НОРБЕРТ ВИНЕР
Я – МАТЕМАТИК
Главы из книги, полный текст смотрите в библиотеке РГИУ
2 МЕЖДУНАРОДНЫЙ МАТЕМАТИЧЕСКИЙ КОНГРЕСС В СТРАСБУРГЕ. 1920
В этой главе, как и в некоторых следующих, мне придется много говорить о своих поездках за границу. Я всегда получал от них очень большое удовольствие. Но для меня эти поездки, составляющие значительную часть моей биографии человека и ученого, никогда не были просто увеселительными прогулками, которые предпринимаются исключительно ради отдохновения от трудов. Поэтому мне хочется дать некоторое представление о том, какую роль они играли в моей жизни и, в частности, какое значение имело для меня путешествие 1920 года.
Тут, как и при описании многих других событий своей жизни, я должен прежде всего сказать несколько слов об отце. Мой отец получил чисто европейское образование, вернее, даже чисто немецкое, так как, хотя в гимназии и очень недолго в медицинской школе он учился на территории русской Польши, всеми своими духовными интересами – и отец это прекрасно понимал – он был связан с Германией. Хорошая постановка обучения в немецких классических средних школах, или гимназиях, как их обычно называли, способствовала широкому распространению этих учебных заведений по всей Центральной и Восточной Европе. Так уж повелось, что в каждом образованном уроженце Восточной Европы до конца жизни остается что-то от бывшего гимназиста.
Но у отца были, кроме того, еще глубоко личные связи с немецкой культурой. Его собственный отец в течение долгого времени издавал газету на идиш 1, хотя сам был горячим поклонником литературного немецкого языка, который ставил гораздо выше еврейского. В один прекрасный день, не в силах дольше противостоять искушению, он начал выпускать свою газету по-немецки. Поскольку дело происходило в Белостоке, он, конечно, немедленно лишился всех своих подписчиков. С этого момента дела моего деда пошли под гору, и он больше уже не встал на ноги.
Воспитанный в такой семье, отец, естественно, считал немецкий своим родным языком. Завершать образование он приехал в Берлин. В то время старый Берлинский технологический институт, в который он поступил, размещался еще не в своей знаменитой резиденции в Шарлоттенбурге, а в центре города. Отец провел в Берлине всего несколько месяцев – его академическая карьера оказалась бурной и краткой. Кончилась она тем, что, загоревшись совершенно фантастической идеей, отец решил расстаться с германским подданством и искать счастья в Центральной Америке. Он надеялся основать там колонию вегетарианцев и жить в соответствии со своими гуманистическими принципами.
Никакого ясного плана у отца не было. Второй юноша, который должен был ехать вместе с ним, скоро понял, что он родился без шишки авантюризма, и отец застрял в Новом Орлеане как рыба на мели: совершенно одни и без гроша за душой. Ни о какой Центральной Америке не могло быть и речи, и в течение нескольких лет он скитался по западным и южным штатам, ведя жнзнь марктвеновского Геккльберри Финна.
Наконец, после множества приключений ему удалось заняться тем, для чего он был рожден – лингвистикой. Некоторое время отец преподавал в Центральной средней школе в Канзасе, а потом перебрался в Миссурийский университет. Бросив через некоторое время эту работу, он стал постоянным посетителем Гарвардского университета, где им заинтересовался профессор Фрэнсис Чайльд, издатель сборника шотландских баллад. Это знакомство помогло ему получить в Гарварде место ассистента и, в конце концов, через много лет привело на пост заведующего кафедрой славянских языков и литературы.
Отец считал себя выдающимся ученым, причем выдающимся ученым истинно немецкого типа, а по натуре он был энтузиастом и интересовался тысячами вещей, не имеющих никакого отношения к славянским языкам. Таких противоречий в отце было сколько угодно.
Одну из существенных сторон его характера составлял типично немецкий либерализм. Люди такого склада особенно часто встречались в Германии в середине и в конце прошлого столетия. Они явились продолжателями тех культурных традиций, которые сложились еще тогда, когда самым ярким выразителем немецкого духа считался Гёте, а не кайзер Вильгельм II. Отец жил за пределами Германии и, в сущности, был самоучкой; во всяком случае, как ученый он сложился вне ортодоксальных немецких академических традиций. Но несмотря на это, он в течение многих лет надеялся, что его выдающихся способностей и личных заслуг достанет для того, чтобы в Германии его признали великим немецким ученым.
Расчеты отца никогда не отличались особенной трезвостью. Он был слишком честным и слишком неискушенным человеком, чтобы проявлять настоящую житейскую мудрость. Прошло немало лет, прежде чем он понял, что великая немецкая наука все больше и больше превращается в покорную служанку государственной машины. Реальные успехи, которых добилась немецкая империя в результате франко-прусской войны, расплодили множество честолюбцев и любителей легкой наживы. Изменился дух и в университетах. Там, очевидно, появилось немало людей, которым было далеко не безразлично, откуда приходят к ним новые идеи.
Все это привело к тому, что с годами немецкие ученые стали замкнутой кастой, куда чужаку пути были заказаны. Особенно остро этот вопрос стоял в филологии и лингвистике, т.е. в тех областях, в которых объективная оценка работ вообще довольна трудна, а иногда и просто невозможна. Вот почему двери, в которые с надеждой стучался отец, так перед ним никогда и не открылись.
Впервые после эмиграции отец приехал в Европу в самом начале столетия, потом еще раз в 1914 году. Попав в Германию после длительной разлуки, он понял, что действительность превзошла самые худшие его ожидания: он оказался совершенно чужим. Это ощущение глубоко ранило его. Через какое-то время из обиды родилось негодование, потом негодование превратилось в ненависть. Отец возненавидел Германию, как начинаешь ненавидеть близких, которые несправедливо тебя унижают; политические и социальные изменения, происходящие в новой Германии, еще усилили это чувство. Отец был ярым противником немецкого милитаризма, с которым ему пришлось познакомиться еще до начала первой мировой войны. Это привело к тому, что он стал одним из самых активных американских приверженцев Антанты. Вместе с Бирвиртом, профессором кафедры немецкого языка Гарвардского университета, он каждое утро прогуливался по Бретл-Стрит, ругая Германию на великолепном немецком языке; сама эта горячность уже достаточно говорила о той неподдельной личной заинтересованности в европейских делах, которая резко отличала отца не только от рядовых американцев, но и от большинства американских ученых, в основном заранее настроенных изоляционистски.
Отец горячо любил Америку и все американское, но как раз в своем отношении к этой стране он меньше всего был американцем. И не потому, что ему многое не нравилось – американскую систему образования он, например, считал весьма поверхностной, – а потому, что его любовь была привязанностью пришельца. Отец любил Америку как человек, который сам нашел и открыл эту страну, а такая любовь очень далека от чувства, которое испытываешь к чему-то настолько близкому, что оно уже неотделимо от тебя самого.
В нашем доме постоянно собирались ученые, приезжавшие из Европы. Мы так привыкли слышать иностранную речь, что перестали воспринимать ее как нечто необычное. Что касается отца, то он знал около сорока языков. Однако его блестящие лингвистические способности и исключительная требовательность к четкости и беглости речи привели в нашей семье к довольно неожиданным результатам: мать и мы, дети, с трудом овладели одним иностранным языком.
Своеобразный уклад нашей домашней жизни не мог не пробудить во мне острого любопытства к Европе. А тут еще к любопытству примешивалось естественное желание снова вкусить от плодов европейской учености: как-никак, первая настоящая научная школа, с которой я познакомился, была английской, а вторая – немецкой. Вдобавок ко всему, у меня были еще соображения сугубо личного характера. Во время пребывания в Англии и и в меньшей степени в Геттингене я впервые почувствовал, что отдыхаю от напряженной атмосферы нашего дома и от постоянного родительского контроля. А кроме того, в Европе я уже находил дружеское сочувствие тому, что я делаю, и это отношение было мне тем более приятно, что оно резко контрастировало с неприязнью, которая встречала меня на родине.
Профессора английских университетов считают дурным тоном походить на профессиональных ученых. Они держат себя как любители и делают вид, что трудная и кропотливая научно-исследовательская работа их не занимает. Все, конечно, понимают, что это не более чем поза. Да и не нужно особой наблюдательности, чтобы заметить, с каким волнением все эти джентльмены, добровольно надевшие маску невозмутимости, относятся к новым идеям и с каким живейшим удовольствием их обсуждают. В Гарварде отсутствие явного интереса к творческой научной работе – отнюдь не только условность поведения. Истинно гарвардский профессор действительно считает дурным тоном слишком много говорить и слишком много размышлять о науке. Стремление вести себя по-джентльменски требует от него такой затраты энергии, что ни на что другое у него уже просто не хватает сил.
Теперь, наверное, моим читателям нетрудно представить, С каким нетерпением я ждал окончания войны, чтобы встретиться с европейскими учеными и снова насладиться относительной свободой дальнего путешествия. Рука отца вряд ли могла настигнуть меня за океаном. Но, кроме того, было еще одно обстоятельство, сообщавшее этому путешествию особенную привлекательность в моих глазах: приближалось время открытия международного математического конгресса, который должен был состояться в Страсбурге.
В нормальное время в научном мире существовал обычай, по которому раз в три-четыре года ученые, работающие в одной и той же области – математике, физике, химии, – собирались в каком-нибудь крупном центре, чтобы познакомиться с достижениями друг друга и сообща обсудить наиболее важные проблемы своей науки. Разразившаяся война временно помешала ученым в очередной раз продемонстрировать единство науки, а разделение мира на два враждебных лагеря после войны грозило надолго сделать эти встречи невозможными.
Последний международный математический конгресс перед первой мировой войной происходил в 1912 году в Кембридже (Англия). Следующий должен был состояться в 1916 году, но созвать его не было никакой возможности. Поэтому конгресс 1920 года не был подготовлен заблаговременно. Воспользовавшись благоприятным стечением обстоятельств, Франция взяла инициативу в свои руки и предложила созвать конгресс в одном из городов, только что возвращенных в ее лоно, а именно в Страсбурге. Предложение это оправдывалось тем, что в новой Франции Страсбургский университет стал вторым по значению университетом в стране и единственным провинциальным учебным заведением со своими собственными традициями.
По многим причинам решение провести конгресс в Страсбурге оказалось неудачным. Потом я даже жалел, что своим присутствием как бы выразил согласие с этим решением. Немцев в виде наказания лишили права участия в конгрессе. В зрелые годы я пришел к выводу, что подобные меры недопустимы в практике международных научных отношений. Возможно, что в противном случае конгресс еще очень долго не мог бы состояться, но, может быть, лучше было согласиться на отсрочку, чем допустить проникновение националистического духа в такое действительно интернациональное учреждение, как международный съезд ученых. В свое оправдание я могу сказать немного: я был молод и занимал такое незначительное положение, что не чувствовал личной ответственности за направление развития мировой науки. Мне представлялся прекрасный случай поехать в Европу не туристом, а ученым – очень скромным, но все-таки ученым, – у кого бы на моем месте хватило духа отказаться?
Конгресс должен был состояться в сентябре, и мне хотелось до этого поработать с кем-нибудь из европейских математиков, интересующихся теми же вопросами, что и я. По некотором размышлении я остановил свой выбор на Морисе Фреше. Фреше яснее других понимал, какие возможности открывает математика кривых по сравнению с математикой точек (я говорил об этом в предыдущей главе), и в то время все были уверены, что его работы станут важным этапом на пути создания новой математической науки.
Надо сказать, что в настоящее время полученные Фреше результаты, при всей своей значительности, занимают в математике все-таки совсем не то место, которое им когда-то прочили. В какой-то степени это связано с тем, что его работы проникнуты духом абстрактного формализма, глубоко враждебным любым конкретным физическим применениям. Но в то время в Страсбурге – оценить прошлое всегда легче, чем предсказать будущее, – большинство считало, что вождем математиков среднего поколения станет, конечно, Фреше.
Лично меня в работе Фреше привлекало главным образом то, что по своей внутренней направленности она очень близко примыкала к тому, чем я пытался заниматься в Колумбийском университете в период увлечения топологией. Занятия под руководством Рассела и последующее знакомство с работами Уайтхеда пробудили во мне интерес к использованию в математике аппарата формальной логики. А в работе Фреше многие части так и напрашивались, чтобы их изложили на том странном и в высшей степени оригинальном математико-логическом языке, который Уайтхед и Рассел изобрели для своей «Principia Mathematica» 2.
Собственно, теперь я мот бы уже приступить к описанию конгресса, но, прежде чем рассказывать о событиях, происходивших в Страсбурге летом 1920 года, мне хотелось бы остановиться на смысле терминов «постулационизм» и «конструкционализм». Достоинства и недостатки этих двух школ до сих пор являются предметом многочисленных споров в математике. Не мудрено, что в Страсбурге эта проблема доставила мне множество волнений.
Греческая геометрия исходит из некоторых основных предположений, называемых аксиомами или постулатами; эти предположения рассматриваются как простейшие бесспорные законы логики и геометрии. Некоторые из них имеют в основном формально-логический характер, вроде аксиомы о том, что две величины, равные одной и той же третьей величине, должны быть равны между собой. Другие описывают пространственные отношения, как, например, аксиома параллельности, утверждающая, что через каждую точку Р плоскости, не лежащую на заданной в той же плоскости прямой l, проходит одна и только одна прямая, не пересекающая l, которая и называется параллельной l.
Этот последний постулат не обладает самоочевидностью чисто логических постулатов математики. Целые поколения ученых всячески пытались доказать, что он не может нарушаться. В XVIII столетии итальянский математик Саккери потратил много усилий на исследование различных следствий, получающихся при отказе от аксиомы о параллельности, в надежде, что при этом он рано или поздно придет к какому-либо логическому противоречию. Саккери проделал интереснейшую работу и нашел множество новых форм аксиомы о параллельности, но все его усилия оказались тщетными. Чем более он старался найти противоречия среди следствий из отказа от этой аксиомы, тем более содержательной становилась совокупность фактов, получающаяся при таком отказе. Эта все возрастающая совокупность фактов постепенно приобретала характер геометрии, страшно причудливой по сравнению с обычной геометрией Евклида, но тем не менее внутренне нисколько не противоречивой.
Наконец, в начале XIX столетия целая группа ученых – венгерский математик Янош Бояи, русский математик Лобачевский и великий немецкий математик Гаусс – пришла к смелому заключению о том, что отказ от аксиомы о параллельности вообще не приводит ни к какому противоречию, а означает только переход к новой, «неевклидовой» геометрии. Начиная с этого времени, все более и более росло понимание того, что так называемые постулаты геометрии, а также постулаты других математических дисциплин вовсе не являются непререкаемыми истинами. К ним начали относиться как к предположениям, которые можно принять или отвергнуть в зависимости от особенностей изучаемой математической системы.
Это соблазнительное отношение к математическим постулатам как к предположениям, произвольно устанавливаемым исследователем в зависимости от решаемой задачи, а не как к неизменным законам мышления постепенно стало обычным для математиков во всех странах. В Америке одним из первых пропагандистов этой точки зрения и, пожалуй, главным из ее ранних сторонников был Эдвард В. Хантингтон из Гарвардского университета; я учился вместе с ним в 1912 году, и он оказал большое влияние на мой образ мыслей.
В Англии главным постулационистом был, вероятно, Уайтхед, но он соединял с чистым постулационизмом представление о том, что изучаемые математикой объекты сами представляют собой некоторые логические конструкции, а не просто какие-то величины, описываемые совокупностью постулатов. Например, точки он иногда рассматривал как совокупность всех тех выпуклых фигур, про которые обычно говорят, что они содержат данную точку. Любопытно отметить, что аналогичные идеи независимо высказывал и Хантингтон и что важное исследование в этом направлении еще на несколько лет раньше было выполнено философом Джошия Ройсом 3. Но классическим примером конструкционализма в математике остается определение целых чисел, данное Уайтхедом и Расселом в «Principia Mathematica».
Различие между постулационистской трактовкой чисел и конструкпионалистской трактовкой, предложенной Уайтхедом и Расселом, заключается в следующем. Для постулациониста числа являются некоторыми неопределяемыми объектами, связанными совокупностью принятых формальных отношений, или предметами особого рода, строящимися на основе нашего опыта при помощи определенных правил комбинирования данных более простых исходных опытов. При постулационистской трактовке числа являются просто объектами, связанными отношениями «перед» и «после» так, что если a находится перед b, а b перед c, то a будет и перед c, и что для каждого числа, отличного от нуля, существует число, находящееся непосредственно перед ним (т.е. непосредственно ему предшествующее). Это и есть основные постулаты при таком подходе к числовой системе.
При конструкционалистской трактовке чисел сперва вводится понятие единичного множества – такой совокупности объектов, что, взяв любой из них, мы будем иметь тот же самый объект. Число «один» после этого служит для обозначений совокупности всех единичных множеств. Диадой далее называется совокупность объектов, не являющаяся единичным множеством, но становящаяся единичным множеством после удаления из нее любого из входящих в нее объектов. Тогда число «два» – это совокупность всех диад. После этого триада определяется как совокупность объектов, не являющаяся ни единичным множеством, ни диадой, но превращающаяся в диаду при удалении любого из входящих в нее объектов, а число «три» – как совокупность всех триад. Подобным образом при помощи процесса, называемого процессом математической индукции, может быть построено полное множество всех положительных целых чисел.
Неспециалисту все эти рассуждения могут показаться пустой игрой отвлеченными понятиями. В самом деле, разве, вводя эти определения первых целых чисел, мы не пользовались цифрами 1, 2 и 3 лишь в слегка завуалированном виде? Но для логика это возражение звучит малоубедительно, так как большая точность приведенных выше определений позволяет ему стать на твердую почву и перейти отсюда к более сложным математическим идеям.
Искусство построения все более и более сложных математических объектов, таких, как множества множеств и отношения между отношениями, было известно мне и из работ Хантингтона и из работ Рассела. К тому времени я уже написал две-три статьи о применении этой техники к некоторым элементарным математическим ситуациям.
Постулационизм и конструкционализм, о которых здесь идет речь, отнюдь не были чисто математическими течениями. Постулационистские взгляды, в частности, разделяют многие физики. И теория относительности Эйнштейна, и новая квантовая механика представляют собой как раз те разделы, в которых физика вырвалась из рамок классической геометрии Евклида и приняла новые определения, задаваемые некоторыми совокупностями аксиом, но не опирающиеся на неизменную и незаменимую геометрическую интуицию, лежащую в основе старой кантианской теории пространства.
Конечно, справедливо, что тенденция придумывать постулаты ради постулирования и писать научные статьи ради их писания получила широкое распространение в современной математике. И все-таки холодное и суровое посредничество логики подобно холодному и суровому посредничеству мрамора принуждает к определенной внутренней дисциплине всех и в том числе поклонников новой моды свободы, за исключением, быть может, самых пустых и пошлых математиков.
Как я уже говорил, меня воспитали в постулационистских традициях, но в первые годы создания конструкционализма, выросшего из постулационизма, я приобщился и к этому движению. Раздумывая, с кем из французских ученых я мог бы совместно заниматься наукой, я искал такого человека, работы которого показывали бы, что он связан с одним или с обоими из этих двух направлений мысли. В этом отношении Фреше не имел соперников среди французских математиков.
