Содержание

1. Сформулируйте закон сохранения импульса в классической механике и свяжите его с законом динамики Ньютона. Приведите пример использования того закона. Как он связан со свойствами пространства-времени. ………………3

2. Как измеряются расстояния в микромире? Дайте понятие о метрической системе. Где на Земле можно наиболее приблизиться к центру Земли?. ………..4

3. Дайте представление о модели гармонического осциллятора и использовании этой модели. Что такое «когерентность», «резонанс», «поляризация»?. ………...5

4. В чем суть законов Кеплера? Поясните их связь с законом всемирного тяготения. Насколько применима модель, принятая Ньютоном? Что такое «лапласовский детерминизм»?. ……………………………………………………...6

5. В каких единицах измеряются энергия, работа и мощность? Как эти величины связаны между собой и что они характеризуют? Что такое механический эквивалент теплоты? Какие виды энергии Вы знаете? В каких системах она сохраняется и как закон сохранения энергии связан со свойствами пространства-времени?. ……………………………………………………………..8

6. Как соединяются атомы в молекулы? Какие виды химической связи Вам известны, какова их энергетическая значимость? Какова роль энергии и энтропии в образовании молекул?. ………………………………………………...10

7. Опишите спектр электромагнитного излучения. Как были открыты инфракрасное и ультрафиолетовое излучение, рентгеновские лучи?. ………….12

8. Поясните особую роль математики и моделирования в естествознании. Как осуществляется математическое моделирование биологической эволюции?. …13

9. Дайте определение «экосистеме» и «трофическому уровню». Поясните, как происходит передача энергии вверх по трофическим уровням экосистем…….15

10. Как происходит обмен веществ и энергией в живой клетке? Чем он отличается от обменных процессов в неживой природе? Как Вы представляете человека как предмета обществоведения и естествознания? Насколько можно применить естественнонаучные модели к общественным процессам?. ………..17

Список литературы. ………………………………………………………………..19

1. Сформулируйте закон сохранения импульса в классической механике и свяжите его с законом динамики Ньютона. Приведите пример использования того закона. Как он связан со свойствами пространства-времени, и почему этот закон фундаментален?

 

Момент импульса системы тел сохраняется неизменным при любых взаимодействиях внутри системы, если результирующий момент внешних сил, действующих на нее, равен нулю.

Закон сохранения импульса является следствием законов Ньютона, являющихся основными за­конами динамики. Однако этот закон универсален и имеет место и в мик­ромире, где законы ньютона неприменимы.

Следствия:

1)                          В случае изменения скорости вращения одной части системы другая также изменит скорость вращения, но в противоположную сторону таким образом, что момент импульса системы не изменится;

2)                          Если момент инерции системы в процессе вращения изменяется, то изменяется и ее угловая скорость таким образом, что момент импульса системы останется тем же самым;

3)                          В случае, когда сумма моментов внешних сил относительно некоторой оси равняется нулю, момент импульса системы относительно этой же оси остается постоянным.

Примеры:

К первому следствию - при движении человека, находящегося на поверхности диска, по окружности с центром, совпадающим с центром масс диска, последний начинает поворачиваться в сторону, противоположную движению человека относительно Земли; 

Ко второму следствию – допустим человек, держащий в вытянутых расправленных руках гантели, сидит на скамье, которая вращается вокруг вертикальной оси. В случае приближения гантелей к груди угловая скорость движения системы «скамья-человек-гантели» увеличивается.

К третьему следствию - в начальный момент времени человек сидит на неподвижной скамье и удерживает в руках раскрученное колесо. Причем ось вращения колеса перпендикулярна оси вращения Z скамьи, т. е. расположена в горизонтальной плоскости. При повороте колеса на 90о в вертикальной плоскости проекция момента импульса системы «скамья-человек-колесо» на вертикальную ось Lz не изменится и останется равной нулю.

Lz = Lz студ + Lz кол = Lz0 = 0, т.е. Lz студ = - Lz кол.

