Исходные данные


Наименование процесса для очистки газовых выбросов

Производительность

м3

Концентрация пыли

г/м3

Температура газа,

ºС

Степень очистки

Литейные цеха

38000, песчаные формы

12

43

99,5



Введение

1. Литейные цеха входят, как в состав машиностроительных предприятий, так и в состав отдельных литейно-металлургических производств.

В результате процесса разливки металла в формы, в атмосферу выделяются твердофазные загрязнения, содержащие оксиды: металлов, алюминия, кремния и ряда других элементов.

Газовые выбросы формируются за счет общественной вентиляции в цехе, а затем централизовано подаются на очистку.

2. В литейном производстве для процесса используется жидкий металл, соединения которого относятся ко II или III группе токсичности. Формировочные силикаты, содержащие материалы с содержанием SiO2>70 по своему действию на организм относятся к III группе токсичности. Таким образом, промежуточные и исходные материалы, по своей токсичности относятся ко II-III группам.

3. При осуществлении процесса разлива металла в атмосферу выделяется пыль, содержащая оксиды металла, оксиды кремния, сажевые частицы и газообразные вещества в виде оксидов серы, азота, углерода.

Вредная примесь

Класс опасности

ПДК, мг/м3

Оксид железа

4

6

Пыль с содержанием SiO2>70%

3

1

Углеродная пыль с примесью SiO2 от 10 до 70%

4

2

Металл (чугун)

4

6

Оксид углерода

4

20




Характеристика технологии изготовления отливок в литейных цехах.


Задачей литейного производства является изготовление из металлов металлических сплавов изделий-отливок, имеющих разнообразные очертания и предназначенных для использования в различных целях.

Отливки после механической обработки составляют почти половину массы деталей всех машин, механизмов, приборов и аппаратов выпускаемых разными отраслями машино и приборостроения. Литьем изготовляют также отдельные части строительных сооружений, транспортных устройств и т.п.

Сущность литейного производства сводится к получению жидкого, т.е. нагретого выше tº плавления, сплава нужного состава и необходимого качества и заливки его в заранее приготовленную форму. При охлаждении же затвердевает и в твердом состоянии сохраняет конфигурацию той полости, в которую он был залит. В процессе кристаллизации и охлаждения сплава формируются основные механические и эксплуатационные свойства отливки, определяемые макро- и микро структур сплава, его плотностью, наличием и расположением в нем не металлических включений, развитием в отливке внутренних напряжений, вызванных неодновременным охлаждением ее частей и др.

Литейная технология может быть реализована различными способами. Весь цикл изготовления отливки состоит из ряда основных и вспомогательных операций, осуществляемых как параллельно, так и последовательно в различных отделения литейного цеха. Модели, стержневые ящики и другую оснастку изготовляют, как правило, в модельных цехах.

Литейная разовая песчаная форма в большинстве случаев состоит из двух полуформ: верхней и нижней, которые получают уплотнением формовочной смеси вокруг соответствующих частей (верхней и нижней) деревянной или металлической модели в специальных металлических рамках-опоках. Модель отличается от отливки размерами, наличием формовочных уклонов, облегчающих извлечение модели из формы, и знаковых частей, предназначенных для установки стержня, образующего внутреннюю полость (отверстие) в отливке. Стержень изготовляют из смеси, например песка, отдельные зерна которого скрепляются при сушке или химическом отверждении специальными крепителями (связующими).

В верхней полуформе с помощью соответствующих моделей выполняется воронка и система каналов, по которым из ковша поступает литейный сплав в полость формы, и дополнительные полости – прибыли.

После уплотнения смеси модели собственно отливки, литниковой системы и прибылей извлекают из полуформ. Затем в нижнюю полуформу устанавливают стержень и накрывают верхней полуформой. Необходимая точность соединения обеспечивается штырями и втулками в опоках. Перед заливкой сплава во избежание поднятия верхней полуформы жидким расплавом опоки скрепляют друг с другом специальными скобками или на верхнюю опоку устанавливают груз.