До сих пор я говорил о развитии постулационизма и конструкционализма только в Англии и в Америке. В Германии тоже довольно рано появились представители обоих этих направлений; наиболее значительными и оригинальными среди них были Г. Фреге и Шрёдер. Во Франции, наоборот, сравнительно поздно привились новые навыки мышления, но как только постулационизм получил здесь признание, Фреше стал бесспорным вождем нового направления. Я сам сделал одну или две не совсем безуспешные попытки дополнить постулационизм Фреше и использовать его в качестве аппарата для конструкционалистского изучения новых более сложных пространств, в которых роль точек играют кривые. Эти мои попытки фактически лежали, однако, уже вне рамок собственных работ Фреше.
Я написал Фреше и попросил его взять меня в ученики на время летних каникул. В ответ пришло очень теплое письмо с приглашением приехать. Фреше собирался провести лето в Беарне на испанской границе, но потом его планы изменились, и он предложил мне сначала поработать вместе с ним в Страсбурге, а в конце лета перебраться в маленькую деревушку в Лотарингии, которую немцы называли Дагсбург, а французы – Дабо.
В начале июля я уже находился на борту французского пассажирского парохода «Ла Турен», совершавшего регулярные рейсы между Америкой и Францией. На том же пароходе плыли в Европу несколько друзей нашей семьи, которые обещали родителям приглядывать за мной. Но с самого начала произошло что-то странное. Нас окружила компания юнцов, от которых сильно несло винным перегаром, и тут выяснилось, что мои пуританские привычки плохо согласуются с представлениями моих стражей о радостях морских путешествий.
Я не принадлежал к числу идейных трезвенников и с удовольствием пил вино, которое подавали к столу. Правда, я всегда разбавлял его водой, так как крепкие спиртные напитки не доставляли мне удовольствия. К сожалению, компания, в которую я попал, не только придерживалась противоположных взглядов, но еще всячески старалась изменить мои вкусы. Эти попытки возмущали меня до глубины души. Я считаю, что обычай заставлять людей пить – такое же посягательство на личную свободу, как стремление синеносых 4 утвердить сухой закон. В общем, я плохо чувствовал себя на пароходе и ни с кем не сблизился. Я с нетерпением ждал той минуты, когда можно будет сойти на берег и расстаться, наконец, с моими спутниками.
Во время путешествия произошел один довольно интересный, хотя и не очень приятный эпизод. Погода нам не благоприятствовала, большую часть пути было хмуро и облачно. Под конец в течение нескольких дней никак не удавалось определить высоту солнца. Пароход шел с полной скоростью, а курс определялся только по лагу и компасу. Поддерживать связь по радио в то время уже умели, по ориентироваться с его помощью еще не научились. Капитан считал, что мы находимся у Бишоп Рок 5, и собирался пристать к берегу. Внезапно в тумане прямо перед носом корабля показались скалы. Немедленно раздалась команда: «Полный назад!» Но было уже поздно – мы оказались в опасной зоне.
Идя задним ходом, корабль получил на корме основательную пробоину. В третий класс начала проникать вода, еще немного, и пассажиров охватила бы паника. К счастью, офицерам удалось сохранить порядок, правда, с помощью одного французского боксера, который случайно оказался в числе пассажиров.
Нам всем предложили спуститься в каюты и надеть спасательные пояса. У меня было не очень приятное ощущение, когда я поднимался наверх среди беспорядочно снующей толпы. Очень хотелось оказаться на палубе как можно скорее, но я понимал, что малейшая попытка ускорить общее движение или пройти впереди других в эти минуты не только акт трусости, но и прямая угроза общему благополучию. Усилием воли я заставлял себя уступать дорогу и подниматься наверх размеренным шагом.
На палубе мы не узнали ничего нового. Корабль постепенно заливало водой, и переборки грозили вот-вот рухнуть. Плотники из корабельной команды делали героические усилия, чтобы спасти положение (их попытки увенчались успехом: переборки действительно выдержали переезд через Ла-Манш, и мы благополучно добрались до Гавра). В ту ночь всем приказали остаться на палубе. Мы спали, не снимая спасательных поясов, каждый около шлюпки, в которой ему предназначалось место в случае катастрофы. Помню, что ночью кто-то уронил мне на голову бутылку.
На следующее утро мы без всяких приключений высадились в Гавре. Оказалось, что корабль поврежден гораздо серьезнее, чем предполагалось: понадобилось несколько месяцев на то, чтобы привести его в порядок и снова спустить на воду. На берегу меня ждала почта и в том числе письмо от Фреше с сообщением, что он предпочитал бы встретиться со мной немного позже. Недолго думая, я вновь пересек Ла-Манш, высадился в Саутгемптоне и поехал в Кембридж.
В Кембридже я застал нескольких своих старых друзей. Д-р Бернард Мусцио охотно приютил меня у себя. И он и его жена занимались психологией и работали в Австралии. Я познакомился с ними еще в студенческие годы в Кембридже; позднее, во время войны, они приезжали в Бостон с английской военной миссией. Я навестил еще некоторых знакомых и побывал у Харди, который как раз собирался переехать в Оксфорд, где он получил кафедру.
Вообще я убедился, что в Кембридже меня не забыли. Во всяком случае, старые друзья встретили меня с такой сердечностью, о которой я не смел и мечтать в Гарварде. Официально я никогда не числился студентом Кембриджа. В свое время мне просто разрешили посещать лекции, не требуя выполнения никаких формальностей, поскольку об этом существовала специальная договоренность между Гарвардским и Кембриджским университетами. Несколько лет спустя я как-то спросил у Джесси Уайтхед, дочери Альфреда Норта Уайтхеда, имею ли я право называться кембриджцем. «Мне кажется, что в вашем положения, – сказала она, – правильнее всего считать себя незаконным сыном alma mater» 6. Теперь я с радостью убедился, что alma mater гостеприимно принимает в своем доме внебрачных детей.
Пробыв несколько дней в Кембридже, я уехал в Париж. Дешевая гостиница неподалеку от Лувра, в которой я остановился, поражала отвратительными санитарно-гигиеническими условиями. Но вегетарианские привычки не причиняли мне в Париже особенных хлопот: на каждом шагу здесь встречались дешевые рестораны, в которых подавали доброкачественные и вкусные овощные блюда.
В отличие от Кембриджа, никаких друзей в Париже у меня не было, французским языком я владел ровно настолько, чтобы кое-как объясниться; может быть, поэтому парижские дома казались мне укрепленными крепостями, выстроившимися сомкнутым строем по обеим сторонам улиц и совершенно неприступными для иностранца. Оживленные кафе, попадавшиеся на каждом шагу, и своеобразная уличная жизнь ежеминутно ранили мой юношеский пуританизм. Я чувствовал себя несчастным и мечтал о возвращении домой. Все свободное время, а у меня его было более чем достаточно, я бродил по городу, иногда заходя в музеи. Особенно привлекательным казался мне Музей Центральной школы искусств и ремесел (Ecole centrale des arts-et-mйtiers). Я узнал о его существовании от одного американского друга, не раз бывавшего во Франции. Он рассказывал, что в этом музее, где покрытые пылью экспонаты расставлены с типично французской бессистемностью, собраны любопытные реликвии, связанные с великими изобретениями XIX столетия, и различные приборы, с помощью которых производились наиболее замечательные научные эксперименты.
Фреше назначил мне первое свидание в лицее на бульваре Сен-Мишель, где он принимал аспирантские экзамены, а потом как-то пригласил позавтракать с ним в эльзасском brasserie 7 там же на бульваре. Усатый, мускулистый, среднего роста, Фреше внешне походил на спортсмена. Во время войны он служил в армии переводчиком (он хорошо знал английский язык). Фреше, так же как и я, любил гулять пешком, и тут мы сразу нашли общий язык. Но он все еще не мог принять меня в Страсбурге, поэтому я решил ненадолго поехать в Бельгию, чтобы навестить своих друзей. Я застал их в Лувене. Они только что привели в порядок свой прекрасный старый дом, в котором во время войны жили немецкие офицеры, приведшие его в состояние мерзости запустения. К сожалению, я приехал в очень неудачный момент: у них как раз гостили ректор Гарвардского университета А. Л. Лоуэл и его жена. Из-за этого меня в основном препоручили детям. Большую часть времени я гулял с младшим сыном хозяев, который только что провел год в Гарвардской юридической школе. Он водил меня по городу, где мы на каждом шагу натыкались на следы пожаров и разрушений. Я осмотрел руины библиотеки, неф церкви, наполовину скрытый от глаз еще не разобранным эшафотом; часто мы бродили по окрестностям и разговаривали.
Освободившись от оков Гарвардской дисциплины, мой спутник с жаром нападал на некоторые стороны английской и американской системы обучения юристов. Ему гораздо больше нравилась юриспруденция тех стран, которые позаимствовали свое законодательство у римлян; он считал, что более естественно подводить каждое дело под определенный закон, чем заниматься розысками прецедентов 8.
Пробыв несколько дней в Бельгии, я отправился в Страсбург, решив ехать через Люксембург и заодно побывать в стране железа 9. Для меня было большим облегчением очутиться среди людей, охотнее говоривших по-немецки, чем по-французски, так как в этом языке я чувствовал себя гораздо более уверенно.
В Страсбурге я снял комнату с пансионом в новой части города. Каждый или почти каждый день я проводил несколько часов у Фреше в маленьком садике около его дома рядом с Илль-Рейнским каналом 10.
В работах Фреше имелось несколько положений, которые мне хотелось развить дальше. Его подход к обобщенным пространствам вовсе не использовал того, что в математике называется «координатами». Иначе говоря, Фреше даже и не пытался представлять точки своих пространств в виде совокупностей чисел. В координатном представлении каждой паре точек естественно сопоставляется своя совокупность чисел, получаемая вычитанием чисел, описывающих одну из этих точек, из чисел, описывающих другую. В обычной геометрии на плоскости или в трехмерном пространстве такой метод сопоставления определенных чисел каждому прямолинейному отрезку, задаваемому парой его конечных точек, является основой векторного исчисления. В обычном трехмерном пространстве задание вектора, соединяющего какую-либо фиксированную точку с некоторой другой, сводится к указанию, насколько надо продвинуться сперва на север (или на юг) от первой точки, затем на запад (или на восток) и, наконец, после этого вверх (или вниз) для того, чтобы попасть в эту другую точку.
Векторное исчисление не очень новая область математики. Более полутораста лет тому назад люди уже знали, что в трехмерном пространстве существуют «направленные величины» (условно говоря, «величины со стрелками»), которые можно складывать. Так, например, если сделать один шаг в направлении одной стрелки, а затем второй в направлении другой, то совокупность двух шагов можно рассматривать как один «суммарный» шаг в некотором новом направлении. Мы не можем здесь останавливаться на множестве других операций, которые математики умеют производить с такими «направленными величинами». Существенно только подчеркнуть, что, как уже давно было известно, подобное «векторное исчисление» возможио и в пространствах, число измерений которых превосходит три, и даже в бесконечномерных пространствах.
Созданная Фреше общая теория перехода к пределу и дифференцирования применима ко многим различным пространствам и в том числе ко всем векторным пространствам. Однако она вовсе не требует, чтобы точки пространства обязательно рассматривались как «отрезки со стрелкой». Тем не менее класс векторных пространств представляет собой весьма существенную область приложения общей теории Фреше и, безусловно, заслуживает специального выделения при помощи соответственно подобранной системы аксиом. Фреше, который не считал векторные пространства более важными, чем другие «обобщенные пространства», не пытался продвинуться в этом направлении, я же с горячностью взялся за дело, решив довести его до конца.
Теория, к которой я пришел, оказалась тесно связанной с так называемой «теорией групп», изучающей правила комбинирования последовательных преобразований любой совокупности объектов; фактически она представляла собой интересный специальный раздел этой весьма общей теории.
Мне удалось построить полную систему аксиом, определяющую всевозможные векторные пространства. Работа понравилась Фреше, но не произвела на него особенно сильного впечатления. Однако через несколько недель, увидав в польском математическом журнале статью Стефана Банаха, содержащую точно те же результаты – не более и не менее общие, – он страшно разволновался. Банах сделал то же, что и я, но на несколько месяцев раньше. Поскольку трудились мы совершенно независимо, полная самостоятельность обеих работ не вызывала никаких сомнений.
В результате в течение некоторого времени изученные мной и Банахом пространства так и назывались пространствами Банаха–Винера. С тех пор прошло тридцать четыре года, на протяжении которых теория этих пространств не переставала привлекать внимание исследователей. Но хотя за это время появилось немало относящихся к ней работ, только сейчас начинает полностью выявляться ее значение в разнообразных разделах математики.
Какое-то время я еще продолжал трудиться в этой области и даже опубликовал одну-две работы, но постепенно увлекся совсем другой тематикой. Поэтому сейчас такие векторные пространства совершенно справедливо называют именем одного Банаха.
Я, безусловно, был одним из родителей этого ребенка, выношенного не в чреве женщины, а в голове мужчины, но по некоторым соображениям я в конце концов от него отказался. Во-первых, мне не хотелось торопиться, во-вторых, не хотелось изо дня в день внимательно следить за литературой. При создавшейся тогда ситуации то и другое было совершенно необходимо, так как иначе я не мог быть уверен, что Банах или кто-нибудь другой из его польских учеников уже не получили те или иные интересные данные, которые я еще только собираюсь опубликовать. Каждая математическая работа делается под некоторым давлением, но когда это давление усиливается еще за счет соревнования, в котором многое зависит от чистой случайности, оно становится для меня нестерпимым.
Существует, кроме того, еще одно обстоятельство, которое я всегда учитываю, принимаясь за ту или иную работу. Я говорю сейчас о той стороне математического творчества, к которой большинство относится весьма пренебрежительно и которую я называю математической эстетикой. Необходимость ответить на вопрос, что именно я имею в виду, ставит передо мной очень трудную задачу: я должен рассказать людям, не занимающимся математикой, не только о сущности того, что я сделал, но и о том, как я лично к этому отношусь. Для этого мне придется объяснить, почему некоторые проблемы, считавшиеся в течение долгого времени интересными, не только не вызывали у меня ни малейшего вожделения, но оказались совершенно непригодными для приложения моих сил и способностей.
Тут передо мной возникают трудности, с которыми в той или иной форме сталкивается каждый ученый, добившийся серьезных успехов в такой сложной и в высшей степени индивидуальной области творчества, как математика, и возымевший намерение рассказать о своей жизни.
Композитор, говоря о себе, не может ничего не сказать о технике композиции, гармонии и контрапункте, составляющих сущность его работы, хотя, за исключением профессиональных музыкантов, эту сторону его творчества сумеют оценить лишь немногие прилежные посетители концертов, да и то в весьма незначительной степени.
Писатель или художник, задумавший написать свою автобиографию, сталкивается с этой же проблемой. Правда, он может утешить себя мыслью, что наиболее образованная часть общества все-таки в состоянии оценить результаты его творчества.
И тем не менее ни один писатель и ни один художник не может считать, что честно написал свою автобиографию, если он не рассказал о своем творчестве того, что по-настоящему могут оценить только его товарищи по работе, да и то не все, а лишь наиболее квалифицированные из них.
При выполнения этой сложной задачи у представителей искусства есть огромное преимущество перед учеными. Оно заключается в том, что художнику или музыканту гораздо легче привлечь внимание рядового читателя, чем математику. Легче хотя бы потому, что большинство людей, независимо от того, занимаются ли они сами художественным творчеством или нет, считает, что некоторая осведомленность в вопросах искусства является признаком общей культуры. А кроме того, читатель, который не в состоянии разобраться во всех технических ухищрениях, с помощью которых достигается тот или иной художественный эффект, вполне способен ощутить эмоциональное воздействие искусства, а этого уже совершенно достаточно для того, чтобы искренне заинтересоваться процессом создания тех произведений, которые обычно доступны глазам и ушам непосвященных лишь в совершенно законченном виде.
Специфическая трудность, с которой сталкивается математик, пишущий свою автобиографию, заключается в том, что большинство так называемых культурных людей, не связанных с математикой по роду своих занятий, считает совершенно допустимым не иметь об этой науке ни малейшего представления. Математика для них – нечто в высшей степени скучное, сухое и отвлеченное. Если о ней когда-нибудь вспоминают, то она ассоциируется с неким подсобным аппаратом физики или с работой статистиков; в наиболее печальных случаях считается, что это почти то же самое, что занятие бухгалтерией. И уж, конечно, едва ли кто-нибудь из нематематиков в состоянии освоиться с мыслью, что цифры могут представлять собой культурную и эстетическую ценность или иметь какое-нибудь отношение к таким понятиям, как красота, сила, вдохновение.
Я решительно протестую против этого косного представления о математике. Существует немало математических работ, которые при всей строгости и логичности остаются в глазах опытного и компетентного специалиста чисто формальными опусами, ничего не говорящими ни уму, ни сердцу. Но существуют и другие. Их авторы видят задачу математики в том, чтобы с помощью четких и точных методов создать новое, более совершенное представление о мире, высказать какое-то aperзus 11, которое еще немного приоткроет завесу таинственного. Если математики вынуждены при этом пользоваться определенными средствами, которые их в чем-то ограничивают, то разве не так обстоит дело при любой творческой работе? И разве это определяет существо дела? Знание контрапункта не лишает композитора восприимчивости к музыке, а необходимость считаться с правилами грамматики и писать сонеты, соблюдая определенную форму, не отнимает у поэта свободы творчества. Ибо полная свобода делать все, что ты хочешь и как ты хочешь, – это, в сущности, не более, чем свобода вообще ничего не делать.
Тем не менее творчество математика действительно не находит того отклика, который вызывают произведения скульптора или музыканта. Но связано это совсем не с большей или меньшей эмоциональностью аудитории, к которой они обращаются. Дело просто в том, что научиться хотя бы элементарно разбираться в математике гораздо сложнее, чем научиться получать некоторое удовольствие от музыки. А ведь мы не удивляемся тому, что композиторы, с интересом обсуждающие произведения друг друга, довольно равнодушны к их исполнению на концертах, где большинство слушателей пассивно воспринимает созданную ими музыку, не испытывая при этом ничего, кроме смутных эмоций.
Приняв во внимание все эти соображения, придется признать, что подчеркнутая отчужденность математиков связана столько же с их интеллектуально-эстетическим снобизмом, сколько с реальными трудностями контакта с непрофессионалами. В самом деле, для того чтобы составить хотя бы отдаленное представление о содержании той или иной математической работы и решить, нравится она ему или нет, любитель математики должен обладать достаточно высокой специальной подготовкой, без которой он просто лишен возможности воспринимать что бы то ии было, хотя бы даже и совершенно пассивно.