Следовательно, вектора угловых скоростей системы «человек-скамья» и колеса направлены в противоположные стороны[1].

2. Как измеряются расстояния в микромире? Дайте понятие о метрической системе. Где на Земле можно наиболее приблизиться к центру Земли?

Масштабы за пределом размера атома уже недоступны непосредственному измерению. То есть так, как здесь, метр приложить мы не можем, это уже какие-то косвенные измерения в рамках некоторых теоретических предположений. То есть мы предполагаем какую-то структуру пространства-времени на этих расстояниях, и вот потом, используя эти теоретические представления, мы энергию или передачу импульса переводим в расстояние.

И вот когда мы говорим о том, что достигаем какого-то расстояния, фактически реально это означает, что мы наблюдаем процесс с какой-то передачей импульса. И процесс с такой передачей импульса, по нашим теоретическим представлениям, отвечает тому, что мы достигаем каких-то расстояний. Так вот, после примерно 10 в минус 8-й, вся информация о пространстве-времени – это уже косвенная информация, мы ничего там непосредственно глазом или микроскопом увидеть не можем. Метрическая система – это общее название международной десятичной системы единиц, основными единицами которой являются метр и килограмм. При некоторых различиях в деталях элементы системы одинаковы во всем мире.

3. Дайте представление о модели гармонического осциллятора и использовании этой модели. Что такое «когерентность», «резонанс», «поляризация»?

Представим себе два шарика с массой m, соединенные пружиной. Растянем (или сожмем) пружину от равновесного положения и предоставим шарикам свободно колебаться. Если пружина идеальная, а шарики колеблются в пустоте, то колебания этого осциллятора будут продолжаться сколь угодно долго.

Теперь зарядим шарики разноименными электрическими зарядами, для простоты одинаковыми по абсолютной величине. Механический осциллятор превращается в электрический диполь. Опять предоставим заряженным шарикам свободно колебаться. И несмотря на то что осциллятор, как и ранее, колеблется в пустоте, амплитуда его колебаний начнет уменьшаться. Если при этом использовать детектор электромагнитного излучения, то он зарегистрирует распространяющиеся от осциллятора электромагнитные волны. Это и есть спонтанное (самопроизвольное) испускание электромагнитных волн осциллятором-диполем.

Схема теоретического описания спонтанного испускания электромагнитных волн атомом, моделируемым осциллятором-диполем, выглядит следующим образом. Колеблющимся зарядам соответствует колеблющийся ток, выражение для которого следует подставить в уравнения Максвелла. Этот ток в соответствии с уравнениями Максвелла будет генерировать электромагнитное поле, которое, в свою очередь, будет воздействовать на заряды осциллятора-диполя. Поэтому в уравнении, описывающем колебательное движение осциллятора-диполя, следует учесть силу взаимодействия диполя с полем электромагнитных волн. Получается замкнутая система уравнений: ток колеблющихся зарядов вызывает поле, а поле действует на заряды.

Когерентность (от лат. cohaerens - находящийся в связи) - согласованное протекание во времени нескольких колебательных или волновых процессов. Если разность фаз 2 колебаний остается постоянной во времени или меняется по строго определенному закону, то колебания называются когерентными. Колебания, у которых разность фаз изменяется беспорядочно и быстро по сравнению с их периодом, называются некогерентными.

Резонанс – (от франц. resonance, от лат. resono – откликаюсь), резкое возрастание амплитуды установившихся вынужденных колебаний при приближении частоты внешнего гармонического воздействия к частоте одного из собственных колебаний системы.

Поляризация – в электрохимии, отклонение от  равновесного значения разности потенциалов между гальваническим электродом и раствором при прохождении электрического тока. Причина как нежелательных процессов (повышение расхода энергии при электролизе, уменьшение напряжения, получаемого от гальванических элементов), так и благоприятных явлений (например, торможение коррозии металлов).

 

4. В чем суть законов Кеплера? Поясните их связь с законом всемирного тяготения. Насколько применима модель, принятая Ньютоном? Что такое «лапласовский детерминизм»?