В разовых песчаных формах производят ~ 80% всего объема выпуска отливок. Однако точность и чистота их поверхности, условия труда, технико-экономические показатели не всегда удовлетворяют требованиям современного производства.

В связи с этим все более широкое применение находят специальные способы литья: по выплавляемым (выжигаемым) моделям, под давлением, центробежным способом, вакуумным всасыванием и т.д. Отливки различных размеров, сложности и назначения из сплавов, существенно отличающихся по своим свойствам, нельзя изготовлять одинаковыми способами.

В связи с этим получили распространение разнообразные технологические процессы, отличающиеся приемами.


Технологический процесс получения отливок в розовой песчаной форме

Характеристика сырья, используемого в литейном производстве.


Формовочные материалы:


К формовочным материалам относятся все материалы применяемые для изготовления разовых литейных форм и стержней. Различают исходные формовочные материалы и формовочные смеси.

Основными исходными материалами для большинства разовых форм являются песок и глина, вспомогательными – связующие добавки:

1)    противопригарные;

2)    увеличивающие газопроницаемость, податливость, текучесть и пластичность смеси;

3)    уменьшающие прилипаемость смесей.

Формовочные смеси приготавливают из исходных формовочных материалов и из смесей, ранее уже находившихся в употреблении (отработанные формовочные смеси). Исходные формовочные материалы завод получает из вне.

В зависимости от назначения смеси разделяют на формовочные смеси, стержневые смеси и вспомогательные смеси.

Правильный выбор формовочных смесей в литейном производстве имеет очень большое значение, т.к. формовочные смеси влияют на качество получаемых отливок.

К числу формовочных песков относят пески, образованные зернами тугоплавких, прочных и твердых минералов. На практике, главным образом, применяются пески образованные зернами кварца.

Кварц обладает высокой огнеупорностью (1713 ºС), прочностью и твердостью (по шкале Мооса - 7). Кварц является одной из форм существования кремнезема (SiO2). Благодаря тугоплавкости, высоким механическим качеством, низкой химической активности, а также в следствии низкой стоимости, кварцевые пески широко применяют как основу формовочных и стержневых смесей.

Природные кварцевые  пески не бывают свободными от загрязняющих  примесей; зерен полевого шпата, частиц слюды и других минералов. Полевой шпат и слюда содержат окислы щелочных и щелочно-земельных металлов. Эти минералы менее тугоплавки, чем кварц и способны вместе с кварцем и окислами залитого Me образовывать сложные легкоплавкие  силикаты (например: типа n SiO2 m FeO p Na2O).

В природных кварцевых песках часто содержится глина. Если эта глина обладает высокими качествами, то такая примесь может рассматриваться как полезная.

Глина является связующим материалом в формовочных и стержневых смесях. Обволакивая зерна песка, она связывает их и таким образом придает смеси необходимые прочность и одновременно пластичность. Минералогический состав глины различный, в общем виде его можно записать: m Al2O3 ∙ n SiO2 ∙ aH2O. Основным компонентом глины является каолинит Al2O3 ∙2H2O ∙ 2SiO2.  В природных формовочных песках содержание глины колеблется в пределах 2-50%. С помощью глины как связывающего материала нельзя обеспечить высокие физико-механические свойства стержней, которые выполняют внутренние полости в отливках. Поэтому для приготовления стержневых смесей используют самые разнообразные связующие – масляные и растительные масла и их заменители: декстрин, сульфоритно-дрожжевая бражка, жидкое стекло, синтетические смолы и др.

Из противопригарных материалов чаще всего используют графит, циркон, пылевидный кварц и порошок каменного угля. Противопригарные добавки вводят в смеси для уменьшения образования пригара на отливках.

Для увеличения податливости и газопроницаемости стержней в стержневые смеси вводят древесные опилки.


