Доработка

3. В чем состоит эффект Доплера и какова его роль в исследовании звезд, Вселенной?

В 1842 г. австрийский физик и астроном Кристиан Доплер (1803-1853) обнаружил зависимость частоты волнового импульса при движении источника волн относительно наблюдателя, названную эффектом Доплера. Многие не раз сталкивались с ним, когда слышали, как меняется звук предупреждающего свистка проносящегося мимо платформы поезда. Но эффект Доплера можно не только «слышать» но и «видеть», хотя бы в ванне или в пруду. Периодически погружая палец  в воду, чтобы на поверхности образовались волны, равномерно перемещайте его в одном направлении движении. Следуя друг за другом, гребни волн будут сгущаться в направлении движения пальца и станут более разреженными с другой стороны. Значит, длина волны в направлении вперед станет меньше обычной, в направлении назад – больше.

Эффект Доплера имеет место для всех видов волн – звуковых в атмосфере, упругих в твердом теле, волн на воде, световых волн. Измерение доплеровского смещения в спектрах позволяет с большей точностью и не возмущая измерением движение и систему определить скорости движущихся объектов.

В 1848 г. французский физик Арман Физо (1819-1896) предположил использовать эффект Доплера для измерения радиальной составляющей скорости звезд по смещению спектральных линий (поэтому многие называют его эффектом Доплера-Физо). Физо обратил внимание, что в сплошном спектре движение не может вызывать заметных изменений, поэтому лучше обратиться к линейчатым спектрам, где можно измерять смещение. В 1867 г. английский  астроном Уильям Хеггинс (1824-1910) обнаружил смещение водородной линии а спектре трубки Гейслера в лаборатории и заключил, что скорость звезды относительно Земли равна 66,6 км/с, а по отношению к Солнцу – 47,3 км/с[1].



5. Приведите уравнение состояния идеального газа. Какая величина является мерой средней кинетической энергии молекул? Можно ли передать телу некоторое количество теплоты без изменения его температуры?

Основное уравнение молекулярно-кинетической теории газа  с учетом определения абсолютной температуры  принимает вид:

p = nkT или pV = NkT.

Пусть масса рассматриваемого газа в объеме V равна m, а масса отдельной молекулы m0. Тогда

pV = (m/m0)kT = (m/M)(M/m0)kT,

где M — молярная масса (см. Основные положения молекулярно-кинетической теории (МКТ)). По определению m/M = n, а M/m0 = NA. Поэтому

pV = nNAkT = nRT,

где введена универсальная газовая постоянная

R = kNA = 8,31 Дж/(моль·К).

Итак, справедливо уравнение состояния, связывающее давление, объем и температуру идеального газа:

pV = (m/M)RT = nRT  (уравнение Менделеева-Клапейрона).

Из этого уравнения следует, что параметры двух произвольных состояний 1 и 2 идеального газа связаны между собой:

p1V1/T1 = p2V2/T2.

Если переход между состояниями системы с разными значениями p, V, T (для определенности можно все время иметь в виду состояние идеального газа) происходит так медленно, что в каждый данный момент времени систему можно считать находящейся в равновесии с окружающей средой, то такой переход называется квазистатическим. Удобно изображать квазистатические процессы на pV-диаграмме. Каждой точке этой диаграммы отвечает определенное состояние системы с данными значениями p, V, T. Квазистатический процесс перехода из одного состояния в другое изображается непрерывной линией на pV-диаграмме.

Если тепло поступает в тело, температура возрастает, но не всегда. Может быть тепло преобразуется в работу?  Например, тепло поступает в цилиндр, наполненный паром, газ расширяется и толкает поршень. Можно подобрать условия так, чтобы все поступающее тепло было использовано для получения работы, а газ остался при той же температуре, хотя его давление понизится. Если пар был под достаточно высоким давлением, он может и без добавки тепла выполнить работу, толкая поршень. Потеря внутренней энергии выразится в том, что упадет температура.