Законы Кеплера - прямо скажем непростые законы. Потом появился закон всемирного тяготения, для которого законы Кеплера стали частными случаями. Закон этот конечно выглядит проще. С другой стороны с таким же успехом можно было бы набрать огромное количество таблиц с численными значениями всевозможных траекторий небесных тел. Было бы это законом?

Движение вокруг Солнца описывается законами Кеплера. Эти законы математически выводятся из закона всемирного тяготения.

Первый закон Кеплера. Орбита каждой планеты есть эллипс, в одном из фокусов которого находится Солнце.

Второй закон Кеплера (см. рис. 2). Радиус-вектор планет за равные промежутки времени описывают равные площади.

                                                             Р2

                                                                             Р1

                                           Р3

                                           Р4

 

Рис. 2. Второй закон Кеплера. Линия SР соединяет планету с Солнцем. Дуги Р1Р2 и Р3Р4 планета проходит за одинаковое время. площадь сектора SР1Р2 равна площади сектора SР3Р4

 

Третий закон Кеплера. Квадраты периодов обращения двух планет относятся как кубы больших полуосей их орбит.

Законы Кеплера применимы не только к движению планет, но и к движению их естественных и искусственных спутников[2].

Представления о незыблемости научных законов, о неограниченности их линейной экстраполяции в пространстве и во времени сохраняют статус признаков научности. Между тем их неявным основанием является концепция лапласовского детерминизма, применимая благодаря линейности математических уравнений, что связано с идеализирующими допущениями о неизменности исследуемых объектов и условий их существования. Связь между такими идеализирующими допущениями и методологическими принципами становится очевидна лишь в свете дальнейшего развития науки, но ее осознание требует дополнительных методологических усилий.

Идеал лапласовского детерминизма вдохновлял творцов теорий скрытых параметров десятилетия после создания квантовой механики и разработки концепции вероятностной причинности вплоть до осуществленного в самое последнее время экспериментального доказательства полноты квантовой механики.

5. В каких единицах измеряются энергия, работа и мощность? Как эти величины связаны между собой и что они характеризуют? Что такое механический эквивалент теплоты? Какие виды энергии Вы знаете? В каких системах она сохраняется и как закон сохранения энергии связан со свойствами пространства-времени?

Энергия – скалярная физическая величина, являющаяся общей мерой различных форм движения материи. Иными словами энергия – это просто число, рассчитываемое по определенным правилам. И природа нашей Вселенной такова, что суммарная энергия замкнутой системы с течением времени не изменяется. Как показал Эйнштейн, полная энергия системы, имеющей массу М, равна Е=Мс2, где с – скорость света в вакууме.  Количество потребляемой энергии измеряется в ваттах (Вт).

Работа измеряется в Джоулях (Дж). 1 Дж- работа, совершаемая силой в 1Н на пути, равном 1 м, при условии, что направление силы и перемещения совпадают. [Дж]=[Н м].

Мощность измеряется в Ваттах (Вт). 1 Вт- мощность при совершенной работе в 1 Н за время 1 с. В кВА измеряется полная мощность, в кВт измеряется только активная мощность. Полная мощность – есть алгебраическая сумма активной и реактивной мощности.

Механический эквивалент теплоты - количество работы, энергетически эквивалентное единице количества теплоты. Механический эквивалент теплоты равен 4,1868 Дж/кал. В Международной системе единиц (СИ), в которой единицей количеств теплоты и работы является джоуль, механический эквивалент теплоты = 1.

Виды энергии.

Внутренняя энергия – это часть полной энергии системы, заключенная в самой системе веществе тел, образующих систему. Она подразделяется на несколько уровней в зависимости от характера процессов, приводящих к ее изменению.

Энергия органического топлива (нефти, природного газа, каменного угля, торфа и дерева), высвобождение которой и создало современную цивилизацию, представляет собой энергию химических связей органических молекул, запасенную в ходе процесса развития жизни на Земле за рошедшие сотни миллионов лет.

