на расстояние большее ~100 Мпк. Таким образом на более высоких энергиях должен наблюдаться завал в спектре космических лучей (его называют завалом Зацепина-Кузьмина-Грайзена). Однако экспериментальные наблюдения широких атмосферных ливней такого завала не показывали, частиц с энергиями выше порога наблюдалось неожиданно много.

11. Гамма-всплески (GRB). Гиперновые. Впервые гамма-всплески были зарегистрированы в 1968 году с военных американских спутников "Vela". В 1971 эту информацию рассекретили, тогда и появились первые публикации о них. Долгие годы основной считалась модель вспышек на нейтронных звездах в гало Галактики. Однако в 1997 г. было доказано, что гамма-всплески (по крайней мере часть их) происходят в других галактиках, удаленных на космологические расстояния. Следствием этого стало фантастически высокое энерговыделение в этих процессах (до 5.1054эрг у самых далеких GRB). Достижения буквально последнего года: а) связь гамма-всплесков (по крайней мере некоторых) со вспышками сверхновых б) заметная коллимация излучения гамма-всплесков (что приводит к снижению оценки выделяющейся в них энергии до ~5.1051эрг).

12. Нейтринная физика и астрономия. Осцилляции нейтрино. Начиная с первого эксперимента по измерению потока нейтрино от Солнца (Дэвис, 1968 г., Хлор-Аргоновый детектор) наблюдалось несоответствие между теоретически ожидаемым потоком этих частиц и регистрируемым на Земле - регистрировалось примерно в 3 раза меньше. Долгое время это относили на неточность модели Солнца, затем на то, что измеряются нейтрино не от основного канала термоядерных реакций. Но проблема не поддавалась. За эти несколько десятилетий была высказана идея, что нейтрино могут осциллировать, т.е. одни сорта нейтрино могут превращаться в другие. В термоядерных реакциях на Солнце образовывются только электронные нейтрино, а из-за осцилляций на Землю приходил бы уже поток нейтрино трех (или двух) сортов, из которых на химических детекторах фиксировались только электронные нейтрино. Для осцилляций было необходимо, чтобы хотя бы один из трех сортов нейтрино имел ненулевую массу. Недавно факт осцилляции нейтрино был экспериментально доказан[2].

3. Современные концепции происхождения и сущности жизни. Голобиоз и генобиоз


Современные концепции происхождения жизни опираются на том, что длительное время считалось, что живое отличается от неживого такими свойствами, как обмен веществ, подвижность, раздражаемость, рост, размножение, приспособляемость[3].

Однако порознь все эти свойства встречаются и среди неживой природы, а следовательно, не могут рассматриваться как специфические свойства живого.

Особенности живого Б.М. Медников (1982) сформулировал в виде аксиом теоретической биологии и естествознания:

1.      Все живые организмы оказываются единством фенотипа и программы для его построения (генотипа), передающейся по наследству из поколения в поколение (аксиома А. Вейсмана).

2.      Генетическая программа образуется матричным путем. В качестве матрицы, на которой строится ген будущего поколения, используется ген предшествующего поколения (аксиома Н.К. Кольцова).

3.      В процессе передачи из поколения в поколение генетические программы в результате различных причин изменяются случайно и ненаправленно, и лишь случайно такие изменения могут оказаться удачными в данной среде (1-я аксиома Ч. Дарвина).

4.      Случайные изменения генетических программ при становлении фенотипа многократно усиливаются (аксиома Н.В. Тимофеева-Рясовского).

5.      Многократно усиленные изменения генетических программ подвергаются отбору условиями внешней среды (2-я аксиома Ч. Дарвина).

Из данных аксиом можно вывести все основные свойства живой природы и в первую очередь такие, как дискретность и целостность – два фундаментальных свойства организации жизни на Земле.

Среди живых систем нет двух одинаковых особей, популяций и видов. Эта уникальность проявления дискретности и целостности основана на явлении конвариантной редупликации.

Конвариантная редупликация (самовоспроизведение с изменениями) осуществляется на основе матричного принципа (сумма трех первых аксиом). Это, вероятно, единственное специфическое для жизни, в известной для нас форме ее существования на Земле, свойство.