Другой случай, когда подведенная тепловая энергия не вызывает повышения температуры, это изменение состава вещества. Для превращения 1 г льда в 1 г воды необходимо 80 кал. Если это количества тепла подвести к системе, то ее температура не изменится. Если подвести еще 100 кал, то вода закипит. Если добавить еще 540 кал, то температура воды опять не будет меняться при кипении, но вода превратится в пар. Таким образом, тепловая энергия может поступать в вещество и превращаться непосредственно в работу или может накопиться в веществе и, не меняя его температуры, изменить его состояние[2].



7. Когда возникает металлическая связь? Дайте представление о теории металлов, полупроводниках, диэлектриках и изоляторах.

Возникновение металлической связи. Валентные электроны металлов достаточно слабо связаны со своими ядрами и могут легко отрываться от них. Поэтому металл содержит ряд положительных ионов, расположенных в определенных положениях кристаллической решетки, и большое количество электронов, свободно перемещающихся по всему кристаллу. Электроны в металле осуществляют связь между всеми атомами металла.

Полупроводники отличаются от других классов твердых тел многими специфическими особенностями, главнейшими из которых являются:

1) положительный температурный коэффициент электропроводности, то есть с повышением температуры электропроводность полупроводников растет;

2) удельная проводимость полупроводников меньше, чем у металлов, но больше, чем у изоляторов;

3) большие значения термоэлектродвижущей силы по сравнению с металлами;

4) высокая чувствительность свойств полупроводников к ионизирующим излучениям;

5) способность резкого изменения физических свойств под влиянием ничтожно малых концентраций примесей;

6) эффект выпрямления тока или неомическое поведение на контактах.

Среди простых веществ полупроводниками являются бор, кремний, германий, серое олово, некоторые модификации фосфора, мышьяка и сурьмы, а также селен, теллур и йод. Совсем недавно открыта новая модификация углерода - фуллерит, который является полупроводником в отличие от алмаза и графита. Помимо них известны многочисленные полупроводниковые соединения: оксиды, сульфиды, селениды, теллуриды, арсениды, антимониды, интерметаллические полупроводники, тройные и более сложные полупроводниковые соединения.

Неорганические полупроводниковые вещества, как правило, обладают координационной структурой, то есть в их пространственных решетках отсутствуют молекулы. Другими словами, они обладают немолекулярной структурой. Поэтому макроскопическое тело полупроводника состоит либо из большого числа одинаковых атомов (простое вещество), либо также из большого числа (порядка числа Авогадро) различных атомов (соединение).

Огромную роль играют поверхностные свойства полупроводников. Нередко поверхностные энергетические уровни и зависящие от них свойства преобладают над объемными характеристиками полупроводников. Поэтому, чтобы улучшить электрофизические характеристики полупроводниковых приборов, в полупроводниковом приборостроении особое внимание обращают на травление поверхности, влияние адсорбированных газов, присутствие посторонних взвешенных частиц и т.п.

Диэлектрики - тела, плохо проводящие ток. В диэлектриках в отличие от проводников практически нет свободных зарядов, способных перемещаться на значительные расстояния по всему объему тела.

Диэлектрики состоят либо из нейтральных молекул (к такому типу диэлектриков относят все газовые диэлектрики, жидкие диэлектрики, а также часть твердых), либо из заряженных ионов, размещенных в узлах кристаллической решетки в определенных положениях равновесия. Ионные решетки могут быть разбиты на элементарные ячейки, каждая из которых содержит равное количество положительных и отрицательных зарядов и в целом нейтральна. Таким образом, в целом можно определить диэлектрик как вещество, построенное из нейтральных молекул, причем в случае ионной решетки под нейтральной молекулой следует понимать элементарную ячейку.

Под воздействием внешнего электрического поля заряды, входящие в состав диэлектрика не срываются полем со своих мест, образуя электрический ток, а лишь смещаются на незначительные расстояния в некоторые новые равновесные положения.

Электрические изоляторы - устройства из фарфора, пластических масс и других диэлектриков для изоляции и механического крепления электрических проводов и кабелей (подвесные, опорные изоляторы), для ввода проводов в здание (проходные изоляторы), а также для изоляции частей электрической установки, находящихся под разным напряжением (установочные изоляторы).