При всем этом математики вовсе не отгорожены от остального мира, как это может показаться с первого взгляда. Существует очень большой и постоянно увеличивающийся контингент людей – инженеров, физиков, даже биологов, – которые, используя математику в своих профессиональных целях, постепенно приобретают достаточное количество знаний, чтобы оценить по-настоящему глубокую теорию или умное, изящное доказательство. Одним из мотивов, побудивших меня взяться за написание автобиографии, было стремление привлечь внимание общества к существованию вот этого более узкого круга любителей математики; попутно мне еще, конечно, хотелось, чтобы и те, кто не имеет никакого отношения к «возне с цифрами», хотя бы на минуту представили себе, какая это увлекательная и волнующая профессия.
Итак, после Страсбурга я оставил банаховы пространства. При этом я исходил скорее из эстетических, чем из строго логических соображений. В то время эта проблематика с чисто математической точки зрения и с точки зрения возможных приложений не казалась мне настолько увлекательной, чтобы я захотел связать с ней свою будущность ученого. Сейчас я вижу, что в некоторых своих аспектах теория банаховых пространств приобрела достаточную глубину и обогатилась достаточно большим количеством интересных теорем, чтобы вполне удовлетворить мои запросы в этом отношении.
Однако тогда я думал, что в ближайшие десятилетия она может дать материал только для довольно абстрактных и не очень значительных работ. И виноват в этом был не Банах – я ни в коем случае не хотел бы, чтобы мои слова прозвучали как упрек по его адресу, – а множество гораздо менее талантливых исследователей, с жадностью набросившихся на его идею. То, что этой теорией в первую очередь должны заинтересоваться дельцы от науки, рыщущие в поисках не слишком сложных тем для докторских диссертаций, я предвидел с самого начала.
Но главной причиной, заставившей меня отказаться от дальнейшей работы по теории банаховых пространств, было все-таки то, что меня снова целиком захватили исследования броуновского движения. Дифференциальное пространство, иди пространство броуновского движения, по существу, является некой разновидностью векторных пространств и очень тесно связано с банаховыми пространствами. Но, в отличие от них, оно имеет четкий физический смысл, что было для меня очень соблазнительной приманкой. К тому же в чисто математическом аспекте это была безраздельно моя область, в то время как в разработке теории банаховых пространств я мог рассчитывать лишь на положение младшего партнера.
Мне показалось, что, когда я впервые рассказал Фреше о дифференциальном пространстве, эта теория не произвела на него очень большого впечатления. Тем не менее Фреше помог мне встретиться с Полем Леви, работавшим тогда в Политехнической школе и считавшимся самым многообещающим среди молодых теоретико-вероятностников Франции. Леви не сразу поверил в то, что моя работа принципиально отличается от работы Гато, но в конце концов мне удалось его в этом убедить. С тех пор Леви стал одним из моих самых близких друзей и помощников, и начиная с этого времени во всех работах каждого из нас все время чувствовалось влияние другого. Любопытно, что третьим математиком, работы которого впоследствии оказались очень тесно связанными с работами Леви и моими, был швед Крамер, с которым я впервые встретился в Англии, – в то лето он одновременно со мной гостил у Мусцио.
Начав работать с Фреше, я настолько увлекся своими математическими делами, что на какое-то время забыл обо всем на свете. Когда, наконец, я немного пришел в себя и оглянулся вокруг, выяснилось, что я довольно одинок. Со мной в гостинице оказался один американец, с которым мы вместе плыли на «Ла Турен». Он, конечно, считал, что я стою немного. Мне очень хотелось подружиться с его приятелем, молодым английским композитором, который остановился в той же гостинице, но я неудачно взялся за дело, а мой бывший спутник и не подумал помочь мне занять достойное место в нашем маленьком кружке.
Композитор видел во мне обычного неуклюжего обывателя. Причем это мнение было связано не столько с моими дурными манерами и неумением держать себя в обществе, сколько с его убеждением, что математика по самой своей природе враждебна искусству. Я придерживался как раз противоположных взглядов (я уже о них писал) и утверждал, что математика – один из видов искусства. К сожалению, я говорил об этом так часто и так нудно, что мог вывести из терпения всякого, кто заранее не был склонен восторгаться этой наукой. В конце концов дело дошло до открытой словесной схватки, во время которой было оказано немало неприятного. Но в результате горизонт сразу прояснился, мы начали лучше понимать друг друга и в какой-то степени даже подружились.
Наконец, в один прекрасный день мы переехали в Дабо. Фреше с семьей остановился в лучшем отеле, а я, чтобы не докучать им сверх меры, снял комнату в другой гостинице.
В Дабо никто не мешал мне совершать одинокие прогулки по окрестностям; я с удовольствием карабкался по вогезским холмам из рыжего песчаника и спускался в узкие иссушенные долины, когда-то вырытые потоками, которые потом отвели для искусственного орошения.
Хозяева гостиницы относились ко мне с редкой заботливостью. В благодарность я при случае колол дрова и оказывал им разные мелкие услуги. Крики петухов и мычание коров напоминали мне о доме, а всплески воды в конце деревенской улицы, где женщины стирали в речке белье, и равномерные удары цепов на току доставляли истинное наслаждение.
Незадолго до начала конгресса мы вернулись в Страсбург. Я проводил большую часть времени, бродя по узким улочкам по соседству с кафедральным собором или гуляя вдоль набережных внутренних каналов, окружающих центр города.
На конгресс приехали трое моих друзей из Америки: Форрест Мюррей, Джо Уолш и Джеймс С. Тэйлор. Они остановились в той же гостинице, что и я, и мы разместились по двое в комнате. Немножко непонятный и вполне милый Форрест Мюррей из Гарвардского университета в течение многих лет был другом нашей семьи, и мне частенько случалось играть с ним в теннис. С Уолшем мы почти ровесники. В те времена это был веселый, добродушный парень со светлыми, стоящими торчком волосами. Он от всей души радовался поездке во Францию и собирался провести здесь целый год, благо после защиты докторской диссертации ему предоставили такую возможность. Мне доставляло огромное удовольствие слышать его гулкий бас и смотреть, с какой жадностью он стремится как можно скорее все узнать и увидеть; Уолш до сих пор профессор кафедры математики в Гарвардском университете.
Джеймс С. Тэйлор, четвертый в пашей компании, принадлежал, как и я, к новому, послевоенному пополнению МТИ. (Сейчас Тэйлор уже в течение многих лет профессор Питтсбургского университета.) Од приходился каким-то родственником Финеасу Т. Барнуму 12 и сам превосходно умел устраивать всевозможные развлечения. Позднее пути нашей четверки сильно разошлись, но в то время мы все были молоды и стремились в полную меру наслаждаться жизнью – этого было вполне достаточно, чтобы нас объединить.
Начали съезжаться и остальные участники конгресса. Из Америки приехало сразу несколько человек: профессор Принстонского университета Эйзенхарт со своей очаровательной молодой женой, Леонард Юджин Диксон, специалист по теории чисел из Чикаго, в прошлом знаток бриджа, известный своей любовью к Франции и всему французскому, и Соломон Лефшец из Канзаса. В молодости Лефшец работал в качестве инженера на одном из предприятий Вестингауза в Питтсбурге. Сильно пострадав в результате аварии на производстве, он оставил свою работу и занялся математикой. На новом поприще Лефшецу удалось добиться значительных успехов: через какое-то время он уже возглавлял математическое отделение Принстонского университета и впоследствии стал президентом Американского математического общества.
Среди приехавших был ряд ученых старшего поколения; для нас это были живые звенья, связывающие настоящее математики с ее великим прошлым. Сэр Джордж Гринхил, несмотря на преклонный возраст все еще пышущий здоровьем, представлял Вулич 13; Камил Жордан, который, презрев свои девяносто лет, совершал вместе с нами пешеходные экскурсии, был живым памятником эпохи Луи-Филиппа. Жордан еще помнил те времена, когда во французской математике царствовал Коши – предмет поклонения всех начинающих ученых.
Когда через два года после конгресса Жордан умер, нам казалось, что преемственность математических традиций непоправимо нарушена.
Почетное место на конгрессе занимал профессор Жак Адамар из Парижа. Ему тогда было всего пятьдесят пять лет, но он начал играть видную роль в науке еще до начала нового века, и мы, желторотые птенцы, считали его исторической фигурой. Адамар был кумиром своих младших коллег; небольшого роста, с бородкой, он обладал специфической внешностью, в том стиле, который французы обозначают словом fin 14.
В Англии математики, как правило, работают в Оксфорде или Кембридже, где преподаватели и студенты живут единой жизнью. Немецкие математики известны своим умением с приятностью проводить Nachsitzung 15. После окончания официальной дискуссии по поводу какой-нибудь научной работы все обычно отправляются в бар. Тут за кружкой пива прославленные и безвестные вместе обсуждают последние научные новости и беседуют о радостях жизни. Французские математики, наоборот, строго соблюдают табель о рангах: после того как профессор удалился в свой кабинет и расписался в журнале, где регистрируются лекции, студенты и младшие товарищи по работе для него больше не существуют.
Адамар – редкое исключение из этого правила. Он живо интересуется студентами, считает своим долгом заботиться об их будущем, и любой из них всегда может к нему обратиться. Если нынешнее поколение французских математиков начинает ломать традиционный барьер, разделяющий маститых и начинающих ученых, то это, безусловно, личная заслуга Адамара.
Я сам многим обязан адамаровской широте взглядов. У него не было никаких оснований обращать особое внимание на юного варвара из Нового Света, делающего первые самостоятельные шаги. Никаких оснований, кроме доброжелательности и стремления открыть еще один талант, возникавшего у него каждый раз, когда он замечал хотя бы самые скромные способности.
Много лет спустя, встречаясь с Адамаром на различных математических конференциях, я бывал приятно поражен тем, что он помнит о нашей страсбургской встрече и внимательно следит за моими работами. Так случилось, что эта поездка на конгресс привела, в частности, к тому, что я пополнил собой многочисленный отряд математиков, питающих к Адамару чувство глубокой признательности и обязанных ему благополучием своей научной карьеры.
Для участников Страсбургского конгресса несколько раз устраивались интересные экскурсии, во время которых нам показывали достопримечательности города и окрестностей: Саверн, огромную полуразрушенную башню О-Бар, своеобразный старинный городок Кольмар и один из районов, где происходили бои во время первой мировой войны. Французские солдаты повезли нас к месту бывших сражений в военных грузовиках. На обратном пути произошла какая-то поломка. Когда после долгого и утомительного ожидания мы снова сели в машины и добрались до маленькой винодельческой деревушки Тёркхейм, где предполагался обед, нас там уже никто не ждал. Простывшую еду убрали со стола, и мэр просто преподнес каждому из нас два стакана местного вина – старого и молодого, из вежливости мы выпили. Вино действительно было превосходно, но два стакана на пустой желудок – это довольно тяжелое испытание, не говоря уже о том, что молодое вино само по себе действует довольно сильно. Не мудрено, что по дороге в Страсбург, куда мы добирались поездом и на грузовиках, некоторые вполне почтенные ученые вели себя менее сдержанно, чем обычно.
После окончания конгресса наша четверка вернулась в Париж. Мы с Тэйлором собиралась в Америку, а Мюррей и Уолш решили провести год во Франции. Им, конечно, хотелось войти в общества французов, и они довольно прозрачно намекали на то, что наше совместное пребывание не является для них таким уж большим благом.
Но оказалось, что мы лишены возможности добраться до Америки, так как «Ла Турен», на которой я приехал во Францию и собирался возвращаться домой, еще не отремонтировали после аварии. Весь по-осеннему неприветливый сентябрь и часть октября мы тщетно ждали возобновления рейсов, надеясь в самом крайнем случае вернуться в Америку к началу занятий в МТИ. Увы, наши надежды не оправдались.
Освободившись от всех дел, мы часами бродили по улицам. И хотя нас тревожила мысль, что столь длительное отсутствие может быть неблагоприятно истолковано в институте, Париж доставлял нам огромное удовольствие. Поскольку пароходные агентства были объектом нашего постоянного внимания, мы в конце концов разузнали о новом американском пароходе, который как раз в это время начал совершать трансатлантические рейсы.
Среди немногочисленных, но интересных пассажиров преобладали заядлые любители путешествий. К ним принадлежали Оса Джонсон и ее муж, которые везли с собой ручного орангутанга из Индонезии. Благовоспитанность обезьяны приятно дисгармонировала с поведением их ребенка, который, как дьяволенок, врывался в курительный салон, где мы играли в шахматы, и норовил во что бы то ни стало разбросать все фигуры.
Я вернулся из Европы окрыленным. Как ни плохо владел я французским языком, за время пребывания во Франции мне удалось завязать дружеские отношения с моими коллегами. При этом выяснилось, что и в Англии и во Франции ко мне относятся с гораздо большим уважением, чем на родине. Кроме того, меня ждала работа, которая, по крайней мере мне самому, не говоря уже о некоторых других, казалась вполне удачной для начинающего ученого.
Я видел разрушения, которые принесла с собой война, видел их и в Бельгии, и в Эльзасе, где мы объезжали бывшую линию фронта. Но, побывав в Англии и во Франции, я понял, что европейцы обладают гораздо большими потенциальными возможностями внутреннего обновления, чем я раньше думал. Поэтому, несмотря на войну на Западе, несмотря на события в России и вопреки известиям о боях в Польше, у меня все еще оставалась надежда, что мировая война – не более чем эпизод, за которым последует период длительного мира и настанет что-то вроде великого благоденствия девятнадцатого века.
Что же касается России, то в то время казалось, что большинство русских все еще придерживается довоенных взглядов; поэтому можно было надеяться на то, что между Западом и Востоком снова установится равновесие, подобно тому как сгладились противоречия в Европе после бурных лет французской революции и наполеоновских войн.
Так или иначе, аппетит, как известно, приходит во время еды. Завязав какие-то связи в Европе, я с нетерпением ждал новой возможности отправиться за океан и еще ближе познакомиться с континентом, которому Америка обязана своей цивилизацией.
Примечания переводчика
1. Язык евреев Восточной Европы, развившийся но базе немецкого.
2. «Принципы математики» (лат.) – трехтомный труд Рассела и Уайтхеда по математической логике.
3. Джошия Ройс (1855–1916) – американский философ и педагог.
4. Насмешливое прозвище пуритан.
5. Островок у юго-западного побережья Англии.
6. Буквально «мать-кормилица» (лат.), в переносном смысле университет.
7. Ресторане (франц.).
8. Отличительная черта английского гражданского права, действующего в Англии, Шотландии, Ирландии и США, – отсутствие гражданского кодекса; при вынесении приговора суд руководствуется прецедентами, т.е. принятыми ранее решениями, которые являются образцами для всех аналогичных случаев.
9. Винер имеет в виду Рейнскую область, где сосредоточено много металлургических предприятий.
10. Канал, соединяющий р. Илль (левый приток Рейна) с Рейном.
11. Здесь: суждение (франц.).
12. Барнум Финеас Т. (1810–1891) переменил множество профессий, прославился организацией нескольких выставок различных диковинок, одно время был хозяином передвижного цирка со зверинцем.
13. Предместье Лондона, где находится огромный арсенал, Королевская военная академия и другие военно-технические учреждения.
14. Здесь: изысканный, изящный (франц.).
15. Здесь: досуг (нем.).
3 ГОДЫ СТАНОВЛЕНИЯ. 1920–1925
Вернувшись из Страсбурга, я с особенным удовольствием взялся за работу. Заметки о броуновском движении находились в это время в стадии завершения: общие контуры работы и методы доказательства теорем были уже совершенно ясны, но оставалось еще много недоделок, которые не позволяли считать их законченными статьями. Я показал свои результаты профессору МТИ Е. Б. Вильсону и по его совету тут же отправил все, что уже было написано, в «Труды Национальной академии наук» (Proceedings of the National Academy of Sciences).
Сейчас профессор Вильсон больше не преподает, хотя продолжает заниматься различной административной деятельностью, связанной с наукой. Вильсон – ученик Гиббса, работавшего всю жизнь в Йельском университете. Сам он несколько лет преподавал в МТИ математику, к 1920 году перешел на преподавание физики и в конце концов стал ведущим математиком в Гарвардской школе здравоохранения. Вильсон всегда чутко прислушивался ко всему новому в области точных наук и в течение многих лет стойко поддерживал все мои начинания.
Нашлись у меня и другие сторонники. Кафедру электротехники МТИ возглавлял проф. Д. Джексон. С ним и его сыном я познакомился еще летом 1910 года в Нью-Хемпшире, где мы оказались соседями. Джексон в течение нескольких лет искал инженера, разбирающегося в математике, или математика, разбирающегося в технике. Такой человек был ему необходим, чтобы внести ясность в некоторые насущные теоретические вопросы электротехники. Здесь мне придется сказать несколько слов о состоянии этой науки в то время.
Вся электротехника делится на две более или менее четко разграничиваемые области, которые в Англии и в Америке называются «электроэнергетикой» и «электросвязью», а в Германии соответственно «электротехникой сильных токов» и «электротехникой слабых токов».
К 1920 году первая из этих двух областей достигла относительно высокого уровня развития. Большая часть существующих сейчас электрических генераторов, моторов и трансформаторов в то время была уже известна, а современная тенденция широко применять множество небольших электрических моторов, каждый из которых приводит в действие только один агрегат, наметилась к тому времени вполне отчетливо. С 1920 года успехи электроэнергетики связаны главным образом не с разработкой принципиально новых конструкций, а с использованием более мощных генераторов и усовершенствованием метода передачи электроэнергии. Число крупных электростанций в Соединенных Штатах Америки и в других странах неуклонно росло, отдельные энергосистемы объединялись между собой, и вся эта новая техника прочно входила в быт.
Что же касается электросвязи, то эта область развивалась гораздо медленнее. К 1920 году радио существовало уже около двадцати лет, но его устройство оставалось почти таким же примитивным, как во времена Маркони. Радиовещание еще только готовилось распространиться по всей стране, а первые попытки создания радиотелефонов привлекали внимание главным образом любознательных молодых ученых и множества всякого рода дилетантов, но почти не были известны широкой публике. Первые электронные лампы уже появились, но никто еще не подозревал, до какой степени это изобретение изменит всю нашу жизнь. О телевидении начали говорить еще в прошлом столетии, так что сама по себе эта идея не представляла ничего нового, однако в двадцатые годы телевизионные установки только начинали превращаться из примитивных устройств, использующих селеновые элементы, в практичные и быстродействующие фотоэлектрические аппараты.
Один только телефон одержал уже решительную победу и, как спрут, раскинул щупальца кабелей до всему земному шару, В Соединенных Штатах ведущая телефонная компания А.Т.Т. 1 по размаху финансовых операций не имела равных на деловом рынке. Эта же компания усиленно поддерживала всевозможные научно-исследовательские работы. В такой ситуации не было ничего удивительного, что дальновидные инженеры-электрики типа Джексона проявляли особый интерес к проблемам теории связи.
Логические основы теории связи в то время оставляли желать лучшего, а казались они еще гораздо менее удовлетворительными, чем были на самом деле. Поскольку все понимали, что в телефонной линии речь передается пульсациями силы тока, отображающими звуковые колебания в микрофоне, основная задача состояла в том, чтобы до конца разобраться в теории пульсирующих напряжений и токов.