В основе его лежит уникальная способность к самовоспроизведению основных управляющих систем (ДНК, хромосом, генов).

Редупликация определяется матричным принципом (аксиома Н.К. Кольцова) синтеза макромолекул.

Способность к самовоспроизведению по матричному принципу молекулы ДНК смогли выполнить роль носителя наследственности исходных управляющих систем (аксиома А. Вейсмана).

Конвариантная редупликация означает возможность передачи по наследству дискретных отклонений от исходного состояния (мутаций), предпосылки эволюции жизни.

Живое вещество по своей массе занимает ничтожную долю по сравнению с любой из верхних оболочек земного шара.

По современным оценкам, общее количество массы живого вещества в наше время равно 2420 млрд. тонн.

Эту величину можно сравнить с массой оболочек Земли, в той или иной степени охваченных биосферой (табл. 1).

Таблица 1

Масса живого вещества в биосфере

Подразделения биосферы

Масса, тонн

Сравнение

Живое вещество

Атмосфера

Гидросфера

Земная кора

2,4х1012

5,15х1015

1.5х1018

2.8х1019

1

2146

602500

1670000


По своему активному воздействию на окружающую среду живое вещество занимает особое место и качественно отличается от других оболочек земного шара, так же, как живая материя отличается от мертвой.

В.И. Вернадский подчеркивал, что живое вещество – самая активная форма материи во Вселенной. Оно проводит гигантскую геохимическую работу в биосфере, полностью преобразовав верхние оболочки Земли за время своего существования. Все живое вещество нашей планеты составляет 1/11000000 часть массы всей земной коры. В качественном же отношении живое вещество представляет собой наиболее организованную часть материи Земли.

При оценке среднего химического состава живого вещества, по данным А.П. Виноградова (1975), В. Лархера (1978) и др., главные составные части живого вещества – это элементы, широко распространенные в природе (атмосфера, гидросфера, космос): водород, углерод, кислород, азот, фосфор и сера (табл. 2).

Живое вещество биосферы состоит из наиболее простых и наиболее распространенных в космосе атомов.

Таблица 2

Элементарный состав звездного и солнечного вещества в сопоставлении с составом растений и животных

Химический элемент

Содержание, %

звездное вещество

солнечное вещество

растения

животные

Водород (Н)

81,76

87,00

10,0

10,00

Гелий (Не)

18,17

12,90


Азот (N)


0,28

3,00


Углерод (С)

0,33

0,33

3,00

18,00 ;

Магний (Мq)


0,08

0,05


Кислород (0)

0,03

0,25

79,00

65,00

Кремний (Si)





Сера (S)

0,01

0,04

0,15

0,254

Железо (Fе)





Другие элементы

0,001

0,04

7,49

3,696


Средний элементарный состав живого вещества отличается от состава земной коры высоким содержанием углерода. По содержанию других элементов живые организмы не повторяют состава среды своего обитания. Они избирательно поглощают элементы, необходимые для построения их тканей.

В процессе жизнедеятельности организмы используют наиболее доступные атомы, способные к образованию устойчивых химических связей. Как уже было отмечено, водород, углерод, кислород, азот, фосфор и сера являются главными химическими элементами земного вещества и их называют биофильными. Их атомы создают в живых организмах сложные молекулы и сочетании с водой и минеральными солями. Эти молекулярные образования представлены углеводами, липидами, белками и нуклеиновыми кислотами. Перечисленные виды живого вещества находятся в организмах в тесном взаимодействии. Окружающий нас мир живых организмов биосферы представляет собой сочетание различных биологических систем разной  структурной упорядоченности и разного организационного Уровня. В связи с этим выделяют разные уровни существования живого вещества:

1. Молекулярный – самый низкий уровень, на котором биологическая система проявляется в виде функционирования биологически активных крупных молекул – белков, липидов, нуклеиновых кислот, углеводов. С этого уровня наблюдаются свойства, характерные исключительно для живой материи: обмен веществ, протекающий при превращении лучистой и химической энергии, передача наследственности с помощью ДНК и РНК. Этому уровню свойственна устойчивость структур в поколениях.