Энергия взаимодействия нуклонов (протонов и нейтронов) в ядрах атомов обусловлена сильным взаимодействием. Масса ядра всегда меньше суммы масс, входящих в него частиц. Это обусловлено тем, что при объединении нуклонов в ядро выделяется энергия связи нуклонов друг с другом.

Свойства симметрии пространства и времени подтверждают их единство. Действительно, изменение импульса, сохранение которого связано с однородностью пространства, согласно второму закону Ньютона определяется такой временной характеристикой, как импульс силы, равный произведению FхDt. С другой стороны, изменение энергии, сохранение которой связано с однородностью времени, определяется такой пространственной характеристикой, как работа А1-2 = (F, Dr)[3].

6. Как соединяются атомы в молекулы? Какие виды химической связи Вам известны, какова их энергетическая значимость? Какова роль энергии и энтропии в образовании молекул?

Атомы образуют химическую связь между собой посредством перекрывания электронных облаков. В образовании химической связи участвуют неспаренные электроны внешнего электронного слоя. Иногда связь может образовываться и с помощью пары электронов. Электроны внешнего слоя называют валентными электронами. Два электрона (по одному от разных двух атомов) с противоположным спином объединяются и образуют общую электронную пару, которая располагается между ядрами двух атомов. Оба положительно заряженных ядра атомов будут притягиваться к отрицательной электронной паре, а значит, и друг к другу. Так образуется из двух отдельных атомов самая простая двухатомная молекула - молекула водорода.

Если на внешнем электронном слое есть несколько неспаренных электронов, то атом образует и несколько общих электронных пар, то есть несколько связей. Число связей и определяет значение валентности атома. Таким образом, значение валентности атома зависит от числа неспаренных электронов на внешнем электронном слое атома.

Если в результате соединения атомов образуются общие электронные пары, то такую химическую связь называют ковалентной. Ковалентная связь - это связь между атомами, при которой образуются одна или несколько общих электронных пар.

Ковалентная связь бывает двух видов - ковалентная неполярная и ковалентная полярная. Связано такое деление с тем, где именно между ядрами будут располагаться общие электронные пары - ровно посередине или будут смещены в сторону одного из ядер.

Правее стоящий в этом ряду элемент обладает большей электроотрицательностью и лучше стягивает в свою сторону общие электронные пары.

Если молекула состоит из одинаковых атомов (или атомов одного вида), электроотрицательность которых равна, то общие электронные пары будут находиться посередине между ядрами двух связывающихся атомов, поскольку ядра притягивают общие электронные пары с равной силой. В этом случае между атомами образуется ковалентная неполярная связь. Ковалентная неполярная связь образуется в таких молекулах как Н2, О2, N2 и т.д.

Ковалентная неполярная связь образуется между атомами неметаллов с одинаковой электроотрицательностью (проще говоря, между одинаковыми атомами), общие электронные пары расположены посередине между ядрами двух атомов.

Если молекула состоит из атомов разных неметаллов, электроотрицательность которых различна, то общие электронные пары будут смещены в сторону ядра атома с большей электроотрицательностью, поскольку ядро более электроотрицательного атома сильнее притягивает общие электронные пары. В этом случае между атомами образуется ковалентная полярная связь. Молекула становится диполем - частицей с двумя полюсами: на одном конце некоторый положительный заряд, на другом - некоторый отрицательный. Ковалентная полярная связь образуется в таких молекулах как H2O, HCl, CO2, H2S и т.д.

Особенностью биосистем является то, что в них практически нет обратимых процессов. Все процессы, которые в них протекают, носят необратимый характер, то есть сопровождаются увеличением энтропии. Следовательно, в биосистемах не вся затрачиваемая при данном процессе свободная энергия переходит в полезную работу. Часть ее рассеивается в виде тепла. Отношение количества совершенной работы к количеству затраченной на нее свободной энергии называется коэффициентом полезного действия биологического процесса. Так, мышечное сокращение совершается с КПД ~ 30%, гликолиз ~ 36% и т.д. Как видим, потери свободной энергии при этих процессах весьма велики. Встречаются, однако, и такие процессы, которые близки к обратимым, то есть КПД которых высок. Например, свечение некоторых тропических насекомых имеет КПД 98-99%, разряд электрических рыб – 98%. Причина такого высокоэффективного использования свободной энергии пока не совсем ясна. Таким образом, мы приходим к выводу, что, чем больше увеличение энтропии при данном процессе, тем более он необратим[4].