Теория пульсирующих напряжений и токов на самом деле играет основную роль не только в электросвязи; в своей простейшей форме, относящейся к обычному переменному току, она определила все развитие электроэнергетики. Дело в том, что постоянный ток очень неудобен для практического пользования, поскольку не существует простых способов, позволяющих повышать или понижать его напряжение. Поэтому в тех случаях, когда строились высоковольтные линии постоянного тока (как это было, например, во Франции), инженеры вынуждены были использовать ряд последовательно соединенных генераторов, что очень усложняло управление электросетью и затрудняло создание надежной изоляции.
Наибольшие заслуги в разрешении проблем, связанных с генерированием и использованием переменного тока, принадлежат, пожалуй, Николе Тесла. Этот блестящий, несколько эксцентричный югославский инженер служил в компании «Вестингауз». Ему удалось убедить своих хозяев производить не постоянный ток, а переменный, меняющий свое направление шестьдесят раз в секунду. Напряжение такого переменного тока легко уменьшить или увеличить с помощью трансформатора, а получается он в генераторах упрощенного типа, при конструировании которых отпадают многие серьезные проблемы, осложняющие создание хороших генераторов постоянного тока.
На переменном токе могут работать самые разнообразные моторы, включая некоторые виды индукционных моторов, не имеющих скользящих электрических контактов. Между неподвижной обмоткой мотора, питаемой током, подающимся извне, и подвижной, являющейся одним из элементов вращающейся части мотора, существует только электромагнитная связь того же типа, что и между обмотками трансформатора. Таким образом, в некоторых видах индукционных моторов не существует никаких проводов, соединяющих обмотку неподвижной части мотора с обмоткой подвижной части, называемой иначе ротором. Электрический ток, намагничивающий железный сердечник ротора, возникает благодаря взаимодействию ротора с неподвижной частью, или статором, действующим, как электромагнитный трансформатор. Существенное преимущество машин такого рода заключается в том, что они не имеют никаких подвижных контактов и потому гораздо проще, надежнее и безопаснее в эксплуатации.
На заре эпохи господства переменного тока компании «Вестингауз», раньше других овладевшей секретом его использования, пришлось выдержать жестокую борьбу. Ее главными противниками были «Дженерал электрик» и «Эдисон», вложившие большие капиталы в предприятия, работавшие на постоянном токе. Дело дошло до того, что «Дженерал электрик» с помощью различных махинаций добилась от властей штата Нью-Йорк постановления казнить преступников на электрическом стуле с помощью переменного тока. Это было сделано для того, чтобы запугать население, и без того с опаской относящееся ко всему новому, и заставить обывателей отказаться от использования переменного тока у себя дома. Но с течением времени выяснилось, что переменный ток гораздо более выгоден, и страсти понемногу улеглись.
В дальнейшем оказалось, что как раз сотрудник «Дженерал электрик» Чарльз П. Стайнметц 2 больше всего сделал для создания стройной и законченной теории электрических цепей переменного тока. Для описания переменных токов и приборов, их использующих, этот маленький человечек, обладавший громадными способностями, широко использовал математическую теорию комплексных, или мнимых, чисел (являющихся, впрочем, ничуть не менее подлинными, чем обычные вещественные числа). Причина, по которой введение комплексных чисел оказалось здесь столь удобным, состоит, грубо говоря, в том, что каждое комплексное число представляет собой пару вещественных чисел (задающих так называемые вещественную и мнимую части комплексного числа), а переменный ток заданной частоты также характеризуется двумя вещественными числами, одно из которых определяет интенсивность тока, а второе – его фазу (т.е. какой-то из моментов времени, в который сила тока обращается в нуль).
В течение многих лет теоретическая электротехника переменных токов могла рассматриваться как уже законченная наука – в той ее части, которая касалась токов и напряжений фиксированной частоты, например совершающих 60 колебаний в секунду. В телефонии и вообще в электросвязи также приходится иметь дело с переменными токами, но здесь встречаются гораздо более сложные переменные токи, не имеющие фиксированной частоты колебаний, а испытывающие в каждый момент времени целый ряд различных колебаний. По телефонной линии одновременно распространяются токи с частотами порядка 20 колебаний в секунду и порядка 3 тыс. колебаний в секунду. Именно эта переменность и множественность частот позволяют использовать телефонную линию для передачи разнообразной информации любого сорта, от глубокого вздоха до тончайшего писка.
Здесь мы сталкиваемся с одним из самых древних разделов математики – с теорией колеблющейся струны; основы этой теории связаны с некоторыми идеями древнегреческого математика Пифагора. Пифагор и его ученики уже хорошо знали, что колебания струны создают звуки и что существует определенная связь между высотой звука и длиной, плотностью и натяжением струны. Я не могу сказать, до какой степени отчетливо представляли себе древние греки, что струна может одновременно испытывать несколько разных типов колебаний. Во всяком случае, на заре современной науки, в XVII–XVIII веках, этот факт был уже хорошо известен.
Основным понятием, которое нам понадобится ниже, является понятие синусоиды. Для того чтобы представить себе, что это такое, предположим, что у нас есть вращающийся с постоянной скоростью барабан, на боковые стенки которого накручен лист бумаги, покрытый сажей. Предположим далее, что мы взяли камертон, прикрепили к его концу соломинку и заставили его колебаться параллельно оси нашего барабана. В таком случае, если поднести камертон к барабану, на покрытом сажей листе бумаги соломинка будет вычерчивать белую кривую; развернув лист, мы увидим правильную волнистую линию, которая и называется синусоидой.
Рассмотрим теперь более сложные кривые, получаемые при сложении нескольких синусоид. Вообще говоря, две кривые можно сложить, прибавляя друг к другу описываемые этими кривыми смещения, т.е., так сказать, комбинируя два камертона различной высоты тона так, чтобы оба они одновременно воздействовали на соломинку, прочерчивающую кривую на поверхности вращающегося барабана. В этом случае на одной и той же кривой будут одновременно наблюдаться два различных колебания; можно также добиться, чтобы этих колебаний было больше двух. Изучение способов разбиения различных запутанных кривых на сумму синусоид называется гармоническим анализом.
Существует очень важная теорема, которая говорит, что каждая кривая, форма которой снова и снова повторяется через один и тот же период, может быть представлена в виде суммы бесконечного числа отдельных синусоид с различными расстояниями между максимумами и минимумами. Фактически результаты такого рода были известны уже в XVIII столетии. Однако обычно с этой теоремой связывают имя Фурье – члена Французской академии наук, сопровождавшего Наполеона во время экспедиции в Египет.
С именем Фурье связан также другой способ сложения синусоид, при котором число этих синусоид столь велико, что уже невозможно выделить первую кривую, следующую за ней вторую кривую, следующую за ней третью и т.д. Иначе говоря, речь здесь идет о сложении громадного количества синусоид, частоты которых располагаются столь плотно, что их совершенно невозможно перенумеровать по порядку.
Две части гармонического анализа как раз и кacaютcя, с одной стороны, анализа периодических процессов, представимых в виде того, что обычно называется рядом Фурье, и, с другой стороны, анализа процессов, возрастающих с течением времени от нуля до некоторой величины и в конце концов снова затухающих до нуля, для описания которых используются так называемые интегралы Фурье. В обоих случаях математикам приходится использовать изощренные методы суммирования определенных количеств, которые мы уже упоминали выше под названием лебегова интегрирования.
Удовлетворительное построение теории рядов и интегралов Фурье в 1920 году было еще новинкой и не успело просочиться в круги инженеров-электротехников. Исследование же процессов, наиболее интересующих этих инженеров, почти полностью лежало за пределами того, чем интересовались специалисты-математики. Ряды Фурье, занимающие в чистой математике очень большое место, могут быть полезны только при исследовании периодических процессов, точно повторяющихся бесконечное число раз через один и тот же промежуток времени. Обычная форма теории интегралов Фурье, построенная строгим образом Планшерелем и другими математиками, касается кривых, принимающих очень малое значение в удаленном прошлом и снова становящихся очень малыми в удаленном будущем. Иначе говоря, обычная теория интегралов Фурье имеет дело с процессами, которые в том или ином смысле имеют начало и конец, но не продолжаются неограниченно с примерно одинаковой интенсивностью. Длительные же процессы того типа, с которым мы встречаемся при рассмотрении непрерывного фона шумов или при изучении лучей света, почти полностью выпали из поля зрения профессионалов-математиков и интересовали лишь отдельных математически мыслящих физиков, вроде сэра Артура Шустера из Манчестера.
Таким образом, я начал понимать, что запросы проф. Джексона относительно строгого обоснования теории связи могут быть удовлетворены лишь на базе гармонического анализа, но что этого нельзя достигнуть, ограничиваясь гармоническим анализом, который существовал в то время. Инженеры-связисты справлялись с этим затруднением, используя формальный аппарат операционного исчисления, разработанный примерно за 20 лет до того Оливером Хевисайдом 3. Это операционное исчисление до сих пор еще не получило вполне окончательного строгого обоснования, удовлетворяющего всех математиков. Тем не менее в руках Хевисайда и тех из его последователей, которые усвоили дух его учения настолько хорошо, чтобы разумно его использовать, оно превосходно работало.
В течение нескольких лет основной задачей, которую ставила передо мной кафедра электротехники МТИ, было строгое логическое обоснование операционного исчисления Хевисайда. Одновременно ряд ученых занимался этим же вопросом в других странах, но я не думаю, что полученные ими результаты были заметно удовлетворительнее моих. Мой подход состоял в исследовании наиболее общей формы гармонического анализа, после чего оказалось, что работы Хевисайда без труда могут быть переведены на язык такого обобщенного гармонического анализа.
Любопытно отметить, что мои исследования по операционному исчислению в какой-то степени были связаны с моими ранними работами по теории броуновского движения. Дело в том, что до этого времени в математике не имелось удовлетворительных примеров процессов, описывающих движение того типа, который соответствует звуку или свету с непрерывным спектром, т.е. такому, энергия которого не сосредоточена в отдельных изолированных спектральных линиях, а непрерывно распределена по целому интервалу частот. Обычный гармонический анализ мог хорошо описать результаты исследования свечения паров натрия, но не результаты исследования солнечного света. (Свечение паров натрия сконцентрировано в отдельных ярких линиях, в то время как солнечный свет имеет непрерывное распределение цветов, т.е. частот.) В главе 1 я уже рассказывал про свои исследования математики и физики дискретных процессов, в частности броуновского движения частицы в газе, возникающего в результате отдельных столкновений с молекулами, или, что то же самое, дробового эффекта электрического тока, связанного с тем, что ток представляет собой поток отдельных электронов. Мне удалось обнаружить, что с помощью процессов броуновского движения или дробового эффекта нетрудно построить процессы с непрерывным спектром; в частности, для этого достаточно подключить генератор тока, подверженного дробовому эффекту, к какому-либо колебательному контуру. Иными словами, я уже тогда начал вводить статистические соображения в теорию процессов с непрерывным спектром и через нее – в теорию связи. С тех пор прошло почти тридцать лет, и в настоящее время теория связи почти вся является статистической; истоки этого, если угодно, можно искать в моей работе того времени.
Занятия гармоническим анализом не исчерпывали всех моих математических интересов. Меня занимали и другие проблемы, одни в большей, другие в меньшей степени. Научно-исследовательская группа нашей кафедры накопила уже немало работ, заслуживающих опубликования; в результате у нас возникло желание издавать свой собственный журнал, и мы взялись за осуществление этого проекта. (Я был счастлив иметь в своем распоряжении журнал, в котором мог без задержки печатать свои работы.) Я был первым редактором журнала, но вскоре мои обязанности взял на себя Филипп Франклин, незадолго до этого перешедший к нам из Гарвардского университета; я работал вместе с ним на испытательном полигоне в Абердине, где он был моим другом и помощником.
Иногда я обсуждал, чем бы мне стоило заняться, с профессором О. Д. Келлогом из Гарвардского университета. Тогда я еще не знал, как ревниво приберегают многие профессора научные темы для своих аспирантов и как цепко держатся за свой приоритет в решении тех или иных задач. Я привык к более свободной обстановке в Англии и к расточительности отца, который щедро делился своими идеями с каждым, кто выражал желание его выслушать. Неуемно настойчивое любопытство, которое я проявлял, конечно, не располагало в мою пользу тех, чье доброе мнение могло бы оказаться мне очень полезным. Официально я не считался студентом Келлога. Он немало помогал мне, но я отнимал у него слишком много времени и думаю, что он считал меня страшно надоедливым субъектом.
От Келлога я узнал, что старая задача о распределении потенциалов снова стала привлекать всеобщее внимание. Здесь невозможно точно сформулировать эту задачу, но я постараюсь объяснить, о чем в ней идет речь. В физике часто приходится иметь дело с величинами, принимающими различные значения в различных точках плоскости или пространства. Одной из таких величин является температура в комнате. Существует также ряд других подобных величин, описывающих такие процессы, как движение жидкости или диффузия газа; сюда же относится измеряемая вольтметром переменная электродвижущая сила между точками пространства и землей или между двумя точками проводника с током.
Вряд ли стоит вдаваться в подробности относительно того, что называется электродвижущей силой; достаточно будет сказать, что это то, что мы измеряем в вольтах. Отметим также, что математическое изучение любых величин, изменяющихся в пространстве и во времени, относится к области дифференциальных уравнений в частных производных, представляющих собой математическое выражение связей, существующих между скоростями изменения нашей величины в различных пространственных направлениях и скоростью ее изменения во времени. То, что существуют величины, распределенные в пространстве и во времени одновременно, и что для них существуют скорости изменения в пространстве и во времени, было хорошо известно еще со времен Лейбница. Температура может меняться со скоростью стольких-то градусов в час, но она может также меняться со скоростью стольких-то градусов на 100 км при перемещении к северу и стольких-то градусов на 100 км при перемещении к востоку. В случае потоков воды, стекающих с холма, скорость изменения высоты непосредственно связана со скоростью потока: чем круче склон, тем быстрее течение.
Многие величины, распределенные в пространстве и во времени, очень важны для техники. Так, скорость убывания электродвижущей силы при удалении от линии передачи определяет, будет ли происходить передача по линии без существенных потерь или же эта линия в ночное время будет окружена сиянием в виде короны, уносящим много долларов из карманов компании, ведущей передачи, и ее клиентов. Для изучения теплоизоляционных свойств стен дома надо знать соотношения между потоком тепла и скоростью изменения температуры. Число примеров такого рода можно увеличивать почти безгранично.
Многие математические вопросы, связанные с исследованием подобных распределенных величин (которые мы будем называть потенциалами), разобраны до конца и не содержат никаких неясностей. Так, например, задача о распределении электродвижущей силы в части пространства, удаленной от стенок и от любых проводников, является сравнительно простой. Однако, как только мы подходим к областям пространства, непосредственно примыкающим к поверхностям, имеющим некоторые специальные электрические свойства, мы немедленно сталкиваемся с затруднениями. Вблизи этих поверхностей, называемых границами, задача об определении электростатических потенциалов неимоверно усложняется. Аналогичные трудности возникают в теории теплопроводности и при изучении потоков жидкости.
Аномальное поведение потенциалов вблизи границы ярко проявляется, например, в поведении электростатического потенциала около заостренных концов проводника типа острия громоотвода. Если такое острие соприкасается со средой, содержащей электрические заряды, то непосредственно вблизи него скорость падения электродвижущей силы становится огромной или даже бесконечной. Электрическое поле при этом может не выдержать такой скорости изменения потенциала, или, как еще говорят, такого градиента потенциала. В результате воздух около острия перестает быть изолятором и, если поле достаточно велико, острие оказывается окруженным электрическим разрядом – короной, хорошо видимой в темноте. Многим морякам известно любопытное явление, называемое огнями святого Эльма, когда в насыщенной электричеством грозовой атмосфере гвозди и другие заостренные металлические предметы начинают светиться таинственными огоньками. Такая же электрическая корона возникает у острия громоотвода; именно благодаря этому громоотвод вызывает постепенное и незаметное ослабление градиентов потенциала в заряженной атмосфере и предохраняет от наращивания этих градиентов до степени, при которой они могут вызвать разрушительный электрический разряд. Вообще, там, где электростатический потенциал очень быстро изменяется в пространстве, среда испытывает сильное напряжение и в конце концов может быть пробита электрическим зарядом, подобно тому как молния пробивает воздух и может пробить стекло в окне. Способность среды противостоять такому напряжению называется диэлектрическим сопротивлением.
До сих пор я рассматривал задачу о поведении электрического поля вблизи заостренных проводников с точки зрения физика, ставящего это поведение в зависимость от диэлектрического сопротивления среды, окружающей проводник. Существует, однако, родственная задача, имеющая более формальный чисто математический характер.
Мы здесь сталкиваемся с одной из тех ситуаций, когда между математической и физической задачами обнаруживается тесная связь, но сами эти задачи не соответствуют одна другой абсолютно точно. Все реально существующие острия, изучаемые физикой, такие, например, как острие обыкновенной швейной иглы, на конце все же чуточку закруглены. Теоретически, однако, можно представить себе гораздо более острое острие, получающееся, например, при вращении вокруг средней линии поперечного сечения опасной бритвы, лезвие которой является общей касательной двух ее вогнутых боковых сторон. Подобное острие невозможно абсолютно точно осуществить на практике, но в математике оно является вполне допустимым понятием. Можно рассмотреть также задачу о распределении электрического потенциала в пространстве, окружающем такое острие, и исследовать его поведение непосредственно около самого заострения.
Оказывается, что в некоторых случаях математическое поведение потенциала вокруг нашего идеального острия имеет много общего с наблюдаемым поведением потенциала около очень острых проводников. В соответствующей физической ситуации напряжение становится столь сильным, что наступает пробой среды вблизи острия. В математической ситуации этого не может быть, так как здесь нет среды, поддающейся пробою, но зато здесь может наступить разрыв самих значений поля. В случае такого нарушения непрерывности поля потенциал в самой точке острия становится неопределенным – его значения оказываются зависящими от того, по какому пути мы приближаемся к острию. Именно это явление я и начал изучать по предложению Келлога с целью выяснить, для каких заострений могут возникать такие нарушения непрерывности. Некоторые относящиеся сюда результаты были уже раньше получены польским математиком Зарембой. Эти результаты позволяли сформулировать определенную гипотезу относительно степени остроты, достаточной для того, чтобы вызвать неопределенность потенциала, и другую гипотезу относительно степени тупости, гарантирующей отсутствие неопределенности у потенциала. Однако между степенью остроты и степенью тупости, фигурирующими в этих гипотезах, оставался пробел, так что существовали некоторые острия, относительно которых ничего не было известно. Профессор Келлог сам выполнил весьма важную работу по исследованию этих промежуточных случаев, и теперь два его молодых ученика писали в Принстоне докторские диссертации на эту тему. Я тоже начал думать о возможных методах решения этой задачи, как только Келлог сообщил мне о состоянии относящихся сюда исследований.
И тут обнаружилось, что я довольно быстро приближаюсь к цели, так что вскоре мне удалось сделать значительно больше, чем обоим соискателям докторской степени из Принстона. Но когда я показал полученные результаты профессору Келлогу, его отношение ко мне внезапно резко изменилось. Сначала ему было приятно, что я заинтересовался теорией потенциала, но, увидев мою работу, он начал опасаться, как бы я не помешал двум его ученикам защитить докторские диссертации.
