7. Специальная часть

7.1. Мероприятия по снижению потерь электроэнергии в электрических сетях

Потери электроэнергии в электрических сетях – важнейший показатель экономичности их работы, наглядный индикатор состояния системы учета электроэнергии, эффективности энергосбытовой деятельности энергоснабжающих организаций. Этот индикатор все отчетливей свидетельствует о накапливающихся проблемах, которые требуют безотлагательных решений в области развития, реконструкции и технического перевооружения электрических сетей, совершенствования методов и средств их эксплуатации и управления, повышения точности учета электроэнергии, эффективности сбора денежных средств за поставленную потребителям электроэнергию и т. п.

В настоящее время почти повсеместно наблюдается рост абсолютных и относительных потерь электроэнергии при одновременном уменьшении отпуска в сеть. Так, с 1994 по 1998 гг. абсолютные потери электроэнергии в сетях АО-энерго России увеличились с 67,7 до 78,6 млрд. кВт·ч, а относительные – с 8,74 до 10,81%. В электрических сетях России в целом относительные потери выросли с 10,09 до 12,22%.

По мнению международных экспертов, относительные потери электроэнергии при ее передаче и распределении в электрических сетях большинства стран можно считать удовлетворительными, если они не превышают 4-5%. Потери электроэнергии на уровне 10% можно считать максимально допустимыми с точки зрения физики передачи электроэнергии по сетям [32]. Это подтверждается и докризисным уровнем потерь электроэнергии в большинстве энергосистем бывшего СССР, который не превышал, как правило, 10%. Так как сегодня этот уровень вырос в 1,5-2, а по отдельным электросетевым предприятиям - даже в 3 раза, очевидно, что на фоне происходящих изменений хозяйственного механизма в энергетике, кризиса экономики в стране проблема снижения потерь электроэнергии в электрических сетях не только не утратила свою актуальность, а наоборот - выдвинулась в одну из задач обеспечения финансовой стабильности организаций.




Надпись: Оптимизация загрузки электрических сетей за счёт строительства линий и подстанцийНадпись: Замена перегруженного и недогруженного оборудования электрических сетейНадпись: Ввод в работу энергосберегающего оборудованияНадпись: Оптимизация схем и режимов электрических сетейНадпись: Сокращение продолжительности ремонтов оборудования электрических сетейНадпись: Ввод в работу неиспользуемых средств АРН, выравнивание несимметричных нагрузок фаз, и т.п.Надпись: Проведение рейдов по выявлению неучтённой электроэнергииНадпись: Совершенствование системы сбора показаний счётчиковНадпись: Замена, модернизация, установка недостающих приборов учётаНадпись: Обеспечение нормальных условий работы приборов уч1та 























Рис. 7.1. Мероприятия по снижению потерь мощности

Типовой перечень мероприятий по снижению потерь электроэнергии в электрических сетях достаточно хорошо известен и включен в отраслевую инструкцию [33]. В общем виде классификация мероприятий представлена на рисунке 7.1.

Как показывают расчеты, основной эффект в снижении технических потерь электроэнергии может быть получен за счет технического перевооружения, реконструкции, повышения пропускной способности и надежности работы электрических сетей, сбалансированности их режимов, т. е. за счет внедрения капиталоемких мероприятий. Эти мероприятия нашли отражение в концепциях развития и техперевооружения электрических сетей на период до 2010 г., разработанных институтами "Энергосетьпроект" и РОСЭП ("Сельэнергопроект").

Основными из этих мероприятий, помимо включенных в [33], для системообразующих электрических сетей 110 кВ и выше являются следующие:

-       налаживание серийного производства и широкое внедрение регулируемых компенсирующих устройств (управляемых шунтируемых реакторов, статических компенсаторов реактивной мощности) для оптимизации потоков реактивной мощности и снижения недопустимых или опасных уровней напряжения в узлах сетей;

-       строительство новых линий электропередачи и повышение пропускной способности существующих линий для выдачи активной мощности от "запертых" электростанций для ликвидации дефицитных узлов и завышенных транзитных перетоков;

-       развитие нетрадиционной и возобновляемой энергетики (малых ГЭС, ветроэлектростанций, приливных, геотермальных ГЭС и т. п.) для выдачи малых мощностей в удаленные дефицитные узлы электрических сетей.