2. Клеточный – уровень, на котором биологически активные молекулы сочетаются в единую систему. В отношении клеточной организации все организмы подразделяются на одноклеточные и многоклеточные.

3. Тканевый – уровень, на котором сочетание однородных клеток образует ткань. Он охватывает совокупность клеток, объединенных общностью происхождения и функций.

4. Органный – уровень, на котором несколько типов тканей функционально взаимодействуют и образуют определенный орган.

5. Организменный – уровень, на котором взаимодействие ряда органов сводится в единую систему индивидуального организма. Представлен определенными видами организмов.

6. Популяционно-видовой, где существует совокупность определенных однородных организмов, связанных единством происхождения, образом жизни и местом обитания. На этом уровне происходят элементарные эволюционные изменения в целом.

7. Биоценоз и биогеоценоз (экосистема) – более высокий уровень организации живой материи, объединяющий разные по видовому составу организмы. В биогеоценозе они взаимодействуют друг с другом на определенном участке земной поверхности с однородными абиотическими факторами.

8. Биосферный – уровень, на котором сформировалась природная система наиболее высокого ранга, охватывающая все проявления жизни в пределах нашей планеты. На этом уровне осуществляются все глобальные круговороты вещества и энергии, связанные с жизнедеятельностью организмов.

По способу питания живые организмы подразделяется на автотрофные и гетеротрофные (табл. 3).

Таблица 3

Классификация живого вещества по способу питания

Автотрофы

Гетеротрофы

Миксотрофы

Фотоавтотрофы

Биотрофы

-

Хемоавтотрофы

Сапротрофы

-


Автотрофами (от греческого – питаться) называют организмы, берущие необходимые для  жизни химические элементы из окружающей их косной материи  и не требующие для построения своего тела готовых органических соединений другого организма. Основной источник энергии, используемый автотрофами – Солнце. Автотрофы подразделяются на фотоавтотрофы и хемоавтотрофы. Фотоавтотрофы используют в качестве источника энергии солнечный свет, хемоавтотрофы используют энергию окисления неорганических веществ.

К автотрофным организмам относятся водоросли, наземные меленые растения, бактерии, способные к фотосинтезу, а также некоторые бактерии, способные окислять неорганические вещества (хемоавтотрофы). Автотрофы являются первичными продуцентами органического вещества в биосфере.

Гетеротрофы (от греческого – другой) – организмы, нуждающиеся для своего питания в органическом веществе, образованном другими организмами. Гетеротрофы способны разлагать все вещества, образуемые автотрофами, и многие из тех, что синтезирует человек.

Живое вещество устойчиво только в живых организмах, оно стремится заполнить собой все возможное пространство. «Давлением жизни» называл данное явление В.И. Вернадский.

На Земле из существующих живых организмов наибольшей силой размножения обладает гриб-дождевик гигантский. Каждый экземпляр данного гриба может дать до 7,5 млрд. спор. Если каждая спора послужила бы началом новому организму, то объем дождевиков уже во втором поколении в 800 раз превысил размеры нашей планеты.

Таким образом, наиболее общее и специфическое свойство живого – способность к самовоспроизведению, конвариантной редупликации на основе матричного принципа. Эта способность вместе с другими особенностями живых существ и определяет существование основных уровней организации живого. Все уровни организации жизни находятся в сложном взаимодействии как части единого целого. На каждом уровне действуют свои закономерности, определяющие особенности эволюции всех форм организации живого. Способность к эволюции выступает как атрибут жизни, непосредственно вытекающий из уникальной способности живого к самовоспроизведению дискретных биологических единиц. Специфические свойства жизни обеспечивают не только воспроизведение себе подобных (наследственности), но и необходимые для эволюции изменения самовоспроизводящих структур (изменчивость).

Одним из наиболее сложных вопросов, связанных с происхождением жизни, является характеристика особенностей доклеточного предка.

Хорошо известен факт, что для саморепродукции нуклеиновых кислот (основы генетического кода) необходимы ферментные белки, а для синтеза белков - нуклеиновые кислоты. Отсюда следуют два вопроса:

1) что было первичным – белки или нуклеиновые кислоты?