Во многих учебных заведениях и сейчас существует обычай не присуждать докторской степени за неопубликованные диссертации. В то время, о котором я сейчас рассказываю, это считалось общим правилом. Поэтому опасения Келлога имели определенные основания: он прекрасно понимал, что опубликовать работы, содержащие совершенно новые результаты, легче, чем работы, в которых что-то развивается и дополняется. Лично мне все эти соображения кажутся совершенно несерьезными. Я считаю, что есть только один способ решить вопрос об оригинальности работы, поданной на соискание докторской степени: если в момент представления в ней содержатся какие-то новые сведения по сравнению с литературой, существующей в пределах досягаемости автора, ответ положительный, если нет – отрицательный. Словами «в пределах досягаемости» я хочу сказать, что считаю необходимым учитывать реальные возможности каждого автора.
Придерживаясь иной точки зрения и боясь, что я стану на пути двух его питомцев, профессор Келлог потребовал, чтобы я «забыл» о своих достижениях. Должен сказать, что я встретил его предложение без энтузиазма. Из-за болтливости Келлога – и только из-за его болтливости – я знал, что проблемой потенциала кроме меня занимается еще кто-то, но никаких сведении о том, как и что именно делают его подопечные, у меня не было, поэтому я не видел оснований считать свои результаты в какой-то степени несамостоятельными.
Все прочие рассуждения Келлога по поводу того, что как математик я вполне устроен, что работы эти мне ни к чему и что в данном случае более чем уместно проявить благородство, уступив честь их создания молодости и неопытности, то они просто не произвели на меня никакого впечатления.
Кандидаты, о которых шла речь, были старше меня и, будучи учениками одного из влиятельных американских математиков, находились в гораздо более выгодном положении, чем я. В отличие от них, мне никогда не приходилось пользоваться милостями сильных мира сего, и профессора из Гарварда считали меня математиком, и притом вполне устроенным, только в тех случаях, когда хотели причинить мне какую-нибудь неприятность.
Если бы я не интересовался ничем, кроме научной деятельности, и занимался только устройством своей карьеры, создавшееся положение основательно отравило бы мою жизнь. Но ученый, кроме того, еще человек и, как всякий человек, имеет какие-то потребности, удовлетворение которых невозможно отложить до окончательного устройства всех дел. Я приближался к тридцати годам и был уже вполне готов вкусить радости семейной жизни. Как раз в это время мое внимание привлекла одна молодая особа, которая потом стала моей женой.
Девушку, столь сильно меня заинтересовавшую, звали Маргарет Энгеман. Когда-то Энгеманы занимались в Германии земледелием, но со временем социальное положение семьи изменилось. Из мелких фермеров они превратились в арендаторов, некоторым из них удалось стать управляющими в крупных имениях, другим – добиться успеха на духовном поприще; через несколько поколений члены этой семьи уже представляли самые различные профессии. Мать Маргарет приехала в Америку после смерти мужа. Она поселилась на Западе и вела деятельную, полную романтики жизнь на лоне природы. В Маргарет меня прежде всего привлекали унаследованные от матери прямота, искренность и сердечность. Эти ее качества заставили меня сначала предположить, а потом поверить в то, что она – та самая девушка, которая мне нужна.
В один из сырых, холодных декабрьских дней я поехал к ним в гости. Это было как раз в период обострения моих отношений с Келлогом. Возвращаясь домой, я долго ждал трамвая и промок до костей. В тот же вечер я почувствовал, что жестоко простудился. На очередном заседании местного отделения Американского математического общества я встретился с Келлогом, но, обсуждая с ним вопрос об опубликовании своей статьи, я, из-за начинавшегося воспаления легких, говорил уже в каком-то полубредовом состоянии и вместо того, чтобы спокойно согласиться с его точкой зрения, начал страшно горячиться. Я ясно чувствовал в его словах стремление во что бы то ни стало сохранить монополию за «своими» и не дать «чужаку» приблизиться к святая святых. Это раздражало меня больше всего. В конце концов, возмущенный, я заявил, что собираюсь немедленно опубликовать статью в нашем новом математическом журнале. Тут-то и грянула буря. Келлог и Биркгоф обрушились на меня со страшными обвинениями, в мгновение ока я был осужден и заклеймен с самых высоких моральных позиций.
На следующий день, чувствуя себя совершенно больным и полностью скомпрометированным, я отправился в Гротон, на ферму, которую приобрели мои родители после того, как отец окончательно решил уйти в отставку. Была суббота, на улице похолодало, и я воспользовался уикендом 4, чтобы переключиться на зимние виды спорта. Но как только я вернулся домой, мне пришлось немедленно лечь в постель: оказалось, что у меня первоклассная бронхопневмония. В течение всей болезни меня преследовали кошмары, в которых уныние и тревога, вызванные ссорой с гарвардскими математиками, причудливо переплетались с беспокойством по поводу логического обоснования моей работы. Из-за постоянных болей и затрудненного дыхания я уже не мог различить, что меня мучает – хлопанье оконной занавески или нерешенные вопросы, связанные с проблемой потенциала, которой я тогда занимался.
Мне трудно сказать, что происходило на самом деле: ощущение боли проявлялось как тревога за математические дела или нерешенные математические вопросы материализовались в ощущении физической боли. Все переплелось настолько тесно, что нечего было и думать отъединить одно от другого. Размышляя потом о своем странном состоянии, я пришел к выводу, что почти любое мое переживание в какой-то степени всегда символически отражает ту или другую математическую ситуацию, которая мне еще не ясна или не успела вылиться в конкретные формулы. Под влиянием этого наблюдения я начал отчетливее, чем раньше, понимать, что именно побудило меня заняться математикой. Думаю, что одна из главных причин состояла в том, что я очень остро, наверное даже можно сказать болезненно, реагировал на неразрешенные математические проблемы.
Со временем ощущение, что я не могу заниматься ничем другим, пока мне не удастся с помощью каких-то, пусть временных, но вполне отчетливых, формулировок добиться ясности в вопросе, над которым я работаю, становилось все острее и острее.
Кстати, я убежден, что если существует какое-то одно качество, которое отличает действительно талантливого математика от его менее способных коллег, то оно состоит в умении оперировать временными, только ему понятными символами, позволяющими выражать возникающие идеи на некоем условном языке, который нужен лишь на определенный отрезок времени. Если математик не обладает этим умением, он никогда ничего не достигнет, так как сохранить мысль в несформулированном виде абсолютно невозможно.
Только во время болезни я по-настоящему понял, как сильно мне недостает присутствия Маргарет. Я не стану утверждать, что с момента выздоровления я не колеблясь шел к своей цели, или окончательно утвердился в желании жениться, но, во всяком случае, болезнь ознаменовала определенный внутренний поворот, который после целого ряда эмоциональных взлетов и падений привел в конце концов к нашему браку. Я подробно рассказал о всех перипетиях, связанных с этим событием, в своей предыдущей книге «Бывший вундеркинд». Поэтому тут я останавливаюсь на нем только постольку, поскольку оно имеет отношение к моей научной карьере.
Рассказывая сейчас о себе как об ученом, я безжалостно отбрасываю самые волнующие события моей собственной личной жизни и нашей более поздней совместной жизни с женой, если только они не имеют прямого отношения к моей научной работе. Но мне было бы очень неприятно, если из-за этого у кого-нибудь создалось бы впечатление, что моя внутренняя жизнь ограничивалась интересами карьеры или что я мог бы нормально существовать все эти годы, не будь рядом со мной преданной и любящей жены, всегда готовой прийти мне на помощь. Я убежден, что семейная жизнь – вопрос глубоко личный, и это мешает мне сейчас говорить. Я чувствую, что не могу сделать эту сторону своей жизни достоянием читателей, не затронув чего-то, принадлежащего только нам двоим, тем более, что искренность наших отношений, их серьезность и проверенная годами прочность избавили нас от случайных происшествий, которые могли бы представлять интерес для посторонних. То, что я сделал для науки, принадлежит всему миру, но моя домашняя жизнь и мои привязанности касаются только меня и моих близких.
Теперь мне хотелось бы снова вернуться к вопросу о борьбе за «место под солнцем», непрерывно происходящей среди математиков, и об этических нормах, которыми в этой борьбе принято руководствоваться. Как я уже говорил, работа, которую с самого начала нужно было делать с кем-то наперегонки, внушала мне отвращение. Я терпеть не мог соревнования, хотя был гораздо честолюбивее многих молодых математиков. Я понимал, что излишнее честолюбие меня не украшает. Но характер не выбираешь по своему усмотрению, да у меня к тому же и не было выбора. Я всегда чувствовал себя в науке чужим и не мог рассчитывать ни на какие блага, кроме тех, которые добуду собственным потом и кровью. А если уж не заслуживаешь доброжелательного отношения, стоит быть опасным, чтобы тобой по крайней мере не пренебрегали.
Мое честолюбие не являлось чем-то исключительным. Во всяком случае, один из крупнейших американских математиков, неприязнь которого неодолимым барьером стояла на моем пути к цели, заведомо отличался большим честолюбием, чем я. Я живо воспринимал новые идеи, но расставался с ними без сожаления. При всей любви к борьбе я никогда не стремился держать свою работу в тайне, чтобы потом ошеломить ничего не подозревающих коллег достигнутыми результатами. В этом я резко расхожусь с некоторыми из своих старших товарищей, Немногие из них позволяют себе роскошь радоваться научным победам так открыто, как я, но зато многие вполне способны помешать другому заниматься интересующими их вопросами только ради того, чтобы в полную меру насладиться впечатлением, которое производит втайне подготовляемая статья, продуманно представленная ученому миру как раз в тот момент, когда она может произвести наиболее выгодное впечатление.
Дело, в сущности, не в том, что я был честолюбивее других, а в том, что я не так заботливо это скрывал и не стремился поддерживать наилучшие отношения со всеми и каждым.
Примечания переводчика
1. American Telephone and Telegraph Company – Американская телефонно-тепеграфная компания.
2. Стайнметц Чарльз Протеус (1865–1923) – американский электротехник, немец по происхождению.
3. Хевисайд Оливер (1850–1925) – английский физик.
4. Время отдыха с субботы до понедельника (англ.).
4 ЕВРОПЕЙСКИЙ ПЕРИОД МОЕЙ ЖИЗНИ. МАКС БОРН И КВАНТОВАЯ ТЕОРИЯ
Только через два года после Страсбургского конгресса мне удалось возобновить свои поездки за границу. Мое горячее стремление попасть в Европу частично было вызвано желанием еще полнее приобщиться к европейской математической мысли, благо я уже познал эту радость, а частично – особыми обстоятельствами нашей семейной жизни.
Вскоре после войны мои родители купили в Гротоне (Массачусетс) ферму с жилым домом и яблоневым садом. Они собирались перебраться туда после того, как отец выйдет в отставку, а пока мы все съезжались в Гротон на каникулы. К сожалению, чтобы поддерживать на ферме порядок, нужны были усилия всех членов семьи. Мы же, младшее поколение, были слишком обременены заботами. Нам приходилось тяжко трудиться, чтобы пробить себе дорогу в жизни, поэтому в свободное время мы хотели просто отдохнуть, чтобы как-то набраться сил, и вовсе не стремились тратить досуг, заработанный в поте лица своего, на выращивание овощей и расчистку лесного участка.
Моя сестра Констанс преподавала математику в Смит-колледже 1. Берта изучала химию в Массачусетском технологическом институте. Энергичная, уверенная в себе Констанс стала уже настоящей маленькой женщиной. Родители считали ее главной опорой семьи и единственной из нас, обладающей тем, что французы называют savoir faire 2. В тех вопросах, в которых я все больше и больше расходился с матерью, она, наоборот, все больше и больше с ней сближалась.
Самым независимым членом нашей семьи была, наверное, Берта. Семилетняя разница в нашем возрасте избавила ее от тягот воспитательной системы отца. Она не только не подвергалась такому давлению, как я, но не знала даже более мягких форм воздействия, которые применялись к Констанс. Когда Берта была школьницей, вся семья занималась главным образом воспитанием моего младшего брата Фрица, так что и тут она оказалась предоставленной самой себе в гораздо большей степени, чем мы. Это привело к тому, что она относилась к делам семьи гораздо более трезво, чем Констанс или я, по крайней мере в то время, когда я еще только начинал свою самостоятельную жизнь,
Мне очень хотелось поделиться с сестрами радостями, которые я получал от своих путешествий в Европу, а им, конечно, хотелось к этим радостям приобщиться. Я не стану перечислять здесь в хронологическом порядке все поездки, совершенные мною в одиночестве или вместе о ними, и скажу только, что лето 1922, 1924 и 1925 годов я провел за границей, навещая друзей нашей семьи и своих коллег. За время этих поездок я все чаще и чаще виделся с Леви и завязал новые важные для меня знакомства не только в Англии и во Франции, но и в Германии. Летом 1922 года я оказался в Германии как раз в тот момент, когда там начиналась инфляция, и видел собственными глазами, какое это страшное бедствие.
Все это время я продолжал заниматься теорией потенциала. Моя работа протекала в двух направлениях. Прежде всего, я пришел к новому пониманию связи между значениями электромагнитного потенциала внутри области и его значениями на границе. Как я уже указывал, первоначально предполагалось, что значения электромагнитного потенциала внутри области должны непрерывно переходить в значения на границе и однозначно определяться этими последними. Мне, однако, удалось обнаружить, что в теории потенциала могут быть использованы некоторые понятия, родственные упоминавшемуся раньше обобщенному интегрированию, и что при этом приходится считать, что потенциал внутри области должен определяться значениями потенциалов в окрестности границы и что непрерывность при подходе к границе вполне может и нарушаться. Руководствуясь примером теории обобщенного интегрирования Даниеля, о которой я рассказывал выше, я пришел затем к существенному обобщению ряда понятий теории потенциала, начиная с самых основных понятии заряда и емкости. Основным моим нововведением было то, что зависимость значения потенциала во внутренней точке от граничных значений я рассматривал как некоторое обобщенное интегрирование, а не как простейшую непрерывную связь, при которой значения на границе могут быть получены из внутренних значений с помощью предельного перехода. Такой подход, по существу, означал, что обычная постановка задачи с граничными условиями заменялась обратной постановкой. Как и во многих других математических вопросах, такое обращение точки зрения внесло свежую струю в область исследований, долгое время казавшуюся совершенно мертвой.
Мой старший друг и наставник профессор X. Б. Филлипс из МТИ еще раньше рассматривал величины, аналогичные потенциалу, заданные на квадратной сетке (типа сетки решета) и на некоторых трехмерных структурах, родственных такой сетке. С помощью новых общих понятий теории потенциала мне удалось показать, что его результаты являются важным шагом в построении универсальной теории потенциалов любого рода.
Я полагал, что сумел пополнить арсенал обычных средств теории потенциала значительным числом новых, хорошо попадающих в цель соображений. Применив их к старой проблеме Зарембы, полное решение которой оставалось неизвестным, я выяснил, что не ошибся в своих ожиданиях.
Примерно в это же время на страницах «Докладов» («Comptes rendus») Французской академии наук начали появляться многочисленные статьи по теории потенциала, принадлежащие Лебегу и его молодому ученику Булигану. В науке часто бывает, что глубина и большая четкость появляющихся новых статей, не содержащих еще каких-либо особенно важных конкретных результатов, свидетельствуют о том, что в ближайшее время в этой области следует ожидать значительного продвижения. Именно так обстояло дело с работами Лебега и Булигана. Мне было совершенно ясно, что если я немедленно не приложу всех своих сил, то позже это уже может оказаться невозможным из-за того, что весь круг вопросов, связанных с теорией потенциала, будет окончательно вычеркнут из числа тех, в которых еще остаются какие-то проблемы, не разработанные до конца. Поэтому я удвоил усилия, стараясь как можно лучше использовать разработанный мной новый математический аппарат, и вскоре с радостью обнаружил, что получил результаты, которые в то время естественно было считать окончательным решением задачи.
Я хорошо сознавал, что должен торопиться, и немедля обратился к студенту Мануэлю Сандовалю Байарте, мексиканцу по национальности, значительно лучше меня изъяснявшемуся по-французски, с просьбой помочь изложить мои идеи на сносном французском языке. В результате родилась небольшая заметка, которую я по почте отправил Лебегу для опубликования в «Докладах» Академии.
То, что произошло потом, представляет собой пример совпадения, гораздо более обычного в истории открытий и изобретений, чем это может показаться с первого взгляда. Пока мое письмо пересекало океан, Булиган получил некоторые очень важные результаты, которые он не успел еще окончательно отшлифовать. Эти результаты он показал Лебегу и по его совету представил их Академии в запечатанном конверте, в соответствии с обычаем, освященным вековой академической традицией. Мое письмо пришло в тот самый день, когда был вскрыт конверт Булигана. Обе заметки появились рядом в одном и том же номере «Докладов» вместе с коротким предисловием Лебега, относящимся к ним обеим. Хотя результаты этих заметок были изложены в разных терминах, их основная идея полностью совпадала. Впрочем, с точки зрения логики заметка Булигана представлялась менее совершенной, так как она содержала лишь предварительное сообщение о работе, далекой от полного завершения.
Итак, в моем соревновании с Булиганом результат оказался еще более ничейным, чем в предыдущем эпизоде, связанном с двойным открытием банаховых пространств. Знаменательно, что и на этот раз, так же как в случае с Банахом, соревнование закончилось в высшей степени дружелюбно. Булиган с полной готовностью признал большую законченность моей работы, и мы договорились встретиться, как только я попаду во Францию.
Другой круг вопросов, которым я занимался примерно в то же время, но уже без постоянной угрозы быть обойденным, также привел меня к установлению новых дружеских контактов. Дело в том, что мое внимание привлекли исследования датского математика Харальда Бора, посвященные тому, что он назвал «почти периодическими функциями». Эти функции изображаются кривыми, которые, хотя и не повторяются совершенно точно подобно узорам на обоях, но в некотором смысле близки к этому. Открытие таких функций представляло собой значительное обобщение классического гармонического анализа. Как уже говорилось выше, сам я тоже работал над обобщением гармонического анализа, пытаясь оправдать с его помощью формальные правила исчисления Хевисайда. Познакомившись с результатами Бора, я, естественно, захотел посмотреть, что могут дать мои идеи в применении к новой области. И опять мне удалось добиться успеха, построив теорию, охватывающую не только спектры, которые, подобно спектрам излучения паров химических элементов, сосредоточены в отдельных линиях, но и спектры совсем другого типа, в которых энергия непрерывно распределена по целому интервалу частот. Что же касается теории Бора, то она относилась только к случаю линейчатых спектров. Оказалось, что с помощью некоторых рассуждений, которыми я уже и раньше пользовался в своих исследованиях по обобщенному гармоническому анализу, можно было получить все основные результаты Бора и ряд значительно более широких новых результатов, касающихся также случая непрерывного спектра.