Очевидно, на ближайшую и удаленную перспективу останутся актуальными оптимизация режимов электрических сетей по активной и реактивной мощности, регулирование напряжения в сетях, оптимизация загрузки трансформаторов, выполнение работ под напряжением и т. п.

К приоритетным мероприятиям по снижению технических потерь электроэнергии в распределительных электрических сетях 0,4-35 кВ относятся:

-       использование 10 кВ в качестве основного напряжения распределительной сети;

-       увеличение доли сетей с напряжением 35 кВ;

-       сокращение радиуса действия и строительство ВЛ (0,4 кВ) в трехфазном исполнении по всей длине;

-       применение самонесущих изолированных и защищенных проводов для ВЛ напряжением 0,4-10 кВ;

-       использование максимального допустимого сечения провода в электрических сетях напряжением 0,4-10 кВ с целью адаптации их пропускной способности к росту нагрузок в течение всего срока службы;

-       разработка и внедрение нового, более экономичного, электрооборудования, в частности, распределительных трансформаторов с уменьшенными активными и реактивными потерями холостого хода, встроенных в КТП и ЗТП конденсаторных батарей;

-       применение столбовых трансформаторов малой мощности (6-10/0,4 кВ) для сокращения протяженности сетей напряжением 0,4 кВ и потерь электроэнергии в них;

-       более широкое использование устройств автоматического регулирования напряжения под нагрузкой, вольтодобавочных трансформаторов, средств местного регулирования напряжения для повышения качества электроэнергии и снижения ее потерь;

-       комплексная автоматизация и телемеханизация электрических сетей, применение коммутационных аппаратов нового поколения, средств дистанционного определения мест повреждения в электрических сетях для сокращения длительности неоптимальных ремонтных и послеаварийных режимов, поиска и ликвидации аварий;

-       повышение достоверности измерений в электрических сетях на основе использования новых информационных технологий, автоматизации обработки телеметрической информации.

Необходимо сформулировать новые подходы к выбору мероприятий по снижению технических потерь и оценке их сравнительной эффективности в условиях акционирования энергетики, когда решения по вложению средств принимаются уже не с целью достижения максимума "народнохозяйственного эффекта", а с целью получения максимума прибыли данного АО, достижения запланированных уровней рентабельности производства, распределения электроэнергии и т. п.

В условиях общего спада нагрузки и отсутствия средств на развитие, реконструкцию и техперевооружение электрических сетей становится все более очевидным, что каждый вложенный рубль в совершенствование системы учета сегодня окупается значительно быстрее, чем затраты на повышение пропускной способности сетей и даже на компенсацию реактивной мощности. Совершенствование учета электроэнергии в современных условиях позволяет получить прямой и достаточно быстрый эффект. В частности, по оценкам специалистов, только замена старых, преимущественно "малоамперных" однофазных счетчиков класса 2,5 на новые класса 2,0 повышает собираемость средств за переданную потребителям электроэнергию на 10-20%. В денежном выражении по России в целом это составляет порядка 1-3 млрд. руб в год. Нижняя граница этого интервала соответствует тарифам на электроэнергию, верхняя - возможному их увеличению.

Решающее значение при выборе тех или иных мероприятий по совершенствованию учета и мест их проведения имеют расчеты и анализ допустимых и фактических небалансов электроэнергии на электростанциях, подстанциях и в электрических сетях в соответствии с Типовой инструкцией РД 34.09.101-94 [34].

Основным и наиболее перспективным решением проблемы снижения коммерческих потерь электроэнергии является разработка, создание и широкое применение автоматизированных систем контроля и учета электроэнергии (АСКУЭ), в том числе для бытовых потребителей, тесная интеграция этих систем с программным и техническим обеспечением автоматизированных систем диспетчерского управления (АСДУ), обеспечение АСКУЭ и АСДУ надежными каналами связи и передачи информации, метрологическая аттестация АСКУЭ.

Однако эффективное внедрение АСКУЭ - задача долговременная и дорогостоящая, решение которой возможно лишь путем поэтапного развития системы учета, ее модернизации, метрологического обеспечения измерений электроэнергии, совершенствования нормативной базы.