10. Каково строение Солнца и его атмосферы? Каковы проявления и закономерности солнечной активности? В каком состоянии находится солнечное вещество? Каков состав солнечного излучения? Что такое солнечный ветер? Как он проявляется на Земле?

Внутреннее строение Солнца определено в предположении, что оно является сферически симметричным телом и находится в равновесии. Уравнение переноса энергии, закон сохранения энергии, уравнение состояния идеального газа, закон Стефана-Больцмана и условия гидростатического, лучистого и конвекционного равновесия вместе с определяемыми из наблюдений значениями полной светимости, полной массы и радиуса Солнца и данным о его химическом составе дают возможность построить модель внутреннего строения Солнца. Полагают, что содержание водорода в Солнце по массе около 70%, гелия около 27%, содержание всех остальных элементов около 2,5%. На основании этих предположений вычислено, что температура в центре Солнца составляет 10-15*1056 К, плотность около 1,5*1055 кг/м. Считается, что источником энергии, пополняющим потери на излучение и поддерживающим высокую температуру Солнца, являются ядерные реакции, происходящие в недрах Солнца. Среднее количество энергии, вырабатываемое внутри Солнца, составляет 1,92 эрг/г/сек. Выделение энергии определяется ядерными реакциями, при которых водород превращается в гелий. На Солнце возможны две группы термоядерных реакций: так называемый протон-протонный (водородный) цикл и углеродный цикл (цикл Бете). Наиболее вероятно, что на Солнце преобладает протон-протонный цикл, состоящий из трёх реакций, в первой из которых из ядер водорода образуются ядра дейтерия (тяжёлый изотоп водорода, атомная масса; во второй из ядер водорода образуются ядра изотопа гелия с атомной массой 3 и, наконец, в третьей из них образуются ядра устойчивого изотопа гелия с атомной массой 4.

Перенос энергии из внутренних слоёв Солнца в основном происходит путём поглощения электромагнитного излучения, приходящего снизу, и последующего переизлучения. В результате понижения температуры при удалении от Солнца постепенно увеличивается длина волны излучения, переносящего большую часть энергии в верхние слои. Перенос энергии движением горячего вещества из внутренних слоёв, а охлаждённого внутрь (конвекция) играет существенную роль в сравнительно более высоких слоях, образующих конвективную зону Солнца, которая начинается на глубине порядка 0,2 солнечных радиуса и имеет толщину около 1058 м. Скорость конвективных движений растёт с удалением от центра Солнца и во внешней части конвективной зоны достигает (2-2,5)х1053 м/сек. В ещё более высоких слоях (в атмосфере Солнца) перенос энергии опять осуществляется излучением. В верхних слоях атмосферы Солнца (в хромосфере и короне) часть энергии доставляется механическими и магнитогидродинамическими волнами, которые генерируются в конвективной зоне, но поглощаются только в этих слоях. Плотность в верхней атмосфере очень мала, и необходимый отвод энергии за счёт излучения и теплопроводности возможен только, если кинетическая энергия этих слоёв достаточно велика. Наконец, в верхней части солнечной короны большую часть энергии уносят потоки вещества, движущиеся от Солнца, так называемый солнечный ветер. Температура в каждом слое устанавливается на таком уровне, что автоматически осуществляется баланс энергии: количество приносимой энергии за счёт поглощения всех видов излучения, теплопроводностью или движением вещества равно сумме всех энергетических потерь слоя. Полное излучение Солнца определяется по освещённости, создаваемой им на поверхности Земли, - около 100 тыс. лк, когда Солнце находится в зените. Вне атмосферы на среднем расстоянии Земли от Солнца освещённость равна 127 тысяч лк. Сила света Солнца составляет 2,84*10527 свечей. Количество энергии, приходящее в одну минуту на площадку в 1 см, поставленную перпендикулярно солнечным лучам за пределами атмосферы на среднем расстоянии Земли от Солнца, называют солнечной постоянной. Мощность общего излучения Солнца - 3,83o10526 ватт, из которых на Землю попадает около 2*10517 ватт, средняя яркость поверхности Солнца (при наблюдении вне атмосферы Земли) составляет 1,98*1059 нт, яркость центра диска Солнца - 2,48*1059 нт. Яркость диска Солнца уменьшается от центра к краю, причём это уменьшение зависит от длины волны, так что яркость на краю диска Солнца для света с длиной волна 3600А составляет 0,2 яркости его центра, а для 5000А - около 0,3 яркости центра диска Солнца. На самом краю диска Солнца яркость падает в 100 раз на протяжении менее одной секунды дуги, поэтому граница диска Солнца выглядит очень резкой.