Идеи, использовавшиеся в этих исследованиях, очень тесно примыкали к тем, которые я уже применял при изучении броуновского движения. В частности, мне снова пригодились непрерывные кривые, являющиеся столь извилистыми, что ни в какой их точке нельзя сказать, какое же они имеют направление. При обсуждении вопроса о броуновском движении я отмечал, что ранее такие кривые были в науке на положении пасынков: они рассматривались как совершенно неестественные патологические объекты, выдуманные математиками от чрезмерной абстрактности и не имеющие никакого отношения к реальному физическому миру. Мне же удалось построить физическую по существу теорию, в которой такие кривые играли основную роль.
Совсем неожиданно у меня завязались дружеские отношения еще с одним европейским математиком, на сей раз, правда, не на основе общих научных интересов, а благодаря семейным связям. Мне не раз попадались на глаза статьи Леона Лихтенштейна, немецкого ученого, бывшего редактором самого солидного реферативного математического журнала того времени и работавшего в области гидродинамики. Я знал, что у моего отца был двоюродный брат Леон, который, как и он, когда-то учился в Берлинском технологическом институте. Особого интереса к инженерному делу он, однако, не проявлял и в конце концов оставил технику, чтобы заняться научно-исследовательской работой в области прикладной математики. Отец давно потерял его из виду и не знал, где он работает и удалось ли ему чего-нибудь достигнуть на новом поприще.
Однажды мы получили письмо от моей нью-йоркской тетушки, в котором сообщалось, что Леон добился в математике гораздо больших успехов, чем можно было ожидать. Она же нам написала, что его фамилия Лихтенштейн, Тогда-то мне и пришло в голову, что двоюродный брат отца Леон и известный математик Лихтенштейн, очевидно, одно и то же лицо. Я написал Лихтенштейну и прямо спросил его, не доводится ли он нам родственником. В ответ пришло дружественное письмо, подтвердившее мою догадку. Лихтенштейн знал о моем существовании и о моих работах и приглашал навестить его, когда я в следующий раз буду в Европе. Он по-прежнему жил в Берлине, хотя преподавал в Лейпцигском университете, где, как я потом узнал, занимал должность декана факультета наук.
Установив с помощью писем какие-то отношения с Булиганом и Лихтенштейном, я летом вместе с Бертой приехал в Европу. Прежде всего я отправился в Пуатье к Булигану. Он встречал меня на станции, держа в руках экземпляр одной из моих статей, чтобы я мог его узнать. Булиган оказался простым и славным молодым бретонцем. Он пригласил меня погостить у них дома. В Пуатье есть на что посмотреть. Это очаровательный город, очень романтичный, со множеством интересных архитектурных памятников. Булиган познакомил меня с одним из своих друзей, преподавателем лицея и знатоком местных достопримечательностей, самые интересные из которых они вдвоем мне показали.
Потом я поехал в Германию к Лихтенштейну. Мы никогда не видели друг друга даже на фотографиях, поэтому нам было не так-то легко встретиться. Лихтенштейн, так же как Булиган, ждал нас на вокзале и в качестве опознавательного знака держал в руках лист бумаги, на котором в мою честь была написана основная формула теории потенциала.
Лысый и с бородкой, чертами лица он мало походил на отца, но, так же как отец, был небольшого роста и отличался недюжинной энергией, усиленной жестикуляцией и твердыми принципами. Лихтенштейн во многом был настроен резко антиамерикански, но меня он встретил очень тепло. Правда, несмотря на это, Берте и миссис Лихтенштейн (главой дома в семье моего дяди была явно она) пришлось потратить немало усилий, чтобы помешать нашей беседе превратиться в открытую ссору.
Знакомство с Лихтенштейнами заставило меня столкнуться с одной маленькой специфически немецкой проблемой. С первой же встречи Леон попросил меня говорить ему «du» 3; миссис Лихтенштейн относилась ко мне не менее сердечно, чем ее муж, но такого желания все-таки не выразила. При этих условиях я, естественно, не чувствовал себя вправе вести себя с ней так же фамильярно, как со своим родственником, и в разговорах пользовался общепринятой формой обращения «Sie» 4.
В 1924 году, вспомнив о прежних временах, я побывал в Геттингене; оказалось, что мои новые идеи обратили на себя внимание тамошних математиков. Поэтому в 1925 году, совершив вместе с Александером из Принстонского университета небольшую экскурсию в горы, я на обратном пути снова приехал в Геттинген. На этот раз я убедился, что работа об обобщенном гармоническом анализе по-настоящему заинтересовала моих геттингенских коллег.
Во главе геттингенских математиков в то время стоял Рихард Курант, маленький, трудолюбивый, очень живой и властолюбивый человек. Он посоветовал мне провести год в Геттингене, чтобы заняться некоторыми исследованиями вместе с геттингенскими математиками. Средства для этого можно было попытаться получить из каких-нибудь американских источников. Как раз в это время в Нью-Йорке организовался фонд имени Джона Симона Гуггенхейма, и Курант считал, что я вполне могу туда обратиться. Он уверял, что мое пребывание в Геттингене будет не только полезно, но и приятно, поскольку геттингенские математики готовы оказывать мне всяческую помощь: позаботиться, например, об опубликовании моих статей и даже проследить за тем, чтобы они были написаны пристойным немецким языком.
По совету Куранта я отправился засвидетельствовать свое уважение Феликсу Клейну, который делил с Гильбертом славу самого выдающегося геттингенского математика. Клейн уже очень ослабел, и все понимали, что дни его сочтены. Я все-таки с радостью воспользовался представившимся случаем, чтобы познакомиться еще с одним представителем славного прошлого математической науки.
Мой визит начался с грубого промаха. Увидев перед собой пожилую экономку, я спросил на самом изысканном немецком языке, на который я только был способен: «Ist der Herr Professor zu Hause?» – «Der Herr Geheimrat ist zu Hause» 5, – ответила она, всем своим видом показывая, что я совершил бестактность, назвав тайного советника профессором. Титул «Geheimrat» означает для немецкого ученого приблизительно то же самое, что право именоваться «сэром» для англичанина; должен, однако, сказать, что в Англии мне не приходилось замечать, чтобы кто-либо придавал дворянскому званию такое значение, какое в Германии всегда придается титулу тайного советника.
Я поднялся наверх и нашел Феликса Клейна в его кабинете – просторной комнате, где было много воздуха и света; вдоль стен стояли книжные шкафы, посередине – большой стол, на котором, разумеется в страшном беспорядке, лежали книги и раскрытые журналы.
Великий математик сидел в кресле с пледом на коленях. У него были тонкие изящные черты лица, как будто вырезанные рукой мастера, и борода. Когда я на него смотрел, мне казалось, что я вижу над его головой венец мудреца, а, когда он произносил имя какого-нибудь замечательного математика прошлого, отвлеченное понятие «автор таких-то и таких-то работ» точно по мановению волшебной палочки превращалось в живое человеческое существо. Над самим Клейном время, казалось, больше не было властно – вокруг него все дышало вечностью. Я слушал его с величайшим благоговением и по прошествии нескольких минут заметил, что уже прошу позволения удалиться, как будто я присутствовал на аудиенции при дворе.
Сообщение, которое я сделал о своей работе по обобщенному гармоническому анализу, нашло в Геттингене живой отклик; Гильберт, в частности, проявил к нему большой интерес. Но тогда я совершенно не подозревал, что эта работа имеет непосредственное отношение к тем физическим идеям, которые через очень короткое время бурно расцвели в Геттингене и породили замечательную новую дисциплину, известную теперь под названием квантовая механика *.
Та часть математической физики, которая называется квантовой механикой, выросла из выполненной в 1900 году работы Макса Планка о равновесном излучении в полости. Попросту говоря, предметом первой работы по квантовой теории было излучение света внутри горячей печи, в которой свет находится в равновесии с раскаленными стенками так, что при изменении температуры стенок меняется и характер свечения печи. Это изменение весьма заметно и известно всем нам, так как оно объясняет разницу между куском металла, раскаленным докрасна, и куском металла, раскаленным добела. Дело в том, что спектр света, излучаемого металлом, нагретым до красного каления, обрывается где-то в области красных или желтых световых волн, в то время как спектр света, излучаемого металлом, доведенным до белого каления, содержит все цвета из видимой части спектра и простирается далеко в ультрафиолетовую область.
Самая суть трудности объяснения наблюдаемой связи между излучаемым свечением и температурой излучающего тела, которую Планк разрешил при помощи крайне смелой новой гипотезы, заключалась в том, что традиционное представление о свете как о непрерывном явлении оказалось несостоятельным. Гипотеза Планка как раз и предполагала, что свет, так же как материя, имеет зернистую, а не непрерывную структуру.
До появления этой гипотезы механизм влияния температуры стенок печи на цвет излучаемого этими стенками света представлялся совершенно непостижимым. Планк впервые смог объяснить сущность этого весьма легко наблюдаемого явления. Однако высказанная им гипотеза совсем не так безобидна. Она связана с некоторыми идеями математики конца XVII века, и даже не только математики, а вообще всего направления человеческой мысли этого времени. В ту отдаленную эпоху между атомистами, считавшими, что любое вещество состоит из отдельных частиц, и сторонниками идеи непрерывности материи разгорелась ожесточенная идейная битва. Исход сражения имел чрезвычайно важное философское значение, поэтому противники не жалели сил. И все-таки не отвлеченные рассуждения, а конкретное техническое нововведение придало этому спору особую остроту. Этим нововведением явился микроскоп, изобретенный голландцем Левенгуком, которому удалось с помощью своего прибора подсмотреть, например, кипучую жизнь многочисленных обитателей капли стоячей воды.
Изобретение нового прибора всегда порождает целый ряд новых представлений. До Левенгука изучение живых организмов ограничивалось тем, что можно было увидеть невооруженным глазом или, в лучшем случае, с помощью примитивной лупы. Ученые, стоявшие на позициях Демокрита и считавшие, что материя состоит из мельчайших частичек, или атомов, не могли похвалиться никакими особенными успехами – до изобретения микроскопа предметы меньше, скажем, зернышка песка были уже за пределами их досягаемости.
Когда же появилась возможность рассмотреть через микроскоп каплю обыкновенной прудовой воды, создалось впечатление, что в ней кипит не менее напряженная жизнь, чем на улицах большого города. Новые горизонты, открывшиеся перед человеческим глазом, дали новую пищу воображению; мысль ученых устремилась к разрешению проблем мельчайшего строения вещества и к философскому осмыслению самого процесса увеличения, происходящего в микроскопе. В какой-то степени со всеми этими событиями связана, очевидно, и знаменитая свифтовская шутка:
So, naturalists observe, a flea Hath smaller fleas that on him prey; And these have smaller still to bite'em; And so proceed ad infinitum. (Итак, ученые видят: блоха, На ней сидят блошки поменьше и сосут ее кровь; На меньших блошках сидят еще меньшие и кусают их. И так до бесконечности.)
Эта литературная безделка представляет гораздо больший интерес, чем сейчас может показаться.
Среди многочисленных объектов, которые Левенгук рассматривал в микроскоп, были также сперматозоиды человека и животных, причем Левенгук совершенно разумно предположил, что они играют какую-то роль в оплодотворении. Рассматривая сперматозоид с помощью весьма несовершенного микроскопа Левенгука и его последователей, легко можно было предположить, что он содержит в свернутом виде крошечный зародыш живого существа. Отсюда возникла на первый взгляд вполне правдоподобная теория, согласно которой процесс оплодотворения состоял во внедрении сперматозоида в матку, где он начинал увеличиваться в объеме до тех пор, пока содержащийся в нем зародыш не превращался в обычный известный врачам утробный плод. Представление о том, что сперматозоид сам по себе является предшествующей стадией зародыша, навело биологов на целый ряд интересных мыслей.
Если рассматривать сперматозоид как первую стадию утробного плода, естественно предположить, что он представляет собой крохотное человеческое существо со всеми присущими человеку органами, отличающимися лишь уменьшенными размерами и искаженными формами. А в таком случае он, очевидно, содержит также и сперматозоиды, только гораздо меньшего размера, чем те, которые уже известны. Эти сперматозоиды должны в свою очередь содержать еще более мелкие сперматозоиды и так ad infinitum 6, т.е. дело как будто обстояло точь-в-точь, как со свифтовской блохой, на которой сидели блохи поменьше с еще и еще меньшими блохами, уже невидимыми с помощью существовавших тогда микроскопов. Отсюда сам собой напрашивался вывод, что будущее человеческой расы заранее предопределено уже существующими человеческими особями.
Такая предопределенность подтверждала идею о бесконечной делимости материи, вызвав живой интерес философов, в частности такого большого философа, как Лейбниц **.
Лейбниц представлял себе мир в виде капли воды или капли крови, так же кишащей мельчайшими организмами, как вода; одним словом, он считал, что мир совершенно лишен пустоты. Он предполагал, что все промежутки между живыми существами и внутри живых существ заполнены другими, более мелкими живыми существами. Это убеждение привело Лейбница к гипотезе о бесконечной делимости жизни и о непрерывности материи.
Представления Лейбница о мире, отражавшие в какой-то мере результаты микроскопических наблюдений того времени и подкреплявшиеся его собственными общефилософскими воззрениями, сказались также на созданной этим ученым новой интерпретации математики. Напомним, что Лейбниц был одним из двух создателей дифференциального и интегрального исчисления и ему, в частности, наука обязана обозначениями, которыми мы пользуемся до сих пор. Он не только рассматривал пространство и время как нечто делимое на сколь угодно малые части, но и отчетливо представлял себе, что величины, распределенные в пространстве и во времени, в каждом измерении характеризуются своей скоростью изменения. Типичным примером величины, распределенной в пространстве и во времени, является температура. Когда мы говорим, что температура падает со скоростью 10° в час, мы имеем в виду скорость ее изменения во времени. Если же мы говорим, что температура падает на 3° при перемещении на одну милю к западу, мы тем самым определяем одну из присущих температуре пространственных скоростей изменения. При рассмотрении величин, распределенных в пространстве и во времени, естественные математические законы выражаются дифференциальными уравнениями в частных производных, связывающими между собой скорость изменения величины во времени и скорости изменения величины в пространстве в предположении, что эти скорости могут быть определены в каждой точке, т.е. что и пространство и время бесконечно делимы. Таким образом, Лейбниц, ратуя за непрерывность физического мира, стал выразителем взглядов, диаметрально противоположных атомизму.
С тех пор развитие физики довело и атомизм и теорию, основанную на представлении о непрерывности мира и материи, до высокой степени совершенства и полной непримиримости, далеко превосходящих все, что было достигнуто в этом плане во времена Лейбница. Молекулы только что нельзя было увидеть; существование изолированных атомов ясно следовало из всей совокупности данных химии. За пределами атома новые перспективы атомизма открылись в обнаружении электронов, протонов и многих других новых элементарных частиц, связанных с процессами, происходящими в атомных ядрах. В то же время теория, исходящая из непрерывности, стала очень ценным и практически необходимым орудием для изучения динамики газов, жидкостей и твердых тел и для исследования света и электромагнитных явлений. Столкновение этих двух важнейших направлений человеческой мысли, казавшихся совершенно несовместимыми друг с другом, и породило некоторые из главных проблем современной физики.
Коллизия, о которой здесь идет речь, начала оформляться около ста лет назад, когда Максвелл заложил основы того, что сейчас называется кинетической теорией газов. Согласно этой теории, газ состоит из беспорядочно движущихся частиц, называемых молекулами. При этом движения молекул могут быть нескольких независимых типов: молекула может двигаться вверх и вниз, направо и налево, вперед а назад, и, кроме того, она может вращаться вокруг вертикальной оси и вокруг двух горизонтальных осей. Перечисленные движения исчерпывают все возможности, если предполагать, что молекула представляет собой твердое тело; часто, однако, это предположение оказывается неприемлемым, так как молекула явно совершает еще и некоторые внутренние колебания, типичные для упругой системы. Сосчитаем теперь полное число типов движения, или, как их называют физики, число степеней свободы одной частицы. Складывая затем числа типов движений различных частиц, образующих газ, мы можем определить число типов движения, т.е. степеней свободы всего газа в целом. Максвелл заметил, что, когда газ находится в состоянии внутреннего статистического равновесия, каждый тип движения обладает в среднем определенной энергией, причем эта средняя энергия для всех типов движения оказывается одной и той же. Это обстоятельство составляет содержание важнейшей теоремы, позволяющей связать температуру газа с другими его свойствами.
Отсюда вытекает, что способность заданного объема газа поглощать энергию зависит от числа степеней свободы, приходящихся на единичные объемы. Мерой такой способности поглощать энергию является величина, называемая теплоемкостью. Зная теплоемкость, мы можем определить, как много энергии будет содержать тело, находящееся в тепловом равновесии при заданной температуре. Если число степеней свободы, приходящихся на единицу объема, оказывается бесконечным, то это значит, что такое тело может поглотить бесконечное количество энергии и температура его изменится лишь на конечное число градусов; иначе говоря, это означает, что, поглотив конечное количество энергии, такое тело вовсе не становится более горячим. Если мы применим эти рассуждения к случаю непрерывной среды, которая, естественно, всегда имеет бесконечное число степеней свободы, то получится, что непрерывная среда всегда имеет бесконечную теплоемкость, т.е. что понятие температуры к такой среде неприменимо.
Но Максвелл был не только основоположником описанной выше кинетической теории газов; помимо того, он создал также теорию, согласно которой распространение света и электричества представляет собой колебания некоторой непрерывной среды, называемой светоносным эфиром. Этот эфир, как любая непрерывная среда, поглощая тепло, не должен становиться более горячим. Но движения светоносного эфира представляют собой радиацию, разными формами которой являются свет, рентгеновские лучи, тепловое излучение и т.д., поэтому максвеллова теория эфира несовместима с тем, что радиация может иметь температуру. Эта теория вполне удовлетворительна, если применять ее к свободной радиации, распространяющейся в пустом пространстве, но она исключает возможность достижения равновесия между светом и материей, имеющей определенную температуру, т.е. такого равновесия, которое тем не менее реально имеет место, например, в раскаленной печи. Таким образом, для изучения процесса излучения света материальными телами требуется что-то большее, чем одна только теория Максвелла. Это «что-то большее» и было придумано Планком.
Планк обнаружил не только то, что радиация имеет температуру, но и то, что связь между этой температурой и характером соответствующей радиации задается определенной формулой, известной в настоящее время как формула Планка. Для того чтобы получить эту формулу, ему пришлось предположить, что радиация может получаться только вполне определенными малыми порциями, которые он назвал квантами. Работа Планка содержала, таким образом, первую формулировку квантовой теории современной физики.
Надо сказать, что девятисотые годы вообще оказались критическим периодом в развитии научного мышления. Совсем незадолго до этого времени даже наиболее прозорливые ученые предполагали, что будущее столетие будет посвящено дальнейшему уточнению существующих физических теорий и что отныне открытия будут изменять известные формулы лишь во все более и более далеких десятичных знаках. Но около 1900 года квантовая теория разрушила некоторые основные идеи о непрерывности, относящиеся к полю излучения. Статистическая механика Гиббса в это время уже начала заменять детерминизм закономерным индетерминизмом, а оптический опыт Майкельсона и Морли, показавший, что скорость перемещения Земли относительно эфира никак не может быть измерена, оказался существенным звеном в цепи идей, приведших Эйнштейна к созданию теории относительности.