Литейные сплавы.


В большинстве случаев отливки изготовляют из  металлических сплавов, а не из чистых металлов. Это  объясняется тем, что эксплуатационные и особенно литейные свойства многих чистых металлов хуже чем сплавов.

Металлическими сплавами называются системы, состоящие (металлов или неметаллов). Так основой стали является железо. Кроме железа в стали также содержаться неметаллические (углерод, сера, фосфор) и металлические (марганец, хром и др.) примеси. Примеси делятся на легирующие (специальные), постоянные (неизбежные) и случайные. Легирующие примеси вводятся в сплав преднамеренно, чтобы придать ему необходимые эксплуатационные или технологические свойства. Например для повышения прочности и твердости чугуна и стали в них добавляют марганец, хром, ванадий. Для повышения жидкотекучести чугуна при художественном литье в него добавляют фосфор. Постоянными называются примеси, наличие которых, обусловлено технологией получения сплава. Например, в чугуне постоянной примесью является сера, переходящая в чугун из кокса. Случайной примесью в сером ваграночном чугуне может быть например медь, пришедшая из лома шихты.

Металлы и сплавы, применяемые в промышленности делятся на 2 группы – черные и цветные. Черными металлами называется железо и сплавы на его основе. Цветными – все остальные металлы и сплавы.


Характеристика выбросов загрязняющих веществ в атмосферу.


В литейном производстве на 1 т. отливок образуется от 1 до 3 т. отходов, включающих отработанную и неиспользованную смесь, шлаки, пыль, газы. Хотя основная часть отходов – это отработанные смеси и шлаки, наибольшую опасность представляют именно пыль и газы, в связи с трудностью их улавливания, обезвреживания и удаления. А их количество при производстве 1 т. отливок из стали или чугуна примерно составляет: пыли – 50 кг., углеводородов – 1 кг., оксида углерода (II) – 250 кг., оксида серы (II) – 1,5-2 кг., кроме того выделяется ряд других вредных газов, таких как фенол, формальдегид, ацетон, бензол и др., общее количество которых хотя и невелико, однако представляет опасность из-за их токсичности.

В газах, удаляемых от литейного оборудования и выбрасываемых в атмосферу, содержатся пыль, состоящая в основном из мелкодисперсных частичек, содержание свободного оксида кремния в которых достигает 60%. Поэтому среди населения, прилегающих к заводу территорий, появляется возможность возникновения пылевых профессиональных заболеваний.


Эффективность очистки пылегазовых выбросов.


Обеспыливание выбрасываемого из литейного цеха воздуха производится с помощью различного типа пылеосадительных устройств, различных по принципу действия и эффективности. К ним относятся пылеосадительные камеры, аппараты сухой инерционной и мокрой очистки, тканевые и электрические фильтры.

Применение пылеочистителей дает возможность не только добиться очистки отходящих газов от пыли, но и повторно использовать ранее выбросившуюся пыль.

Из токсичных газов, выделяющихся при плавке металлов, сушке форм и стержней, заливке форм металлом на первом месте стоит СО. Основной способ уменьшения количества СО, поступающего в окружающее пространство, дожигание его до оксида углерода (IV). Больше сложности возникает при обезвреживании токсичных газов, отходящих от стержневых сушилок и установок, производящих стержни с использованием холоднотвердеющих смесей, и в других процессах, основанных на применении синтетических  смол в составе формовочных и стержневых смесей. В состав этих газов входят различные альдегиды, ароматические углеводороды, спирты, оксид азота, серы, углерода и фосфора, аммиак, цианиды и другие вещества.

Существующие способы обезвреживания газов основаны на химическом связывании вредных веществ, их адсорбции и абсорбции и т.п. К одному из наиболее перспективных в настоящее время способов относится католическое окисление отходящих газов в контактных аппаратах на специальных катализаторах при температуре 200-500 ºС.


Составление технологической схемы очистки газовых

выбросов и сточных вод.


