Задача 1.

1.1 Выяснить,  существует ли связь между потреблением дизельного топлива (y) и объёмом валовой продукции (). (Для этого построить поле рассеяния. На основе его визуального анализа выдвинуть гипотезу о виде статистической зависимости y от ). Найти точечные оценки неизвестных параметров модели. Выяснить, существует ли связь между потреблением дизельного топлива (y) и объёмом капитальных вложений (). Найти оценки неизвестных параметров модели.

Решение.

Годы


Валовая продукция промышленности

( млрд. р.)

Объём капитальных вложений

( млрд. р.)

Объём потребления дизельного топлива

(y млн. т.)

1985

3,4

1,8

0,9

1986

3,2

1,7

1,3

1987

2,9

1,6

1,4

1988

3,1

1,4

1,1

1989

3,3

1,6

0,8

1990

3,4

1,8

0,6

1991

3

1,4

0,6

1992

3,3

2

0,9

1993

4,3

2,4

1,1

1994

4,4

2,7

1,4

1995

4,7

2,5

1,9

1996

4,3

2,4

1,9

1997

4,5

2,3

1,3

1998

4,6

2,7

2,4

1999

4,6

2,5

2,2

2000

4,5

2,9

2



Используя таблицу, строим поля рассеяния.


На основе анализа поля рассеяния (см. рис. 1.) выдвигаем гипотезу о том, что зависимость потребления дизельного топлива (y) от объёмов продукции () описывается линейной моделью вида:

где  и  -неизвестные постоянные коэффициенты, а u – отклонение, вызванное влиянием неучтённых факторов и погрешностями измерений.

Аналогично, между y и   зависимость описывается моделью:

Задача состоит в получении уравнения регрессии:

неизвестные коэффициенты находятся по формулам (используя метод наименьших квадратов (МНК)):

       

и с помощью таблицы:


y







1

3,4

1,8

0,9

11,56

3,24

3,06

1,62

6,12

0,81

2

3,2

1,7

1,3

10,24

2,89

4,16

2,21

5,44

1,69

3

2,9

1,6

1,4

8,41

2,56

4,06

2,24

4,64

1,96

4

3,1

1,4

1,1

9,61

1,96

3,41

1,54

4,34

1,21

5

3,3

1,6

0,8

10,89

2,56

2,64

1,28

5,28

0,64

6

3,4

1,8

0,6

11,56

3,24

2,04

1,08

6,12

0,36

7

3

1,4

0,6

9

1,96

1,8

0,84

4,2

0,36

8

3,3

2

0,9

10,89

4

2,97

1,8

6,6

0,81

9

4,3

2,4

1,1

18,49

5,76

4,73

2,64

10,32

1,21

10

4,4

2,7

1,4

19,36

7,29

6,16

3,78

11,88

1,96

11

4,7

2,5

1,9

22,09

6,25

8,93

4,75

11,75

3,61

12

4,3

2,4

1,9

18,49

5,76

8,17

4,56

10,32

3,61

13

4,5

2,3

1,3

20,25

5,29

5,85

2,99

10,35

1,69

14

4,6

2,7

2,4

21,16

7,29

11,04

6,48

12,42

5,76

15

4,6

2,5

2,2

21,16

6,25

10,12

5,5

11,5

4,84

16

4,5

2,9

2

20,25

8,41

9

5,8

13,05

4

сумма

61,5

33,7

21,8

243,41

74,71

88,14

49,11

134,33

34,52


средние

3,84375

2,10625

1,3625

15,21313

4,669375

2,1575


n=16,

Следовательно,

Таким образом,

Аналогично находятся оценки коэффициентов модели

 а именно,


1.2. По найденным в п. 1.1. уравнениям регрессии построить доверительные интервалы потребления дизельного топлива, соответствующие вероятности 0,9  при следующих значениях независимой переменной: Построить доверительную полосу для уравнения регрессии. Изобразить на графике поля рассеяния, прямые регрессии и доверительные полосы.


 Решение.