Эйнштейн сформулировал теорию относительности в 1905 году, в том же году он внес существенный вклад и в квантовую теорию. Он показал, что один из коэффициентов, характеризующих фотоэлектрический эффект – физическое явление, заключающееся в том, что поглощение света при некоторых условиях оказывается связанным с появлением электричества, – по величине и по размерности оказывается точно совпадающим со знаменитой постоянной, введенной Планком в квантовую теорию. Семь лет спустя датчанин Нильс Бор обнаружил, что эта же постоянная может быть использована для количественного описания процесса излучения света атомами: раскаленного газа.
Предложенная Бором теория излучения света атомом водорода была блестящей, но отнюдь не совершенной. Фактически она являлась поразительным гибридом, полученным с помощью прививки некоторых черт квантовой теории, исходящей из представлений о разрывности материи, к теории планетных орбит – типичной классической теории, рассматривающей мир как нечто непрерывное. Из этого неестественного скрещивания и родилась принадлежащая Бору модель атома, успешно объясняющая целый ряд наблюдаемых количественных закономерностей, но теоретически лишенная какого-либо единства. К 1925 году, когда состоялось мое выступление в Геттингене, мир начал настойчиво требовать такой квантовой теории, которая объясняла бы все наблюдаемые явления и в то же время была бы единой теорией, а не лоскутным одеялом, состоящим из пестрых, ничем не связанных и философски противоречивых положений.
Я тогда ничего не знал о напряженном интересе, который вызывала в Геттингене противоречивость квантовой теории. Однако случилось так, что мой доклад касался вопросов, чем-то родственных квантовой теории – в нем также рассматривалось поле, в котором применение обычных законов не могло быть распространено на любые сколь угодно малые размеры. Как я уже говорил, тема моего доклада относилась к области гармонического анализа, т.е. разложения сложных движений на сумму простейших гармонических колебаний. Гармонический анализ, усиленно развивающийся все последние годы в целом ряде различных направлений, имеет древнюю историю, восходящую еще к Пифагору, интересовавшемуся музыкой вообще и колебаниями струн лиры в частности. Известно, что струна может совершать множество различных колебаний, самые простые и элементарные из которых и называются гармоническими колебаниями.
Движение струны музыкального инструмента на самом деле не является точно гармоническим колебанием, но оно представляет собой простую комбинацию колебаний и поэтому в виде первого грубого приближения все-таки может считаться гармоническим.
Посмотрим теперь, что на самом деле обозначают нотные знаки. Положение ноты выше или ниже на пяти нотных линейках обозначает ее высоту, т.е. частоту соответствующего колебания, последовательность нот по горизонтали определяет порядок следования колебаний во времени. Временные обозначения на нотной бумаге указывают относительную длительность звуков и пауз – целые ноты, половинные, четвертные и т.д., а также абсолютную длительность. Таким образом, на первый взгляд создается впечатление, что система музыкальных обозначений характеризует колебания в двух взаимно независимых отношениях: по частоте и по длительности.
Более полное рассмотрение этого вопроса показывает, однако, что дело обстоит совсем не так просто, как кажется сначала. Число колебаний в секунду, указанное в обозначении ноты в виде характеристики ее частоты (или высоты), на самом деле также имеет отношение к временнуй протяженности. Поэтому частота ноты и ее распределение во времени запутанным образом взаимодействуют друг с другом.
В идеале простое гармоническое колебание – это нечто неизменно повторяющееся на протяжении всего времени от самого удаленного прошлого до самого удаленного будущего. В некотором смысле оно существует sub specie aeternitatis 7. Начало и окончание ноты неизбежно связаны с изменением ее частотного состава, может быть и малым, но всегда вполне реальным. Нота, длящаяся лишь ограниченное время, разлагается на целую полосу простых гармонических колебаний, и ни одно из этих колебаний не может рассматриваться как единственно существующее. Уточнение положения звука на шкале времени связано с увеличением неточности в значении его частоты, и, наоборот, более точное указание частоты влечет за собой бульшую неопределенность во времени.
Эти соображения имеют отнюдь не только чисто теоретическую ценность – они реально ограничивают возможности музыканта. Никто не может сыграть джигу 8 на нижнем регистре органа. Если данной ноте соответствует частота в шестнадцать колебаний в секунду, а продолжительность равна одной двадцатой секунды, то получится всего одно сжатие воздуха, лишенное всяких следов периодичности. Естественно, что оно не прозвучит как определенная нота, а будет восприниматься барабанной перепонкой просто как отдельный толчок. При этом сложный механизм отражения импульсов, создающий музыкальное звучание органных труб, вообще не сможет даже начать действовать. В результате быстрая джига, сыгранная на нижнем регистре органа, окажется даже не плохой музыкой, а вообще не будет музыкой.
Связанный с этим парадокс гармонического анализа был важным пунктом моего доклада, сделанного в Геттингене в 1925 году. В то время я уже ясно представлял себе, что законы физики в каком-то смысле аналогичны музыкальным обозначениям и что изложенные выше соображения могут оказаться вполне реальными и важными, хотя их и не приходится слишком принимать всерьез, если ограничиться рассмотрением лишь временных интервалов, не меньших некоторого весьма малого промежутка времени. Иными словами, я стремился подчеркнуть, что в музыке, как и в квантовой теории, имеется существенная разница между поведением, относящимся к очень малым интервалам времени (или пространства), и тем, что мы считаем нормальным поведением, выбирая при этом какой-либо привычный нам масштаб времени, и что безграничная делимость реального мира представляет собой понятие, которое в современной физике не может использоваться без специальных оговорок.
Для того чтобы выяснить связь этих моих идей с реальным развитием квантовой теории, мы должны заглянуть на несколько лет вперед и обратиться ко времени, когда Вернер Гейзенберг сформулировал свой принцип двойственности или неопределенности. В классической физике Ньютона частица может иметь в данный момент времени определенное положение и определенный импульс или, что почти то же самое, определенное положение и определенную скорость. Гейзенберг теоретически обнаружил, что в условиях, при которых положение частицы может быть измерено с очень высокой точностью, ее импульс или скорость могут быть измерены только с малой точностью, и наоборот. Эта двойственность имеет точно ту же самую природу, что и двойственность между высотой и длительностью в музыке, и, действительно, Гейзенберг объяснил ее с помощью того же самого гармонического анализа, о котором я говорил в Геттингене по крайней мере на пять лет раньше.
Главную роль в создании и первоначальном развитии квантовой механики в Геттингене сыграли Макс Борн и Гейзенберг. Макс Борн был гораздо старше Гейзенберга, но, хотя в основе новой теории, несомненно, лежали его идеи, честь создания квантовой механики как самостоятельного раздела науки принадлежит его более молодому коллеге.
Спокойный, мягкий человек, музыкант в душе, Борн больше всего на свете любил играть с женой на двух роялях. Ученый удивительной скромности, он получил Нобелевскую премию только в 1954 году, после того как сосватал нескольким своим ученикам темы, которые дали им возможность добиться этой чести гораздо раньше, чем ему самому.
Гейзенбергу в то время было немногим более двадцати лет, он совсем не отличался склонностью к самоотречению и вкусил радости успеха в самом начале карьеры. Постепенно он увлекся националистическими идеями, доставив своему учителю немало горьких минут. Борн переживал увлечение Гейзенберга особенно тяжело еще потому, что сам был евреем, а Гейзенберг в конце концов присоединился к нацистам.
Как я уже говорил, моя геттингенская работа не осталась незамеченной. Гильберт, Курант и Борн роняли время от времени замечания, из которых можно было понять, что я получу на следующий год приглашение приехать на некоторое время в Геттинген. Борн собирался в ближайшем будущем прочесть курс лекций в Массачусетском технологическом институте, и я хотел воспользоваться этим временем, чтобы поработать с ним вместе.
Профессор Борн прибыл в Соединенные Штаты в состоянии крайнего возбуждения, вызванного новым построением квантовой теории атома, которое было только что предложено Гейзенбергом. Эта теория имела существенно дискретный характер, и математическим аппаратом, который она использовала, являлись квадратные таблицы чисел, называемые матрицами. Разобщенность отдельных строк и отдельных столбцов этих матриц оказывалась связанной с разобщенностью отдельных спектральных линий в излучении атома. Но так как не все части спектра атома состоят из дискретных линий, Борна очень интересовала возможность обобщения таких матриц, или таблиц чисел, позволяющая прийти также к чему-то непрерывному, сопоставимому с непрерывной частью спектра. Подобное обобщение требовало большой специальной работы, и в этом вопросе он рассчитывал на мою помощь.
Я не могу здесь подробно рассказывать о своем участии в этой весьма специальной и в высшей степени абстрактной работе, имевшей в то же время лишь преходящее значение в общем развитии квантовой теории. Скажу только, что я в то время уже был знаком с обобщением понятия матрицы, представляющим собой то, что теперь называют операторами. Борн испытывал глубокое недоверие к обоснованности моего метода и страшно хотел узнать, получат ли мои математические измышления одобрение Гильберта. Гильберт отнесся к ним очень благосклонно, и начиная с того времени операторы неизменно играют существенную роль в квантовой теории. Примерно тогда же они были независимо введены в квантовую теорию и Полем Дираком в Англии. Помимо того, операторы оказались весьма полезными для установления связи квантовой механики Гейзенберга с еще одной формой квантовой механики, одновременно предложенной венским профессором Эрвином Шрёдингером.
С тех пор квантовая механика вступила в активную фазу своего развития. Целая группа молодых ученых – Дирак, Вольфганг Паули, фон Нейман, все приблизительно того же возраста, что и Гейзенберг, – чуть ли не каждый день делала какое-нибудь открытие в этой области. В такой обстановке лихорадочного напряжения мне, как всегда, работалось плохо. К тому же я не чувствовал никакой потребности заниматься вопросами, которыми интересовалось столько выдающихся ученых. Мне казалось, что некоторые философские идеи, вытекающие из моей старой работы о броуновском движении, могут быть с успехом использованы в квантовой механике; но проблемы, которые привлекали мое внимание, и тот круг вопросов, для разрешения которых я мог бы воспользоваться своим методом, в ближайшие двадцать лет так и не стали актуальными. В последние годы я снова вернулся к этой теме, на сей раз вместе с Арманом Зигелем из Бостонского университета, и у меня, наконец, появилась надежда сделать в этой области что-то полезное, что еще не успели сделать другие.
Рассказывая о своей работе – о той, которая уже сделана, и о той, которую еще предстоит сделать, – я все время помню (и читатель, надеюсь, тоже), что задача физики заключается сейчас совсем не в дальнейшем усовершенствовании уже существующей общей теории, основы которой совершенно ясны. Нынешняя физика представляет собой ряд отдельных теорий, которые еще ни одному человеку не удалось убедительно согласовать между собой. Кто-то очень хорошо сказал, что современный физик по понедельникам, средам и пятницам – специалист по квантовой теории, а по вторникам, четвергам и субботам – по теории отиосительнюсти; в воскресенье он уже совсем не специалист, а просто грешник, истово молящийся богу, чтобы тот кого-нибудь вразумил, желательно, конечно, его самого, и помог как-нибудь примирить эти две теории.
Примечания автора
1. В этой главе мне приходится объяснять смысл некоторых довольно сложных проблем, не прибегая к помощи научной терминологии. Читателю, не интересующемуся подробным описанием моих работ этого времени, лучше пропустить несколько абзацев, в которых затрагиваются специальные вопросы.
2. Нельзя говорить о Лейбнице и Свифте, не вспомнив об исторических событиях начала XVIII века, требующих некоторых дополнительных объяснений. Один из крупнейших философов, Лейбниц был в то же время замечательным математиком и физиком. Официально он занимал должность архивариуса при ганноверском дворе. На этом посту Лейбниц зарекомендовал себя не только великолепным библиотекарем, но и первоклассным дипломатом, преданно пекущимся о благополучии и округлении владений своего повелителя. Он, несомненно, принимал деятельное участие в переговорах, которые привели в конце концов представителя ганноверского дома на английский трон. Прихода ганноверцев больше всего желали виги, стремившиеся отнять власть у потерявших популярность Стюартов. Поэтому многие считали, что Лейбниц лично замешан в интригах вигов. То, что он был членом английского Королевского общества (Английской академии наук), и весьма деятельным членом, еще больше сближало его с Англией.
3. Свифт, наоборот, принадлежал к числу сторонников Стюартов и, следовательно, был тори. Он принимал непосредственное участие в подготовке coup d'Etat (государственного переворота), ставившего своей целью передать трон, освободившийся после смерти королевы Анны, сыну Якова II. Таким образом, Лейбниц и Свифт оказались в двух враждебных лагерях, причем оба играли заметную роль в политической борьбе своего времени. Нет ничего удивительного поэтому, что они питали друг к другу глубокую неприязнь. Чтобы убедиться во враждебном отношении Свифта к Лейбницу, достаточно взять в руки третью книгу «Путешествий Гулливера». Многие удивлялись ядовитому сарказму, с которым Свифт высмеял ученых Лапуты. Чем только не занимаются эти беспомощные прожектеры! Чтобы подобрать костюм нужного размера, измеряют человека с помощью секстанта, извлекают солнечные лучи из огурцов, пытаются овладеть всей премудростью будущих веков по способу, весьма напоминающему идею Эддингтона о печатающих на пишущих машинках обезьянах. [Винер имеет в виду замечание английского астрофизика Эддингтона, предложившего в качестве примера совершенно невероятного события случай, когда обезьяны, беспорядочно ударяющие по клавишам пишущих машинок, воспроизводят ряд классических литературных произведений.]
4. Но Лапута Свифта – это ведь не что иное, как пародия на Королевское общество и на деятельность Лейбница! Стоит ли при этих условиях удивляться, что одна из самых ядовитых свифтовских стрел вонзилась в типично лейбницевскую картину: блоха, на ней блоха поменьше и так ad infinitum.
5. Между прочим, эта шутка не единственное свидетельство интереса Свифта к проблеме изменения привычных соотношений. Его вообще занимала мысль, что произойдет с миром и с индивидуумами, его населяющими, если люди, животные и все предметы внезапно резко уменьшатся или увеличатся в размерах.
6. Первые две части «Путешествий Гулливера» как раз и посвящены этой теме: в «Путешествии в Лилипутию» Свифт рассказывает о людях в двенадцать раз меньше нормального человеческого роста; в «Путешествии в Бробдингнег» – о великанах семидесяти футов высотой.
7. В обоих случаях, описывая последствия таких резких изменений, Свифт проявляет достаточное остроумие, но недостаточную проницательность. Он, например, не представляет себе, как могут отразиться подобные изменения на способности двигаться. Свифт и не подозревает, что, будь лилипуты человеческими существами из плоти и крови, они при своем росте обладали бы способностью прыгать на высоту, в несколько раз превышающую их собственную, а жители Бробдингнега оказались бы так ленивы и так связаны с землей, что вряд ли сумели бы находиться в вертикальном положении.
Примечания переводчика
1. Женский колледж в г. Нортемптене (штат Массачусетс).
2. Здесь: умение жить (франц.).
3. Ты (нем.).
4. Вы (нем.). В английском языке фактически нет обращения на «ты», поэтому вопрос о выборе формы обращения представляется Винеру «специфически немецкой проблемой».
5. «Господин профессор дома?» – «Господин тайный советник дома».
6. До бесконечности (лат.).
7. Под знаком вечности (лат.).
8. Старинный английский народный танец, отличающийся быстрым темпом.
7 ВРЕМЕННЫЙ ПРЕПОДАВАТЕЛЬ КЕМБРИДЖСКОГО УНИВЕРСИТЕТА
Лето прошло, как обычно: мы отдыхали и бродили по горам. Дети, жившие в нашей долине, подросли, и с ними уже можно было пускаться в довольно трудные путешествия по Президеншиалс; наши прогулки, естественно, стали гораздо длиннее. Незадолго до отъезда в Монреаль, где нам предстояло сесть на пароход, я собрал несколько мальчиков и устроил небольшую экскурсию на Маунт Чокоруа. Как на зло, во время этого похода один из моих юных сподвижников подвернул лодыжку. Доставить его вниз было не так-то просто – мне пришлось два часа с большим напряжением тащить его на себе. В результате я страшно устал и перед самым отъездом жестоко простудился.
Но это было еще полбеды. У Пегги, которой к тому времени исполнилось полтора года, обнаружился жар. Правда, местный доктор уверял, что на море она быстро поправится, но нам все-таки было страшно трогаться в путь. Садясь в Мередите на поезд, отходящий в Монреаль, мы чувствовали, что попали в очень тяжелое положение.
Утром после довольно тягостной ночи в гостинице мы кое-как погрузились на пароход. Тут наши хвори разыгрались не на шутку. К счастью, на корабле Канадской тихоокеанской компании, на котором мы плыли, оказался превосходный врач, отправившийся в море, чтобы восстановить здоровье, подорванное какой-то сложной и мучительной болезнью, а кроме него, прекрасно обученная сестра из Шотландии и несколько бывших унтер-офицеров Королевского медицинского корпуса. Меня и Пегги немедленно уложили в постель. Сестра взяла на себя заботы о Пегги, а я боролся с тяжелейшей ангиной под присмотром одного из сержантов медицинской службы.
Окрепнув настолько, чтобы дотащиться до палубы, я узнал, что Пегги все еще больна. Пришел врач и долго выслушивал ее со стетоскопом. Увидев, что он снова и снова возвращается к одному и тому же месту на груди, я понял, что нас ожидают серьезные неприятности. У Пегги действительно оказалась бронхопневмония, и почти все первую половину путешествия мы не были уверены в ее выздоровлении.
Врач, наблюдавший за Пегги, посоветовался еще с одним коллегой, оказавшимся среди пассажиров, и назначил курс лечения. К середине пути самое страшное было уже позади. Мы заранее телеграфировали в Тилбери, прося выслать в порт карету скорой помощи, чтобы прямо с парохода отвезти Пегги в местную больницу. После этого было решено оставшуюся часть пути радоваться жизни настолько, насколько позволяла не оставлявшая нас тревога.
В положенный срок мы пристали к берегу и Пегги отвезли в больницу. Чтобы не нарушать душевного равновесия ребенка и установленного в больнице порядка, нас просили навещать девочку как можно реже, по крайней мере до тех пор, пока мы не подыщем в Кембридже жилье и не будем уверены, что сможем взять ее к себе.
Несколько дней мы провели в роскошном отеле, находящемся в ведении властей Лондонского порта. Я даже имел удовольствие лично встретиться кое с кем из начальства: с капитаном Лондонского порта, например, к с управляющим гавани. Управляющий интересовался техникой и еще больше метеорологией. Он жаловался на свое профессиональное одиночество – во всем мире едва ли наберется десяток людей, которые занимаются тем же, чем он. Во время первой мировой войны, когда он оказался отрезанным от своих товарищей в Гамбурге и Антверпене, ему пришлось совсем плохо. Он утверждал, что, в сущности, при нормальном положении вещей Лондон, Антверпен, Роттердам, Гамбург и Бремен надо рассматривать как один огромный порт, руководимый несколькими управляющими гаванями, которые обязательно должны тесно сотрудничать друг с другом. Ему казалось, что суда, доставляющие грузы в Лондон, вынуждены уходить из порта порожняком и грузиться где-то в другом месте только потому, что торговля плохо сбалансирована и лондонский импорт значительно превышает экспорт.