На сегодняшний день к первоочередным задачам этого развития относятся:

-       осуществление коммерческого учета электроэнергии (мощности) на основе разработанных для энергообъектов и аттестованных методик выполнения измерений (МВИ) по ГОСТ Р 8.563-96. Разработка и аттестация МВИ энергообъектов должны проводиться в соответствии с типовыми МВИ - РД 34.11.333-97 и РД 34.11.334-97 [35];

-       периодическая калибровка (поверка) счетчиков индукционной системы с целью определения их погрешности;

-       замена индукционных счетчиков для коммерческого учета на электронные счетчики (за исключением бытовых индукционных однофазных счетчиков);

-       создание нормативной и технической базы для периодической поверки измерительных трансформаторов тока и напряжения в рабочих условиях эксплуатации с целью оценки их фактической погрешности;

-       создание льготной системы налогообложения для предприятий, выпускающих АСКУЭ и энергосберегающее оборудование;

-       совершенствование правовой основы для предотвращения хищений электроэнергии, ужесточение гражданской и уголовной ответственности за эти хищения, как это имеет место в промышленно развитых странах;

-       создание нормативной базы для ликвидации "бесхозных" потребителей и электрических сетей, обеспечение безубыточных условий их принятия на баланс и обслуживание энергоснабжающими организациями;

-       создание законодательной и технической базы для внедрения приборов учета электроэнергии с предоплатой.

Очень важное значение на стадии внедрения мероприятий по снижению потерь электроэнергии в сетях имеет так называемый человеческий фактор, под которым понимается:

-       обучение и повышение квалификации персонала;

-       осознание персоналом важности для предприятия в целом и для его работников лично эффективного решения поставленной задачи;

-       мотивация персонала, моральное и материальное стимулирование;

-       связь с общественностью, широкое оповещение о целях и задачах снижения потерь, ожидаемых и полученных результатах.

Для того чтобы требовать от персонала Энергосбыта, предприятий и работников электрических сетей выполнения нормативных требований по поддержанию системы учета электроэнергии на должном уровне, по достоверному расчету технических потерь, выполнению мероприятий по снижению потерь, персонал должен знать эти нормативные требования и уметь их выполнять. Кроме того, он должен хотеть их выполнять, т. е. быть морально и материально заинтересованным в фактическом, а не в формальном снижении потерь. Для этого необходимо проводить систематическое обучение персонала не только теоретически, но и практически, с переаттестацией и контролем усвоения знаний (экзаменами). Обучение должно проводиться для всех уровней – от руководителей подразделений, служб и отделов до рядовых исполнителей.

Руководители должны уметь решать общие задачи управления процессом снижения потерь в сетях, исполнители - уметь решать конкретные задачи. Целью обучения должно быть не только получение новых знаний и навыков, но и обмен передовым опытом, распространение этого опыта во всех предприятиях энергосистемы.

Однако одних знаний и умений недостаточно. В энергоснабжающих организациях должна быть разработана, утверждена система поощрения за снижение потерь электроэнергии в сетях, выявление хищений электроэнергии с обязательным оставлением части полученной прибыли от снижения потерь (до 50%) в распоряжении персонала, получившего эту прибыль.

Необходимы, очевидно, новые подходы к нормированию потерь электроэнергии в сетях, которые должны учитывать не только их техническую составляющую, но и систематическую составляющую погрешностей расчета потерь и системы учета электроэнергии.

Очень важен контроль со стороны руководителей энергосистемы, предприятий, районов, электросетей и Энергосбыта за эффективностью работы контролеров, мастеров и монтеров РЭС с целью предотвращения получения личного дохода непосредственно с виновников хищений, "помощи" потребителям по несанкционированному подключению к сетям и т. п.

В конечном счете, должен быть создан такой экономический механизм, который ставил бы в прямую зависимость премирование персонала от его активности и эффективности в области снижения потерь.

Принимаем к рассмотрению одно из организационных мероприятий – отключение трансформаторов в режиме малых нагрузок.


7.2. Отключение трансформаторов в режиме малых нагрузок

Экономически целесообразный режим работы трансформаторов на подстанциях относится к эффективным мероприятиям по снижению потерь электроэнергии.