Очистка газовых выбросов от пыли  литейных цехов может производится с использованием аппаратов мокрой очистки (пенный газопроливатель и барабанный вакуум-фильтр) и аппаратов сухой очистки (циклон).

Технологическая схема мокрой очистки включает в себя6 пенный газопроливатель (1), насос для откачки суспензии (2), насос для подачи осветленной воды (3), барабанный вакуум-фильтр (4), запорную арматуру (5) и вентилятор для подачи загрязненного воздуха (6).


Технологическая схема сухой очистки.


Она включает: циклон и вентилятор для подачи загрязненного газа.


Расчет циклона.


Основным размером циклона любой конструкции является диаметр аппарата. Для нахождения диаметра нам необходимо знать объем проходящего через циклон газа и скорость прохождения газа через циклон.

Скорость газа на входе в циклон W1 по практическим данным составляет от 14 до 18 м/с, а скорость газа в самом циклоне принимается в пределах заданных соотношением:

Примем скорость газа на входе в циклон 18 м/с, а скорость газа в циклоне W2=0,35W1, тогда скорость газа в циклоне будет равна:

Так как воздух поступает при t=43 ºC, определим объем воздуха при этой температуре, используя соотношение:

         ;               ;       

Диаметр циклона определим по формуле:

Примем ближайшую стандартную величину диаметра 1,6 м.

Минимальный диаметр частиц оседающих в циклоне определим по формуле

где:

          R1      -        радиус циклона;

          R2      -        радиус выхлопной трубы циклона ;

          R2=(0,5-0,6) R1; R2=0,5R1=0,5∙1,6=0,8

          μ       -        вязкость газовой фазы;

          n       -        число кругов движения частиц, принимается в пределах от 2 до 3, примем n=3;

          ρч      -        плотность газа в циклоне.

Определим вязкость газовой фазы для заданной температуры t=43ºС.

С=111

μ0=17,72∙10-6 Па∙с

Гидравлическое сопротивление циклона определим по формуле:

где:

               -        плотность газа при t=43 ºС, будет определятся по формуле

      ;       

ξ       -        коэффициент сопротивления циклона, ξ=105

По результатам расчета выберем циклон ЦН-15, с сопротивлением 105 Па, и эффективностью очистки, при минимальном диаметре частиц 9,6 мкм, 87%.

Расчет пенного газопромывателя.



Так как заданная концентрация пыли равна 12 г/м3, то мы рассматриваем однополочный газопромыватель.

Самым важным технологическим параметром является скорость газа. При высокой скорости наблюдается унос жидкой фазы (брызгоунос). Верхним пределом скорости газового потока является 3 м/с. Сильный брызгоунос наблюдается при скорости более 3,5 м/с. Нижний предел скорости газа, при котором возникает слой пены на полке, лежит в пределах 0,8-1,2 м/с.

Таким образом оптимальное значение скорости газа выбирают в пределах 2,2-2,8 м/с.

Так как объем газа задан при нормальных условиях, пересчитаем его на процесс, протекающий при 43 ºС.

Определяем площадь поперечного сечения промывателя:

;

где:

          Wг     -        скорость газа в аппарате, принимаем Wг=2,3 м/с.


В прямоугольном аппарате обеспечивается лучшее распределение воды, поэтому примем прямоугольный аппарат размером 2·2,7 м с подачей воды через центральный диффузор.

При очистке газов от пыли, при температуре газа менее 100 ºС, расчет количества воды приводим по уравнению материального баланса. Расход воды в промывателе складывается из расхода воды, идущего в утечку и расхода воды идущего на слив с решетки.

Количество воды протекающей через решетку, определяется заданным составом суспензии Т:Ж выбирается в пределах 5,5-9,5 : 1.

При Т:Ж < 1 : 5 может происходить забивание решетки пылью; Т:Ж > 1 : 10 нерационально из-за больших объемов растворов и суспензии.