7. Опишите спектр электромагнитного излучения. Как были открыты инфракрасное и ультрафиолетовое излучение, рентгеновские лучи?

Весь спектр электромагнитного излучения включает в себя как рентгеновские лучи, ультрафиолетовые и видимые лучи, занимающие совсем небольшой диапазон, инфракрасный свет и волны, с которыми мы встречаемся ежедневно: ТВ, радио и электрические.

Открытие инфракрасного излучения произошло в 1800 г. Английский учёный В. Гершель обнаружил, что в полученном с помощью призмы в спектре Солнца за границей красного света (т. е. в невидимой части спектра) температура термометра повышается.

Термометр, помещённый за красной частью солнечного спектра, показал повышенную температуру по сравнению с контрольными термометрами.

Было доказано, что инфракрасное излучение подчиняется законам оптики и, следовательно, имеет ту же природу, что и видимый свет. В 1923 советский физик А. А. Глаголева-Аркадьева получила радиоволны с длиной волны приблизительно равной 80 мкм, т. е. соответствующие инфракрасному диапазону длин волн. Таким образом, экспериментально было доказано, что существует непрерывный переход от видимого излучения к инфракрасному излучению и радиоволновому и, следовательно, все они имеют электромагнитную природу.

Открытие ультрафиолетового излучения. В середине XIX века человек по имени Генрих Гейслер открыл, что когда электрический заряд под высоким напряжением проходит через вакуум в трубке, получался красивый световой эффект. Позднее сэр Уильям Крукс доказал, что причиной светового эффекта были электризованные частицы.

История открытия рентгеновских лучей начинается с того дня, когда физик Рентген прервал нормальное исследование катодных лучей, поскольку заметил, что экран, покрытый платиносинеродистым барием, на некотором расстоянии от экранирующего устройства светился во время разряда. Дальнейшее исследование (оно заняло семь изнурительных недель, в течение которых Рентген редко покидал лабораторию) показало, что причиной свечения являются прямые лучи, исходящие от катодно-лучевой трубки, что излучение дает тень, не может быть отклонено с помощью магнита и многое другое. До того как Рентген объявил о своем открытии, он пришел к убеждению, что этот эффект обусловлен не катодными лучами, а излучением, в некоторой степени напоминающим свет[5].

 

 

 

 

 

 

 

 

 

 

8. Поясните особую роль математики и моделирования в естествознании. Как осуществляется математическое моделирование биологической эволюции?

Применения математики, столь же характерно для современного естествознания как применение экспериментальных методов, логическая стройность, строго дедуктивный характер построений, общеобязательность выводов математики, делали ее прекрасной опорой для естествознания. Достоинство математизации естество знания чрезвычайно многообразны. Во-первых, во многих случаях математика играет роль универсального языка естествознания, прекрасно подходящего для лаконичной и точной фиксации различных положений. Во-вторых, математика может служить источником моделей, алгоритмических схим, для связей, отношений и процессов, составляющих предмет естествознания. Разумеется любая математическая модель это своего рода упрощение, но упрощение в данном случае не тождественно огрублению, это скорее выявление сущностных особенностей объекта. Поскольку в математических формулах и уравнениях воспроизведены некие общие связи и отношения, реального мира, они могут повторяться в разных его областях. На этом построен метод естественно научного исследования, который называют математической гипотезой, в ней не создают математическое описание природных объектов, а пытаются готовой математической модели подобрать соответствие в природе. Часто исходная математическая формула заимствуется из смежной и даже не смежной области знания, в нее подставляются значения, иной природы, а затем проверяют, совпадение рассчитанного и реального поведения объекта.