Наиболее экономичный режим работы трансформаторов соответствует нагрузке, пропорциональной их номинальной мощности. Экономическое распределение нагрузок между параллельно работающими трансформаторами наступает в том случае, если их параметры одинаковы.

Нагрузочные потери и потери холостого хода в трансформаторах сопоставимы между собой. При полной загрузке трансформаторов или их перегрузке нагрузочные потери больше потерь холостого хода, и наоборот, в режимах недогрузки потери холостого хода превышают потери в обмотках трансформатора. В последнем случае имеет смысл отключать часть параллельно работающих трансформаторов.

Потери мощности в трансформаторах определяются как:

,

где:

n – количество трансформаторов;

х – потери холостого хода трансформатора;

к – потери короткого замыкания.

При изменении мощности нагрузки, построим график зависимости потерь мощности в трансформаторе от нагрузки потребителя DРт=f(Sнагр), для трёх, двух и одного работающих трансформаторов.

Sэк – экономически выгодная нагрузка, при работе в пределах которой достигается максимально выгодная загрузка трансформатора.

Как видно из графика, что при изменении нагрузки от нуля до Sэк1 целесообразна работа одного трансформатора, при нагрузке в пределах от Sэк1 до Sэк2, экономически выгодна работа двух трансформаторов, при увеличении нагрузки сверх Sэк2, следует включить третий трансформатор.

Нагрузка Sэк, при которой целесообразно отключать один из трансформаторов, определяется условием равенства потерь мощности при n и n-1 трансформаторах:

Исходя из этого условия находим Sэк:

.

Назовём этот вариант приближённой моделью, потому что для подстанций расположенных возле питающих узлов и тупиковых подстанций возможно отклонение от номинального напряжения, в связи с потерями напряжения в линиях электропередачи. Найдём Sэк используя напряжения, которые могут быть на подстанциях при разной удалённости от центра питания:

где:

Gт – проводимость трансформатора, Gт=;

Rт – активное сопротивление трансформатора.

Для этого варианта Sэк определится как:

.

Назовём этот вариант точной моделью.

Используя полученные выражения найдем Sэк для трёхтрансформаторной подстанции структурная схема которой приведена на рисунке 7.2. На подстанции установлены трансформаторы типа ТРДЦН – 63000/110.

Рис. 7.2. Структурная схема понижающей подстанции.

Табл. 7.1.

Потери мощности в трансформаторе и экономическая мощность в зависимости от напряжения

U, кВ

Точная модель

Приближённая модель

Погрешность методов

3 трансформатора

2 трансформатора

3 трансформатора

2 трансформатора

%

Sэк, МВА

DPт, МВт

Sэк, МВА

DPт, МВт

Sэк, МВА

DPт, МВт

Sэк, МВА

DPт, МВт

100,00

55,47

0,2231

32,02

0,1338

73,51

0,295

42,44

0,177

32

105,00

61,15

0,2459

35,31

0,1476

73,51

0,295

42,44

0,177

20

110,00

67,12

0,2699

38,75

0,1619

73,51

0,295

42,44

0,177

9

115,00

73,36

0,2950

42,35

0,1770

73,51

0,295

42,44

0,177

0

120,00

79,87

0,3212

46,12

0,1927

73,51

0,295

42,44

0,177

8

125,00

86,67

0,3485

50,04

0,2091

73,51

0,295

42,44

0,177

15

130,00

93,74

0,3770

54,12

0,2262

73,51

0,295

42,44

0,177

22

135,00

101,09

0,4065

58,36

0,2439

73,51

0,295

42,44

0,177

27


Используя данные, построим график, в котором отражается погрешность моделей.

Рис. 7.3. Погрешность при определении Sэк.

Рис. 7.4. Погрешность при определении потерь мощности

Из графиков видно, что при использовании приближённой модели, экономически выгодная мощность и потери в трансформаторе имеют неизменную характеристику, а при определении Sэк и DРт с использованием возможных напряжений, получаем, что с увеличением напряжения, возрастают и потери.

Исходя из таблицы 7.1, делаем вывод, что погрешность при определении экономически выгодной мощности и потерь трансформатора, погрешность при расчётах разными методами может достигать 30 %. Это означает, что использование точной модели при расчётах, экономически целесообразно, и необходимо.