Количество уловленной в аппарате пыли рассчитывается по формуле:


где:

Свх    -        концентрация пыли на входе в аппарат;

Свых   -        концентрация пыли на выходе.

Так как степень очистки аппарата 99,5%, то:

Примем Т:Ж = 1 : 8 =

Количество воды, необходимой для образования суспензии определяется по формуле:


где:

          С       -        концентрация пыли в суспензии;

          К       -        коэффициент распределения между утечкой и сливной водой, выраженной отношением пыли, попадающей в утечку, к общему количеству пыли.

Количество воды приходящейся на 1м2 решеток, определяется по уравнению:


Вследствие трудности определения параметров решетки, по заданной утечке, и учитывая испарение воды, после ее протекания через решетку, принимаем коэффициент запаса К3=1,5.

 или

Количество сливной воды определяется по формуле:


где:

          b       -        ширина решетки перед сливом, м;

          I        -        интенсивность потока воды на сливе (0,8-2,2 м3/м·ч), примем i=1м3/м·час.

Так как вода сливается на обе стороны, то:

Общее количество воды:

Учитывая простоту изготовления выберем проливатель с решеткой с круглыми отверстиями. Рекомендуемая скорость газа в отверстиях 8-13 м/с. Полагаем, что количество очищенного газа не увеличивается, примем .

Тогда отношение площади свободного сечения решетки к площади сечения аппарата:

где:

          Z       -        коэффициент, учитывающий, что 5% сечения решетки занимают, опоры, переливные стенки и др.

По таблице выбираем газопромыватель: тип аппарата ~ 40, как обеспечивающего очистку заданного количества газа, с расходом воды 12 м3/с, площадью сечения решетки 5,6 м2, высота аппарата – 5750 мм.

Для обеспечения работы аппарата при колебаниях нагрузки примем высоту порога hп=25 мм.

Габаритная высота газопромывателя складывается из следующих параметров:

- надрешоточная высота h1=1 м;

- подрешоточная высота h2=1 м;

- высота бункера hб=2 м.

Общая высота аппарата без учета штуцеров: h1 + h2 + hб = 1+1+2 = 4 м.

Определим диаметр штуцера для подвода газа по формуле:


где:

          W1     -        скорость газа на входе в аппарат, примем W1=15 м/с.

Принимаем диаметр выходного штуцера также d2 = 1 м.

Діаметр штуцера для подвода воды определяем по формуле:

где:

          Wв     -        скорость воды на входе, примем Wв = 2 м/с

Принимаем диаметры штуцеров для ввода вывода суспензии одинаковыми и равными 40 мм.


Расчет вентилятора.


В основе выбора насоса и вентилятора для заданных условий работы лежат экономические требования. Они заключаются в том, чтобы насос или вентилятор и их приводные двигатели работали при наибольшем КПД и при этом были дешевыми. Общий метод решения задачи выборов насосов и вентиляторов для заданных условий работы состоит в следующем: для того, чтобы определить давление, которое должен развивать насос или вентилятор необходимо провести расчет потерь давления в трубопроводе по формуле:

где:

λ       -        коэффициент гидравлического трения;

l        -        длина участка трубопровода;

∑ξ     -        сумма местных сопротивлений;

ρ       -        плотность вещества, проходящего по трубопроводу;

ω       -        скорость;

g       -        ускорение свободного падения;

h       -        высота.

Для того, чтобы найти λ, сначала необходимо вычислить число Рейнольдса, по формуле:

где:

         μ       -        вязкость среды, μ0 газа = 17,72·10-6 Па·с

Вязкость газа при 43 ºС равна = 19,85·10-6 Па·с

 - поток турбулентности;

По таблице выбираем центробежный вентилятор ЦН-70 ~ 10А с КПД 65%, мощностью 20 кВт.

Расчет и подбор насосов.