В целом значение математики в современном естествознании невозможно переоценить, сейчас ни одна теоретическая интерпретация не считается полностью завешенной, если не удается создать математическую модель изучаемого явления. Однако не следует думать, что все естествознание может быть сведено к математике, построение формальных систем, моделей, алгоритмических схем, это только метод, одна из сторон научного поиска. Развивается наука прежде всего как содержательное, неформализованное, неалгоритмизироанное знание.

Согласно современным представлениям, жизнь на Земле возникла примерно 3,5 млрд. лет назад после предбиологической эволюции в форме прогенот, простейших одноклеточных бактериоподобных структур. Около 2 млрд. лет назад на эволюционном древе появились три ветви: безъядерных эубактерий и архибактерий, и эукариот, клетки которых имеют ядро. Эубактерии и архибактерии в дальнейшем совершенствовались только на метаболическом уровне, в то время как эукариоты развивались на уровне морфологическом и физиологическом

Проблема состоит в том, чтобы понять, каким образом в линии эукариот нарастала сложность, как и где эта сложность кодировалась, каковы механизмы, приведшие от простейших систем к очень сложным организмам.

Прогрессивная эволюция - это эволюция регуляторных генетических систем организмов. В основе кодирования генетической сложности лежит комбинаторный принцип, позволяющий очень экономно записывать в геномах огромное количество информации о генетических программах, выполняемых генными сетями. Комбинаторный принцип, буквально пронизывающий кодирование генетических программ функционирования высших эукариот, способен обеспечивать в ходе эволюции быстрое, скачкообразное появление новых морфотипов за счет переключения уже существующих программ онтогенеза[6].

9. Дайте определение «экосистеме» и «трофическому уровню». Поясните, как происходит передача энергии вверх по трофическим уровням экосистем. Какие модели описывают отношения между трофическим уровнями в биоценозах?

 

Совокупность всех организмов и растений, обитающих в данной местности и зависящих друг от друга в различных отношениях, и окружающей эти организмы физической и химической среды называется экосистемой.

Разные уровни питания экосистемы называют трофическими уровнями (от греч. трофее – питание, пища). Первый трофический уровень образует продуценты (растения), второй – первичные консументы (растительноядные животные), третий – вторичные консументы (плотоядные, поедающие растительноядных) и т.д. Многие животные питаются более чем на одном трофическом уровне, поедая как растения, так и первичных консументов или как первичных консументов, так и вторичных консументов.

Таким образом, энергия солнечного света передается вверх по трофическим уровням пищевой сети экосистем. Но всякий раз, когда происходит превращении энергии – энергии солнечных лучей в химическую энергию органических веществ, этой последней – в энергию, необходимую для поддержания жизнедеятельности организма, - некоторая доля полезной энтропии, рассеивается в виде бесполезной тепловой энергии. Каждый организм использует какое-то количество энергии на поддержание собственного существования и на рост, оставляя все меньше энергии, доступной организмам следующего трофического уровня. Это означает, что на высших трофических уровнях количество ее невелико. Поэтому пищевые сети редко состоят более чем из 4-5 трофических уровней: растения, растительноядные животные и два или три уровня плотоядных.

Примеры. Пастбищная пищевая сеть: клевер (продуцент) – овца – волк. Планктонная пищевая сеть: водоросли – дафния – плотва – щука – скопа.

По мере повышения трофического уровня характерно увеличение размеров особей при одновременном уменьшении плотности популяции, скорости размножения и биомассы. Такие животные, как, например, волки или тигры, находятся на самой вершине пищевой сети, питаясь растительноядными или мелкими плотоядными животными. Волку иногда приходится преодолевать по 30 километров в день, чтобы добыть себе пищу, а площадь индивидуальной территории тигра может достигать 300 км2. организмы, питающиеся на этих хищниках высшего порядка – паразитические черви и блохи, - фактически получают только жалкие крохи от «энергетического пирога» экосистемы[7].  