Доверительные интервалы среднего потребления дизельного топлива для уравнения парной линейной регрессии  находятся по формуле

где  соответственно верхняя и нижняя границы доверительного интервала; значение независимой переменной  для которого определяется доверительный интервал, квантиль распределения Стьюдента, доверительная вероятность, (n-2) – число степеней свободы;


Рассмотрим уравнение  Пусть  тогда

Используя вспомогательную таблицу:

i

1

1,0877

0,0971

-0,4602

2

0,9639

0,1130

-0,6438

3

0,7781

0,3867

-0,9438

4

0,9020

0,0392

-0,7438

5

1,0258

0,0510

-0,5438

6

1,0877

0,2379

-0,4438

7

0,8401

0,0576

-0,8438

8

1,0258

0,0158

-0,5438

9

1,6450

0,2970

0,4563

10

1,7069

0,0942

0,5563

11

1,8927

0,0001

0,8563

12

1,6450

0,0650

0,4563

13

1,7688

0,2198

0,6563

14

1,8308

0,3240

0,7563

15

1,8308

0,1363

0,7563

16

1,7688

0,0534

0,6563

сумма


2,1882


сумма квадратов

7,0352


Получим  и заполним таблицу:


2,900

0,778

0,172

0,475

1,081

3,844

1,363

0,099

1,188

1,537

4,700

1,893

0,161

1,608

2,177


График уравнения регрессии, и доверительные интервалы и доверительная полоса приведены на рис.

Аналогично находятся доверительные интервалы для уравнения  Используя вспомогательную таблицу:

I

1

1,1002

0,0401

-0,3063

2

1,0146

0,0815

-0,4063

3

0,9290

0,2219

-0,5063

4

0,7577

0,1172

-0,7063

5

0,9290

0,0166

-0,5063

6

1,1002

0,2502

-0,3063

7

0,7577

0,0249

-0,7063

8

1,2715

0,1380

-0,1063

9

1,6141

0,2643

0,2938

10

1,8710

0,2218

0,5938

11

1,6997

0,0401

0,3938

12

1,6141

0,0818

0,2938

13

1,5284

0,0522

0,1938

14

1,8710

0,2799

0,5938

15

1,6997

0,2503

0,3938

16

2,0422

0,0018

0,7938

сумма

 

2,0824

 

cумма квадратов


3,729

Получим  и заполним таблицу:


0,1709

0,4568

1,0586

0,1709

0,4568

0,0964

1,1927

1,5323

0,0964

1,1927

0,1855

1,7155

2,369

0,1855

1,7155


График уравнения регрессии, и доверительные интервалы и доверительная полоса приведены на рис.

Задача 2.

2.1. Найти все коэффициенты парной корреляции, проверить их значимость и проанализировать тесноту линейной связи между всеми парами переменных.

Решение.

Коэффициент парной корреляции находится по формуле:

Подставляя соответствующие значения, получим

 

Так как

>1,761, то  существенно отличается от 0 и существует сильная линейная положительная связь между y и .

Аналогично проверим неравенство для 

:

>1,761, значит, также существенно отличается от 0 и существует сильная линейная положительная связь между y и. .

 Для

:

>1,761, значит,  существенно отличается от 0 и существует сильная линейная положительная связь между и .


2.2. Найти по методу наименьших квадратов оценки коэффициентов линейной регрессионной модели

Решение.

Уравнение регрессии ищем в виде:

Обозначения

тогда

Вектор  находится по формуле:

В нашем случае

Тогда

.

Таким образом,


2.3. Найти коэффициенты множественной корреляции и детерминации.


Решение.


Коэффициент R множественной корреляции определяется по формуле:


Воспользуемся вспомогательной таблицей:


i

1

0,04468996

0,21390625

2

0,06713281

0,00390625

3

0,16679056

0,00140625

4

0,14182756

0,06890625

5

0,01140624

0,31640625

6

0,26152996

0,58140625

7

0,02090916

0,58140625

8

0,21013056

0,21390625

9

0,248004

0,06890625

10

0,26574025

0,00140625

11

0,07502121

0,28890625

12

0,091204

0,28890625

13

0,02036329

0,00390625

14

0,27762361

1,07640625

15

0,30547729

0,70140625

16

0,01442401

0,40640625

Сумма квадратов

2,22227447

4,8175


Тогда .

Коэффициент множественной детерминации  равен квадрату коэффициента множественной корреляции, то есть  =0,539.

 

2.4. В 2005г. планируется увеличение объёма валовой продукции на 1 млрд. р. по сравнению с 2000г., а объём капитальных вложений – на 0,3 млрд. р. Дать точечный и интервальный прогноз среднего потребления дизельного топлива в 2005г. при уровне доверия 0,9. (Считая, что объёмы валовой продукции и капитальных вложений в 2005г. будут равны запланированным).