а) насос для откачки суспензии;

Чтобы определить давление, которое должен создавать насос разделим участок на отдельные участки с одинаковым расходом суспензии и определим потери сопротивления на каждом участке. Тогда общее давление на каждом будет равно:

1)  ;  поток турбулентний

2)  поток турбулентний

3)  поток турбулентний

По таблице выбираем насос марки 1½ К-6 2900

б) насос для подачи осветленной воды

1)  ;  поток турбулентний

2)  поток турбулентний

По таблице выбираем насос марки 1½ К-6 2900.

Примем такой же насос для подачки воды из трубопроводы из трубопровода.

Расчет барабанного вакуум-фильтра.


Пересчитаем константу К, которая учитывает изменения вакуума.

      ;       

                   ;       

Определяем удельную производительность зоны фильтрования приняв время фильтрования τ=32 с.

Основное уравнение фильтрования:

где:

          V       -        удельная производительность;

          К       -        константа фильтрования, учитываются сопротивление осадка;

          С       -        константа фильтрования, учитывающая сопротивление фильтрующей перегородки.

Решая квадратною уравнение получим:

а за 1 секунду Vуд составит:

Пересчитаем заданную производительность по суспензии на производительность по фильтрату.

При влажности осадка в 34% соотношение влажного и сухого осадка:

где:

Woc  -        влажность осадка в долях единицы.

Расход суспензии:

        ;       

Определим массовую долю твердой фазы в суспензии:

Масса влажного осадка:

     ;       

Масса фильтрата

При плотности фильтра ρ=1000 кг/м3

 или

Необходимая поверхность в зоне фильтрования составит:

   ;       

Так как в обычных вакуум-фильтрах поверхность зоны фильтрования составляет 30-35% от общей поверхности, то общая поверхность фильтра

будет равна:

По таблице принимаем фильтр диаметром D=1,6 м, длиной L=2м и площадью фильтрования F=10 м.

Уточнение выбранной схемы основного очистного оборудования с коротким описанием работы.


Данные расчетов показали, что для очистки пылегазовых выбросов от литейных цехов, удобнее взять пенный газопромыватель, у которого степень очистки выше чем у циклона. Для заданного объема газа 38000 м3/час достаточно взять один аппарат, т.к. и один аппарат может обеспечить очистку заданного количества газа. Нам также нужен насос для подачи и вентилятор для подачи загрязненного воздуха.


Описание уточненной схемы


Загрязненный аз подается в подрешеточное пространство вентилятором. Насосом вода из водопровода подается на решетку газопромывателя. Образующийся шлам попадает в бункер и через штуцера для отвода суспензии по трубопроводу подается на барабанный вакуум-фильтр. Осветленная вода возвращается в процесс газоочистки насосом, а шлам идет на утилизацию.

Утилизация и рекуперация отходов.


Утилизация формовочных песков.

В настоящее время применяют смеси, поэтому не существует универсального способа регенерации.

Регенерация смеси в отличии от регенерации песка представляет собой технологический процесс подготовки отработанной смеси в целях повторного ее использования.

Регенерация песка представляет собой технологический процесс извлечения зерновой основы песка из отработанной смеси.

Регенерация песка делится на несколько групп:

1.     Механическая;

2.     Термическая;

3.     Гидравлическая;

4.     Естественная;

5.     Комбинированная;

Технологический цикл состоит из нескольких этапов:

1.     Подготовка обработанной смеси.

2.     Отделение пленки связывающего от поверхности зерен песка.

3.     Сепарация – представляет собой удаление пылевидных фракций из зерновых основ песка.

Основной операцией при подготовке отработанной формовочной смеси является ее дробление и отделение металла.

Смесь начинает дробиться при выбивке отливок. Далее она помещается в дробильные установки, пройдя которые просеивается. Попутно с этим из  смеси удаляется металл. В качестве оборудования применяются выбивные решетки, вальцовые дробилки и другие виды дробилок. Удаление металла осуществляется с помощью магнитных сепараторов.