10. Как происходит обмен веществ и энергией в живой клетке? Чем он отличается от обменных процессов в неживой природе? Как Вы представляете человека как предмета обществоведения и естествознания? Насколько можно применить естественнонаучные модели к общественным процессам?

 

Обмен веществ и энергии - основное свойство живого. В цитоплазме клеток органов и тканей постоянно идет процесс синтеза сложных высокомолекулярных соединений и одновременно с этим - их распад с выделением энергии и образованием простых низкомолекулярных веществ - диоксида углерода, воды, аммиака и др. Процесс синтеза органических веществ называется ассимиляцией или пластическим обменом. В ходе ассимиляции обновляются органоиды клетки и накапливается запас энергии. Распад структурных элементов клетки сопровождается выделением заключенной в химических связях энергии, а конечные продукты распада, вредные для организма, выводятся за пределы клетки и затем из организма.

Процесс распада органических веществ противоположен процессу ассимиляции и называется диссимиляцией. Подобного типа реакции идут с поглощением кислорода, поэтому расщепление органических веществ связано с окислением, а освобождающаяся при этом энергия идет на синтез АТФ, необходимой для ассимиляции.

Таким образом, ассимиляция и диссимиляция - это две противоположные, но взаимно связанные стороны единого процесса - обмена веществ. При нарушении ассимиляции и диссимиляции расстраивается весь обмен веществ. Непрерывный распад и окисление органических соединений возможны лишь тогда, когда количество этих веществ в клетках постоянно пополняется. Поэтому при разработке пищевых норм учитываются калорийность пищевых продуктов: белков, жиров, углеводов с тем расчетом, чтобы расход энергии не превышал потребления.

В неживой природе обменные процессы затухают, поскольку отдавая «большее», природа получает «меньшее», что обусловливает явление энтропии и регрессивную эволюцию. В живой природе и в обществе тот же самый процесс обмена выглядит иначе. Здесь ситуация такова, что отдавая «меньшее» необходимо получать «большее». Отсюда следует противоположный энтропии процесс, обусловливающий прогрессивную эволюцию[8].

Список литературы:

1.     Войткович Г.В. Происхождение и химическая эволюция солнечной системы. М.: Наука, 1991.

2.     Волькенштейн М.В. Энтропия и информация. М.: Наука, 1986. 

3.     Девис П. Суперсила – М.: Мир, 1989.

4.     Дубнищева Т.Я. Концепции современного естествознания. Новосибирск: ООО «Издательство ЮКЭА», 2000.

5.     Дубнищева Т.Я., Пигарев А.Ю. Современное естествознание. Новосибирск: ООО «Издательство ЮКЭА», 2000.

6.     Моисеев Н. Экология человечества глазами математика. М.: Молодая гвардия, 1988.

7.     Рубин А.Б. Термодинамика биологических процессов. М.: Изд-во МГУ, 1984.

8.     Яблоков А.В. Актуальные проблемы эволюционной теории. М.: Наука, 1966.


[1] Яблоков А.В. Актуальные проблемы эволюционной теории. М.: Наука, 1966. С.67-69.

[2] Дубнищева Т.Я., Пигарев А.Ю. Современное естествознание. Новосибирск: ООО «Издательство ЮКЭА», 1998. С. 32.

[3] Дубнищева Т.Я., Пигарев А.Ю. Современное естествознание. Новосибирск: ООО «Издательство ЮКЭА», 2000.  С.37-42.

[4] Рубин А.Б. Термодинамика биологических процессов. М.: Изд-во МГУ, 1984. С. 280.

[5] Войткович Г.В. Происхождение и химическая эволюция солнечной системы. М.: Наука, 1991. С. 110-112.

[6] Моисеев Н. Экология человечества глазами математика. М.: Молодая гвардия, 1988. С.55-59.

[7] Дубнищева Т.Я., Пигарев А.Ю. Современное естествознание. Новосибирск: ООО «Издательство ЮКЭА», 2000.  С.80-82.

[8] Волькенштейн М.В. Энтропия и информация. М.: Наука, 1986.  С. 90-92.