Решение.

Для =6,2; = 5,1 получаем точечный прогноз:

.

Для нахождения интервального прогноза вычислим значения всех параметров, входящих в формулу:  , где ,  - соответственно верхняя и нижняя границы доверительного интервала, - вектор независимых переменных, для которого определяется интервал, =1,78 - квантиль распределения Стьюдента, - доверительная вероятность, n – количество наблюдений, (n-3)- число степеней свободы,

=0,215;    =2,222/13=0,171;    S =0,413;    =0,192;

И тогда *= 4,331; = 4,214.


2.5. На основе полученных в задачах 1, 2 статистических характеристик  провести содержательный экономический анализ зависимости потребления дизельного топлива от объёмов валовой продукции  сельского хозяйства и капитальных вложений.

Решение.

На основании проведённых расчётов и полученных статистических характеристик можно сделать определённые выводы относительно взаимосвязей между исследуемыми экономическими показателями.

Так как 0,747 и проверка значимости показала его существенное отличие от 0, то есть основания утверждать, что между y и  существует достаточно тесная положительная линейная зависимость, которая может быть отражена с помощью найденного уравнения регрессии. Коэффициент = 0,5686  в данном случае не имеет  экономического смысла. Коэффициент =0,6165 характеризует размер прироста потребления дизельного топлива, обусловленного приростом объёма валового выпуска продукции сельского хозяйства на единицу.

Значение  0,753 свидетельствует о тесной линейной связи между y и :  Коэффициент b = 1,003 в уравнении показывает, какого прироста потребления дизельного топлива следует ожидать при увеличении объема капитальных вложений на единицу.

Коэффициент = -0,212  в уравнении    показывает, что при росте валового выпуска продукции промышленности на 1 млрд. р. и неизменном объёме капитальных  вложений следует ожидать уменьшения потребления  дизельного топлива на 0,212 млн. тонн. Коэффициент  = 1,129 показывает, что при увеличении объёма капитальных вложений на 1 млрд. р.  и неизменном объеме валовой продукции промышленности следует ожидать увеличения потребления дизельного топлива на 1,129 млн. тонн.


Задача 3.

3.1. Построить ломанную кривую изменения потребления дизельного топлива во времени. Выдвинуть гипотезу о виде зависимости объёма потребления дизельного топлива от времени. Записать трендовую модель, отражающую изменение потребления дизельного топлива во времени. Оценить неизвестные параметры модели методом наименьших квадратов.

Решение.

На основании визуального наблюдения ломанной кривой, отражающей характер изменения по годам объема потребления дизельного топлива, выдвигаем гипотезу о линейном тренде. Следовательно, трендовая модель, отражающая изменение потребления дизельного топлива, запишется в виде

 

где - неизвестные параметры, u-случайное отклонение.

Коэффициенты регрессионного уравнения тренда  находятся по методу наименьших квадратов и равны:

Воспользуемся вспомогательной таблицей:


t

y

ty

1

1

2,7

2,7

2,451

0,249

2

2

2,4

4,8

2,575

-0,175

3

3

2,4

7,2

2,699

-0,299

4

4

2,6

10,4

2,823

-0,223

5

5

2,9

14,5

2,947

-0,047

6

6

3,1

18,6

3,071

0,029

7

7

3,5

24,5

3,195

0,305

8

8

3,3

26,4

3,319

-0,019

9

9

3,7

33,3

3,443

0,257

10

10

4

40

3,567

0,433

11

11

3,8

41,8

3,691

0,109

12

12

3,1

37,2

3,815

-0,715

13

13

4

52

3,939

0,061

14

14

4,4

61,6

4,063

0,337

15

15

4,2

63

4,187

0,013

16

16

4

64

4,311

-0,311

cумма

136

54,1

502

54,100

 

сумма квадратов

1496




1,3190


И получим  =2,328;  = 0,124. Следовательно, уравнение регрессии будет иметь вид


3.2. Для найденного уравнения регрессии построить доверительную полосу при уровне доверия 0,9. Нарисовать её на графике вместе с линией регрессии.

 Решение.

Доверительный интервал для линейного тренда  находится по формуле:

где

В нашем случае:

*  = 8,5; = 0,094; S = 0,307.