Просеивание осуществляется на грохотах. При гидрорегенерации дробление осуществляется струей воды.

Второй этап является главным и определяет название метода регенерации. Механическая регенерация возможна в том случае, когда силы адгезии меньше чем пленка связывающего материала, при этом пленка связывающего должна быть достаточно хрупкой.

Силами адгезии определяется степень склеивания между предметами. В том случае, если пленка является эластичной. Отделение пленки связывающего может осуществляться несколькими способами:

1.     Механическое перетирание;

2.     Механический удар;

3.     Пневмоудар.

Термическая регенерация. Ее сущность состоит в нагреве отработанной смеси до 650-1000 ºС, в выдержке при этой температуре в окислительной атмосфере и охлаждении песка.

Для термической регенерации используются печи различных конструкций:

1.     Барабанные печи;

2.     Шахтные печи;

3.     печи кипящего слоя.

Гидрогенерация. При этом процессе отработанная смесь после предварительной подготовки поступает на отливку пленки связывающего. Отливку песчаной пульпы осуществляют различными способами:

1.     В проточной воде;

2.     В гидроциклонах;

3.     В оттирочных машинах, в которых песчано-водная смесь интенсивно перемешивается.

После отливки осуществляется сепарация и высушивание. Перед высушиванием производится обезвоживание.

Естественная регенерация – выдерживание песка в естественных условиях. Отработанная смесь после извлечения из нее металла складывается на открытых площадках и выдерживается в атмосферных условиях несколько лет.

Продолжительность выдерживания зависит от  вида используемого связующего. Регенерация осуществляется благодаря колебаниям температуры. Изменение tº приводит к отделению пленки связывающего вследствии разности коэффициентов термического расширения. Отдельная пленка вымывается складками. Многие органические связующие разлагаются биологически. полученный песок может использоваться в литейном производстве, в строительстве.

Материальный баланс сырья и материалов, используемых в литейном производстве.


Приход

Расход

газ на очистку 38000 м3/ч при н.у.

пыль в газе 433,2 кг/ч




Вода:

осветленная 7427,9 кг/ч

светлая 222,06 кг/ч

очищенный газ 38000 м3/ч при н.у.

пыль в газе 2,166 кг/ч

шлам 653,08 кг/ч

пыль 431,034 кг/ч

вода 222,06 кг/ч

Вода:

осветленная 7427,9 кг/ч

газ 38000 м3

пыль 433,2 кг/ч

вода 7649,96

газ 38000 м3

пыль 433,2 кг/ч

вода 7649,96


Вывод.


По результатам расчетов, проведенных в данной курсовой работе, для очистки пылегазовых выбросов от пыли литейных цехов была выбрана мокрая схема очистки с использованием пенного газопромывателя и барабанного вакуум-фильтра. Для откачки суспензии необходимо взять насос марки 1½К-62900, такой же насос возьмем и для подачи осветленной воды.

Для подачи загрязненного воздуха выбран центробежный вентилятор ЦН-70 10А.

Сточные воды образующиеся в литейных цехах, сбрасываются в систему городской канализации.

Список литературы.


1.                       Аксенов П.И. Оборудование литейных цехов – Москва: Машиностроение, 1977 - 510 с.

2.                       Воздвиженский В.М., Грачев В.А., Спасский В.В. Литейные сплавы и технология их плавки в машиностроении – Москва: Машиностроение, 1984 - 431 с.

3.                       Дорошенко С.П. Комовник Т.Ч., Макаревич А.П. Литейное производство: Введение в специальность – Киев: Вища школа, 1987 -182 с.

4.                       Ладыжский Б.Н., Орешкин В.Д., Сухарчук Ю.С. Литейное производство – Москва: Машиностроение, 1953 – 207 с.

5.                       Литейное производство: Учебник для вузов. Под редакцией Михайлова А.М. – Москва.: Машиностроение, 1987 – 255 с.