Спектральный состав света, излучаемого Солнцем, то есть распределение энергии в центре Солнца, в общих чертах соответствует распределению энергии в излучении абсолютно чёрного тела с температурой около 6000 К. Однако в отдельных участках спектра имеются заметные отклонения. Максимум энергии в спектре Солнца соответствует длине волны 4600 А. Спектр Солнца - это непрерывный спектр, ни который наложено более 20 тысяч линий поглощения. Более 60% из них отождествлено со спектральными линиями известных химических элементов путём сравнения длин волн и относительной интенсивности линии поглощения в солнечном спектре с лабораторными спектрами. Изучение линий поглощения даёт сведения не только о химическом составе атмосферы Солнца, но и о физических условиях в тех слоях, в которых образуются те или иные поглощения. Преобладающим элементом на Солнце является водород. Количество атомов гелия в 4-5 раз меньше, чем водорода. Число атомов всех других элементов вместе взятых, по крайней мере, в 1000 раз меньше числа атомов водорода. Среди них наиболее обильны кислород, углерод, азот, магний, железо и другие. В спектре Солнца можно отождествить также линии, принадлежащие некоторым молекулам и свободным радикалам: OH, NH, CH, CO и другим.


По современным представлениям, Солнце состоит из ряда концентрических сфер, или областей, каждая из которых обладает специфическими особенностями. Схематический разрез Солнца показывает его внешние особенности вместе с гипотетическим внутренним строением. Энергия, освобождаемая термоядерными реакциями в ядре Солнца, постепенно прокладывает путь к видимой поверхности светила. Она переносится посредством процессов, в ходе которых атомы поглощают, переизлучают и рассеивают излучение, т.е. лучевым способом. Пройдя около 80% пути от ядра к поверхности, газ становится неустойчивым, и дальше энергия переносится уже конвекцией к видимой поверхности Солнца и в его атмосферу.

Внутреннее строение Солнца слоистое, или оболочечное, оно состоит из ряда сфер, или областей. В центре находится ядро, затем область лучевого переноса энергии, далее конвективная зона и, наконец, атмосфера. К ней ряд исследователей относят три внешние области: фотосферу, хромосферу и корону. Правда, другие астрономы к солнечной атмосфере относят только хромосферу и корону. Остановимся кратко на особенностях названных сфер.

Ядро - центральная часть Солнца со сверхвысоким давлением и температурой, обеспечивающими течение ядерных реакций. Они выделяют огромное количество электромагнитной энергии в предельно коротких диапазонах волн.

Область лучистого переноса энергии - находится над ядром. Она образована практически неподвижным и невидимым сверхвысокотемпературным газом. Передача через нее энергии, генерируемой в ядре, к внешним сферам Солнца осуществляется лучевым способом, без перемещения газа. Этот процесс надо представлять себе примерно так. Из ядра в область лучевого переноса энергия поступает в предельно коротковолновых диапазонах - гамма излучения, а уходит в более длинноволновом рентгеновском, что связано с понижением температуры газа к периферической зоне.

Конвективная область - располагается над предыдущей. Она образована также невидимым раскаленным газом, находящимся в состоянии конвективного перемешивания. Перемешивание обусловлено положением области между двумя средами, резко различающимися по господствующим в них давлению и температуре. Перенос тепла из солнечных недр к поверхности происходит в результате локальных поднятий сильно нагретых масс воздуха, находящихся под высоким давлением, к периферии светила, где температура газа меньше и где начинается световой диапазон излучения Солнца. Толщина конвективной области оценивается приблизительно в 1/10 часть солнечного радиуса.