Результат запишем в виде таблицы:

год

t

1985

1

2,4515

0,1128

2,2528

2,6502

1992

8

3,3193

0,2135

2,9433

3,6952

2000

16

4,3110

0,3412

3,7103

4,9118


На рисунке. изображены график тренда, доверительные интервалы (для t=1,8,16), и доверительная полоса .

3.3. По линейному уравнению тренда найти точечный и интервальный прогнозы среднего потребления дизельного топлива в 2005. и 2007г. (доверительную вероятность принять равной 0,9). Изобразить на графике точечный и интервальный прогноз.

Решение.

 Тогда = 4,9309; = 5,1788. Аналогично пункту 3.2 решение запишем в виде таблицы:

годы

t

2005

21

4,9309

0,4227

4,1866

5,6752

2007

23

5,1788

0,4554

4,3768

5,9809


На рисунке изображены графики линейного тренда, точечные прогнозы  (обозначены точками на прямой) и доверительные интервалы прогноза потребления дизельного топлива в 2005, 2007гг.

Задача 4.

4.2. Для уравнений регрессии:

проверить наличие или отсутствие автокорреляции, используя критерий Дарбина-Уотсона и уровне значимости .

Решение.

Критерий Дарбина-Уотсона имеет вид:

где - отклонения от линии регрессии, i=1,..n.

Для регрессионной модели :

Используя таблицу:


1

0,2114


2

-0,2591

-0,4705

3

-0,4084

-0,1493

4

-0,3766

0,0318

5

0,1068

0,4834

6

0,5114

0,4046

7

0,1446

-0,3668

8

0,4584

0,3138

9

0,498

0,0396

10

0,5155

0,0175

11

-0,2739

-0,7894

12

-0,302

-0,0281

13

0,1427

0,4447

14

-0,5269

-0,6696

15

-0,5527

-0,0258

16

0,1201

0,6728

сумм кв

2,222

2,6003



Посчитаем d=2,6003/2,222=1,170.

У нас n=16, m=2, , следовательно, условие 0,98=>d>=1,54  выполняется, значит, автокорреляция отсутствует.  


Для  используя таблицу:


I

0,249


2

-0,175

-0,42397

3

-0,299

-0,12397

4

-0,223

0,076029

5

-0,047

0,176029

6

0,029

0,076029

7

0,305

0,276029

8

-0,019

-0,32397

9

0,257

0,276029

10

0,433

0,176029

11

0,109

-0,32397

12

-0,715

-0,82397

13

0,061

0,776029

14

0,337

0,276029

15

0,013

-0,32397

16

-0,311

-0,32397

сумма квадратов

1,3190

2,198207


Посчитаем d=1,666. У нас n=16, m=1, ,  следовательно, условие

1,1=<d<=1,37 не выполняется, значит, автокорреляция присутствует.


Для сначала найдём коэффициенты:

* =3; =0,114.

Тогда уравнение регрессии имеет вид:



1

-0,386

 

2

-0,072

0,314

3

0,1419

0,214

4

0,3559

0,214

5

0,3699

0,014

6

0,1838

-0,186

7

0,0978

-0,086

8

-0,188

-0,286

9

-0,374

-0,186

10

-0,36

0,014

11

-0,046

0,314

12

0,1676

0,214

13

-0,218

-0,386

14

0,0956

0,314

15

0,2096

0,114

16

0,0235

-0,186

сумм кв

0,918

0,7885


Тогда d=0,859. У нас n=16, m=1, , следовательно, условие 1,1=<d<=1,37 не выполняется, значит, автокорреляция присутствует.




4.3. Для уравнения  проверить наличие или отсутствие мультиколлинеарности.

Решение.

Используя пункт 2.1, получаем 0,937 – близок к 1, значит, имеет место мультиколлинеарность.

 

 

 

ЛИТЕРАТУРА


1.                 Эконометрика /Под ред. Елисеевой – М.: Финансы и статистика, 2001.

2.                 Практикум по эконометрике /Под ред. Елисеевой – М.: Финансы и статистика, 2001.

3.                 Бородич С.А. Эконометрика. – Минск: Новое знание, 2001.

4.                 Четыркин Е.М. Статистические  методы прогнозирования. – М.: Статистика, 1975.

5.                 Доугерти К. Введение в эконометрику - М.: ИНФРА-М, 1999.