2) если предположить, что эти классы полимеров возникли не одновременно, то как и когда произошло их объединение в единую систему передачи генетической информации?

Белки в организме служат катализаторами протекающих биохимических реакций и являются клеточными структурными элементами. Они представляют собой цепочки аминокислот, удерживающихся пептидными связями. Из огромного арсенала аминокислот для образования животных и растительных белков природа использовала 20 типов. Разнообразие белков определяется различными аминокислотами и последовательностью их расположения в белковых цепях. Даже при полной идентичности состава и последовательности расположения аминокислот различия в пространственной структуре белков приводят к разнице в их физико-химических свойствах. Белки живого происхождения имеют одинаковую изомерию, тогда как абиогенно полученные белки содержат равное количество возможных пространственных структур.

Существует одно важное и пока не нашедшее объяснения различие в свойствах живого и неживого веществ.

В неживом веществе того же химического состава, что и живое, не происходит поворот плоскости поляризации проходящего через него света. А все белковые молекулы живых организмов поворачивают плоскость поляризации проходящего света влево, что указывает на их левую пространственную конфигурацию (L-конфигурация). Молекулы ДНК и РНК поворачивают луч света вправо, то есть обладают правой или Р-конфигурацией. Молекулярная стереоизомерия, или молекулярная хиральность, присуща только живой природе и является ее неотъемлемым свойством.

По отношению к первичности образования белков или нуклеиновых кислот все существующие теории зарождения жизни делятся на две большие группы – голобиоза и генобиоза.

Концепция А. И. Опарина относится к группе голобиоза, поскольку исходит из идеи первичности структур типа клеточной, наделенной способностью к элементарному обмену веществ при участии ферментного механизма. Нуклеиновые кислоты при таком механизме появляются на завершающем этапе.

Примером иной точки зрения служит концепция Дж. Холдейна, согласно которой первичной была не структура, способная к обмену веществ с окружающей средой, а макромолекулярная система, подобная гену и способная к саморепродукции, и потому названная им «голым геном». Подобную группу концепций называют генобиозом или информационной гипотезой.

Позиции гипотезы генобиоза заметно укрепились к 1970-м годам, а в 1980-е годы в представлениях о доклеточном предке она стала доминирующей. Общее признание в рамках этой гипотезы получила идея, согласно которой хирально чистыми молекулярными «блоками», составившими основу для зарождения живого, были макромолекулы ДНК или РНК.

Список использованной литературы


1.     Воронов В.К., Гречнева М.В., Сагдеев Р.З. Концепции  современного естествознания: Учеб. Пособие для вузов. – М.; Высш. шк., 1999. – 247 с.

2.   Горелов А. А. Концепции современного естествознания. М., 2000. C.61-78,227-233.

3.     Грушевицкая Т. Г., Садохин А. П. Концепции современного естество знания: Учеб. пособие для студентов дневного и заочного отделений вузов. М., 1998. С. 93-97, 171-200, 263-272.

4.     Железняков В.В. Проблемы современной астрофизики // Соросовский Образовательный Журнал, 1996, № 6. – с.83-91

5.     Концепции современного естествознания / Под ред. С.И. Самыгина. Ростов н/Д, 2000. С. 347-356.

6.     Найдыш В. М. Концепции современного естествознания: Учеб. пособие. – М., 2000. С. 304-355.

7.     Хорошавина С. Г. Концепции современного естествознания: Курс лекций для студентов вузов. Ростов н/Д, 2000. С, 185-187.

8.     Шкловский И.С. Современные проблемы астрофизики – М.: Янус-К.  - (Труды Астрономического института им. П.К.Штернберга;Т.67). Ч.2. - 2001. - 425с.


[1] Железняков В.В. Проблемы современной астрофизики // Соросовский Образовательный Журнал, 1996, № 6. – с.83-84

[2] Шкловский И.С. Современные проблемы астрофизики – М.: Янус-К.  - (Труды Астрономического института им. П.К.Штернберга;Т.67). Ч.2. - 2001. - с.245

[3] Воронов В.К., Гречнева М.В., Сагдеев Р.З. Концепции  современного естествознания: Учеб. Пособие для вузов. – М.; Высш. шк., 1999. – 247 с.