Фотосфера - это нижний из трех слоев атмосферы Солнца, расположенный непосредственно на плотной массе невидимого газа конвективной области. Фотосфера образована раскаленным ионизированным газом, температура которого у основания близка к 10000 К (т. е. абсолютная температура), а у верхней границы, расположенной примерно в 300 км выше, порядка 5000 К. Средняя температура фотосферы принимается в 5700 К. При такой температуре раскаленный газ излучает электромагнитную энергию преимущественно в оптическом диапазоне волн. Именно этот нижний слой атмосферы, видимый как желтовато-яркий диск, зрительно воспринимается нами как Солнце.

Солнце вращается не как твёрдое небесное тело вроде Земли. В отличие от Земли различные части Солнца вращаются с разными скоростями. Быстрее всего крутится экватор, делая один оборот за 25 дней. При удалении от экватора скорость вращения снижается, и в полярных областях один оборот занимает уже 35 дней. Различные скорости вращения возможны только потому, что Солнце - это газовый шар. Одно из следствий состоит в закручивании магнитного поля Солнца, что увеличивает солнечную активность. Пятна на Солнце - это лишь один пример солнечной активности. «Погодные явления» в солнечной атмосфере совершенно отличны от земных. Магнитные бури и взрывы, называемые вспышками, внезапно вздымаются над поверхностью Солнца. В некотором отношении они напоминают электрическую энергию. Однако на Солнце энергия гигантских электрических разрядов намного превосходит энергию земных молний. Солнечные бури оказывают влияние на Землю, поэтому астрономы держат Солнце под постоянным наблюдением. Солнечные вспышки взметают электрически заряженные частицы в космос, что удивительным образом воздействует на нашу атмосферу.

Состав солнечного излучения. Средняя плотность солнечного вещества - 1.41 г/куб.см, что составляет 0.256 средней плотности Земли (солнечное вещество содержит по массе свыше 70% водорода, свыше 20% гелия и ок. 2% др. элементов).

Прошло почти 40 лет с тех пор, как американский физик Е. Паркер  теоретически предсказал явление, которое получило название «солнечный ветер» и которое через пару лет было подтверждено экспериментально группой советского ученого К. Грингауза при помощи приборов, установленных на космических аппаратах «Луна-2» и «Луна-3». Солнечный ветер представляет собой поток полностью ионизованной водородной плазмы, то есть газа, состоящего из электронов и протонов примерно одинаковой плотности (условие квазинейтральности), который с большой сверхзвуковой скоростью движется от Солнца. Как проявляется солнечный ветер на Земле? На орбите Земли (на одной астрономической единице от Солнца) скорость VE этого потока равна примерно 400-500 км/с, концентрация протонов (или электронов) ne = 10-20 частиц в кубическом сантиметре, а их температура Te равна примерно 100000 К (температура электронов несколько выше). Кроме электронов и протонов в межпланетном пространстве были обнаружены альфа-частицы (порядка нескольких процентов), небольшое количество более тяжелых частиц, а также магнитное поле, средняя величина индукции которого оказалась на орбите Земли порядка нескольких гамм (1 = 10- 5 Гс)[3].

Список литературы



1.      Дубнищева Т.Я. Концепции Современного естествознания. Основной курс в вопросах и ответах – Новосибирск: Сибирское университетское издательство, 2003.

2.      Дубнищева Т.Я. Концепции современного естествознания: Учебник. – Новосибирск: ЮКЭА, 1997.

3.      Пахустов Б.К. Концепции современного естествознания: УМК. – Новосибирск: СибАГС, 2001.

4.      Рубин А.Б. Термодинамика биологических процессов. М.: Изд-во МГУ, 1984.



[1] Дубнищева Т.Я. Концепции современного естествознания. М.: ИВЦ «Маркетинг», 2000. С. 128.

[2] Дубнищева Т.Я. Концепции современного естествознания. М.: ИВЦ «Маркетинг», 2000. С. 191-192.

[3] Рубин А.Б. Термодинамика биологических процессов. М.: Изд-во МГУ, 1984. С. 77.