Еще до того, как мы все перебрались в Кембридж, я несколько раз ездил в Лондон, чтобы навестить своих старых друзей. В Кембридже мы остановились в очаровательном отеле на берегу реки и тут же начали расспрашивать знакомых, как найти дом на зиму. Наконец с помощью агента по продаже недвижимости нам удалось снять один из тех типично английских коттеджей, в которых в этой стране живут люди среднего достатка. Наше новое жилище находилось к северо-востоку от собственно Кембриджа, в Нью-Честертоне; через квартал от нас городские строения уже уступали место полям и фермам.
Мы нашли детский сад для Барбары, и бремя забот, лежавшее на плечах Маргарет, значительно уменьшилось. На пароходе ей приходилось одновременно нянчить больную девочку и следить за тем, чтобы второй, здоровый, полный сил ребенок держал себя в рамках приличия. Теперь задача значительно упростилась. Пегги, в общем, поправилась, хотя все еще недостаточно окрепла. Нам удалось уговорить одну йоркширку, служившую в отеле, где мы останавливались, присматривать некоторое время за нашим домом. Разрешив эту проблему, мы взяли напрокат автомобиль и приготовились к длительной поездке в Тилбери и обратно.
Мне никогда раньше но случалось совершать такие продолжительные путешествия по Англии. Я так и не привык к бесконечным крутым поворотам узких шоссе и никак не мог понять, почему дорога неизменно приводила нас на главную улицу деревни, мимо которой мы проезжали.
За несколько недель, проведенных дома, Пегги заметно поправилась, но у нее упорно держалась какая-то неприятная инфекция в среднем ухе, и нам приходилось постоянно быть начеку; понадобилось несколько лет, прежде чем она снова стала совсем здоровым ребенком, каким была до поездки в Англию. Теперь Барбара и Пегги уже взрослые женщины, но нам все еще странно, что Пегги, давно позабыв о детских, болезнях, так и пышет здоровьем, а Барбара кажется болезненной и хрупкой.
Из-за няни йоркширки Пегги скоро стала говорить на местном диалекте, никаких следов которого, к счастью, не осталось. Хотя она и сейчас может сказать: «А папу обсела сажа», что вполне соответствует лучшим языковым традициям Вест-Райдинга.
К нашему дому прилегал длинный узкий сад, в конце которого находилась оранжерея со стеклянными рамами, которые можно было поворачивать в зависимости от положения солнца и направления дождя. Любезная хозяйка, сдавшая нам обставленный дом, жила рядом с нами; благодаря ее заботам у нас был и садовник.
Но не только хозяйка трогала нас вниманием и радушием. Большинство соседей буквально с момента нашего появления начало относиться к нам с такой сердечностью, которая вовсе не в обычаях жителей Бостона. Все это как-то совсем не вязалось с распространенной легендой о британской чопорности. Правда, может быть, в отношении к нам какую-то роль сыграло несколько особое положение, которое мы занимали. Нашими соседями в основном были университетские преподаватели. Я тоже приехал читать лекции в университете, к тому же я бывал уже в Кембридже и имел здесь какие-то связи. Как когда-то сказала Джесси Уайтхед, у меня были все основания носить герб Тринити-колледжа, хотя и перечеркнутый косой полоской 1. Таким образом, не принадлежа к чистокровным кембриджцам, я все же не был здесь и совсем чужим. Не знаю, в какой, мере это влияло на наших соседей; во всяком случае, преподаватель итальянского языка, живший через два дома от нас, и наш ближайший сосед, доцент, читавший лекции о сельском хозяйстве в тропиках, навестили нас сейчас же, как только мы устроились. Потом мы часто заходили к кому-нибудь из них выпить чашку чая, и это незатейливое гостеприимство доставляло нам много радости.
Немного позднее мы познакомились с преподавателем древнееврейского языка, дом которого находился в нескольких сотнях ярдов от нас по той же улице. Он занимал официальный пост раввина Оксфорда, Кембриджа. и одной из тюрем его величества короля. Одновременно он был членом совета Королевского колледжа; в свое время он окончил его вместе с целой группой священников Высокой церкви 2, от которых он почти ничем не отличался. Непоколебимый приверженец обрядности, он даже у двери своего дома прикрепил традиционный еврейский религиозный текст.
Как и многие английские священники Высокой церкви, наш сосед отличался искренним либерализмом: когда понадобились деньги на ремонт старинной круглой норманской церкви, благотворительный пикник был устроен у него в саду. Он собрал интереснейшую коллекцию гравюр XVII–XVIII веков с изображением голландских синагог и ритуальных обрядов ашкеназической и сефардической групп евреев 3. Но больше всего он увлекался поисками истоков грегорианских псалмов и христианских обрядов в еврейской музыке и еврейских обычаях.
Живя в Кембридже, я несколько раз ездил в Лондон, пытаясь продать прибор, придуманный Ли и мной. Но из этого ничего не вышло, может быть, потому, что англичане не особенно интересовались электросвязью и их радиотехника была лишь слабым отражением того, что делалось в это время в Соединенных Штатах и в Германии. Кроме того, наведя кое-какие справки, я понял, что получить патент в Англии или в какой-нибудь другой европейской стране – дело еще более хлопотливое, чем в Америке. Американский патент дает лишь чисто формальное право считаться автором данного изобретения; получение английского патента более затруднительно, но зато гораздо более почетно. Дело в том, что, в отличие от Америки, в большинстве стран закон гораздо менее покровительствует изобретателям, чьи изобретения остаются на бумаге; в Европе необходимо, чтобы запатентованное изобретение было использовано в промышленности, в противном случае патент просто теряет силу.
В Лондоне я встретил мисс Картрайт, успевшую за это время стать директором Гертон-колледжа. Это была (и осталась) женщина чарующей искренности, чуждая, всякой претенциозности, и к тому же один из лучших английских математиков не только среди женщин, но и среди мужчин. Она пригласила меня на чашку чая, чтобы познакомить с одним юным преподавателем Тринити-колледжа по фамилии Пэли, о котором мне предстоит еще много говорить.
Вскоре после приезда в Кембридж я познакомился с Юнгом и его сестрой. Сам Юнг преподавал тогда, если я не ошибаюсь, в Петерхаузе. Он сделал несколько интересных работ, которые мы вместе развивали дальше. Его сестра, преподавательница Гертон-колледжа, была особенно мила с моими дочерьми, и я приходил к ней в гости вместе с Маргарет и обеими девочками.
Но из всех знакомств в Кембридже самым важным для меня по-прежнему оставалось знакомство с Харди и его вторым я – Литлвудом. Юноша, которого я когда-то в студенческие годы встретил в доме Рассела, превратился в пожилого ссутулившегося ученого. Но Харди все еще был опасным противником на теннисном корте и с энтузиазмом относился к крикету, прекрасно разбираясь во всех тонкостях этой игры. Позднее, побывав несколько раз в Соединенных Штатах, он заразился любовью к бейсболу и произносил имя Бейба Рута 4 так же часто, как имя знаменитого игрока в крикет Хоббса.
Литлвуд приближался тогда к вершине своей альпинистской карьеры. Он часто приглашал меня в Тринити-колледж и демонстрировал какие-нибудь интересные приемы альпинистской техники, карабкаясь на колонны в Невильс Кот. Харди и Литлвуд повели меня как-то на крикетный матч и показали мне регби – игру, во время которой противники устраивают невообразимую свалку из-за мяча. Боюсь, что прелесть этих игр ускользнула от моего понимания.
Я слушал курс лекций Харди по элементарной теории чисел, но никогда не посещал лекций Литлвуда, хотя иногда приходил на математический семинар, который он устраивал у себя дома.
В отличие от Харди, который терпеть не мог приложений математики – в первую очередь приложений к технике и к военной технике в особенности, – Литлвуд обладал хорошим физическим чутьем и во время обеих мировых войн деятельно помогал военному ведомству. Во время первой мировой войны он сумел существенно усовершенствовать способы расчета траекторий, придумав метод интерполяции, позволяющий по нескольким рассчитанным траекториям составить полные баллистические таблицы. Во время второй мировой войны Литлвуд вместе с мисс Картрайт занялся чрезвычайно нужным тогда изучением дифференциальных уравнений, оставив ради них свои занятия абстрактной математикой.
Почти каждую неделю меня приглашали пообедать вместе с преподавателями в Тринити или в какой-нибудь другой колледж. В Тринити ко мне, естественно, относились почти как к своему. Разговоры за столом всегда были интересны и совсем не походили на утонченную игру изысканного остроумия, которой я так боялся. Побывав через некоторое время у своих академических друзей в Оксфорде, я понял, какая пропасть разделяет эти две школы. То самое изысканное остроумие, которое никого не привлекало в Кембридже, было солью всех разговоров в Оксфорде.
Одним из самых приятных развлечений в Кембридже была для меня игра в шары с преподавателями Тринити-колледжа. В Тринити после обеда мы обычно переходили в соседнюю комнату, где нас ждали портвейн и сигары. Потом все выходили в сад, и тут начиналась игра. Я был так же неловок, как всегда, но испытывал огромное удовольствие от того, что можно забыть обо всех делах и до наступления мягких английских сумерек вместе с друзьями радоваться жизни в маленьком уютном саду, о существовании которого не знал почти никто из непосвященных. Играли мы именно в шары, а не в кегли; эти игры ни в коем случае нельзя путать. Исконная английская игра в шары, существовавшая задолго до того, как Дрейк 5 с ее помощью развлекался на «Хоу», поджидая в Плимуте Испанскую Армаду, не имеет ничего общего с игрой в кегли. Скорее это некая разновидность распространенной в Шотландии игры с гладко отшлифованными камешками на льду.
После войны состав учащихся и преподавателей Кембриджа и Оксфорда резко изменился. Занятия в университете перестали быть привилегией высших классов.
Теперь здесь можно было встретить сколько угодно молодых людей с блестящими способностями, которые жили на стипендию и, если бы не стипендия, никогда не стали бы тут учиться. Причем большинство особенно одаренных студентов относилось как раз к этой категории, так что времена, когда удовлетворительная отметка на экзамене считалась в Кембридже достижением, канули в вечность.
Некоторые студенты-стипендиаты принадлежали к очень необеспеченным семьям; низкорослые, с плохими зубами, они хранили на себе тяжелый отпечаток бедности и длительного недоедания. К тому же многие из них страдали от ощущения социальных барьеров, хотя в большинстве случаев окружающие относились к ним как к равным и эти барьеры существовали главным образом в их воображении. У меня было несколько таких молодых друзей из Кембриджа и Оксфорда, и они рассказывали мне, с каким трудом им далось искусство поддержания разговора за преподавательским столом, особенно, конечно, и Оксфорде. Тем, кто знаком с Д. Г. Лоренсом 6 и его романами, должно быть совершенно ясно, что я хочу сказать, так как Лоренс – это «литературный вариант» математиков, с которыми я встречался тогда в Англии и позднее сталкивался в Америке, где они учились как государственные стипендиаты Британского содружества наций.
Год, который я провел в Кембридже, был одним из самых знаменательных в истории физики. В этом году Кокрофту и Уолтону впервые удалось расщепить атом. Я видел их прибор – множество стеклянных цилиндров и пластинок с отверстиями, скрепленных с помощью так называемой замазки Декотинского – разновидности сургуча, повсеместно используемой в вакуумной технике. Английские и вообще европейские физики склонны, не дожидаясь огромных ассигнований (на которые всегда рассчитывают их американские коллеги), пользоваться тем, что есть под руками, и с помощью собственной изобретательности конструировать приборы, которые, казалось бы, совершенно невозможно создать без значительных денежных затрат. Эта их способность до сих пор производит на меня сильнейшее впечатление.
Правда, в Кембридже была все же одна дорогостоящая лаборатория, оборудованная по последнему слову техники. Я имею в виду лабораторию русского физика П. Л. Капицы, создавшего специальные мощные генераторы, которые замыкались накоротко, создавая токи огромной силы, пропускавшиеся по массивным проводам; провода шипели и трещали, как рассерженные змеи, а в окружающем пространстве возникало магнитное поле колоссальной силы. Позже Капица уехал в Советский Союз и его кембриджская лаборатория вся целиком была перевезена в Россию. В СССР Капица был пионером в создании того типа лабораторий-заводов с мощным оборудованием, первым образцом которых была лаборатория голландского физика Камерлинга Оннеса для исследования низких температур. Сейчас, в связи с созданием атомной бомбы и развитием исследований по физике атомного ядра, такие лаборатории стали совершенно обычными. Поэтому, когда я узнал, что у нас есть атомная бомба и что мы ее использовали, я не сомневался, что русским, уже оценившим на примере Капицы значение мощных, хорошо оборудованных лабораторий, не потребуется много времени на то, чтобы раскрыть загадки атомного ядра.
В Кембридже я встретил двух знакомых из Соединенных Штатов: молодую женщину, которая в свое время под моим руководством писала диссертацию по теории матриц, и преподавателя математики, с которым я познакомился на втором году работы в МТИ. Оказалось, что моя бывшая диссертантка взяла на год академический отпуск и приехала в Кембридж, где совмещала занятия математикой с удовольствиями жизни в новом приятном месте. Что касается знакомого мне преподавателя, то он довольно давно расстался с МТИ и уехал в Мюнхен, чтобы усовершенствовать там свои знания. В Мюнхене, помогая однажды какой-то американке сесть в трамвай, он ухитрился настолько серьезно поссориться с одним армейским офицером, что дело дошло до дуэли. Воспользовавшись правом выбора оружия, наш герой пустился на хитрость и заявил, что предпочитает лук и стрелы, а один из его приятелей тут же распустил слух, что он непревзойденный стрелок из лука. Кто-то из нас прочел об этой истории в парижском выпуске «Нью-Йорк Таймс», и мы послали своему коллеге письмо как будто бы от имени 06щества лучников с сообщением, что Общество награждает его своим высшим знаком отличия. Страдая некоторой излишней доверчивостью, наш дуэлянт преспокойно проглотил наживку, крючок и грузило. Такое пищеварение не может не вызвать восхищения; получив в ответ его чистосердечное письмо, мы даже почувствовали некоторые угрызения совести. Как бы то ни было, в Кембридже он был вполне приятным товарищем и немного всеобщим козлом отпущения.
Однажды, затеяв экскурсию вокруг Кембриджа, я решил уходить моего молодого американского приятеля. Однако на этот раз шутка обернулась против меня – уходился я сам. Он же принялся рассказывать всем и каждому, как трудно ему пришлось, и настолько преуспел в своей деятельности, что, когда другой американец отправился со мной по Озерному краю, он шел так, что мне стоило большого труда за ним угнаться.
В конце осеннего семестра профессор Харди предложил мне обсудить два вопроса. Первый из них касался возможности напечатать в кембриджском университетском издательстве книгу об интеграле Фурье, если я ее напишу; второй – возможности прочесть в следующем семестре курс лекций об интеграле Фурье. В Кембридже существует любопытный обычай: любой профессор имеет право передать курс лекций, который он читает, своему заместителю. Харди мог разрешить любому лицу читать лекции вместо него, а колледж, университет и ученый совет должны были относиться к этим лекциям так, как если бы их читал сам Харди. Итак, мне предстояло стать почти профессором Кембриджского университета и весь второй семестр рассказывать о своих работах по интегралу Фурье. Ну что же, всего несколько лет назад благодаря своим гарвардским связям я был почти студентом этого же университета, посещая занятия без официального зачисления в университет. Я решил, что мне не привыкать стать.
В Кембридже семестр подходил к концу, и с приближением рождественских каникул я начал получать от своих друзей с континента письма с приглашениями прочесть несколько лекций у них в университетах, благо занятия там кончались позже, чем в Кембридже. Профессор Вильгельм Бляшке приглашал меня в Гамбург; профессор Карл Менгер из Вены просто предлагал погостить у него пару недель; профессор Филипп Франк из немецкого университета в Праге просил прочесть несколько лекций в их университете.
Стоило мне написать эти имена, как в памяти сейчас же всплыло все, что с тех пор сталось с этими людьми. Бляшке за время второй мировой войны превратился, если не в рьяного фашиста, то, во всяком случае, в рьяного приверженца фашизма. Он писал статьи, высмеивая американских математиков, а в одной из них продемонстрировал свое презрение к прннстонской математической школе, назвав Принстон «маленькой негритянской деревней». Менгер приехал в Соединенные Штаты как беженец, и я помогал ему устроиться в университете Нотр-Дам; сейчас, если я не ошибаюсь, он работает в Иллинойском технологическом институте. Франк, спасаясь от гитлеризма, тоже бежал в Америку; недавно он оставил Гарвардский университет и ушел на пенсию.
Многие из математиков, с которыми мы виделись за время этого путешествия по Европе – пожалуй, даже большинство, – оказались после войны в Соединенных Штатах или умерли. Ган из Вены умер; Артин из Гамбурга стал профессором в Принстоне; Гёдель, помощник Менгера в Вене, тоже попал в Принстон, где и написал большую часть своих замечательных работ по математической логике; фон Мизес из Берлина, с которым я встретился в конце поездки, стал профессором Гарвардского университета; недавно он умер. По существу, все математические школы, которые когда-то существовали на континенте, или целиком переместились за океан, или погибли. На плечи чудом уцелевшей группы молодежи легла отчаянной трудности задача восстановления всего того, что было уничтожено.
Мы прекрасно провели время в Гамбурге, где нас тепло приняли сотрудники математического института. Потом я вместе с Маргарет и девочками уехал в Берлин. Здесь Маргарет забрала детей и поехала навещать своих родных в Бреслау, а я один отправился в Вену.
Еще раньше я решил прочесть несколько лекций в Праге. Путешествуя по Европе, я написал старому другу отца президенту Масарику и выразил надежду, что, будучи в Чехословакии, смогу его повидать. Мне казалось, что, так как он много раз видел меня маленьким мальчиком, я могу позволить себе вольность написать ему личное письмо. Узнав, что мы с Маргарет будем в Праге,
Масарик сейчас же послал нам письмо с приглашением навестить его во дворце Лана. Мы пересекали Крконоше 7 как раз в разгар лыжного сезона, и мне очень захотелось приехать сюда как-нибудь зимой еще раз.
Друзья встретили нас в Праге, помогли найти подходящую гостиницу и всячески о нас заботились. Я был страшно тронут, узнав, что несколько преподавателей Чешского университета, забыв о своей исконной вражде с преподавателями Немецкого университета, пришли слушать мои лекции.
Наконец, настал день визита в Лана. К гостинице подкатил правительственный автомобиль, мы сели и по очень плохой дороге поехали во дворец. Из окон автомобиля Чехословакия казалась вполне преуспевающей сельскохозяйственной страной. В празднично украшенной комнате с большой новогодней елкой и ярко разгоревшимся камином нас встретила дочь Масарика. Она сказала, что. отец скоро вернется с прогулки, которую он ежедневно совершает верхом на лошади. Прием начался так непринужденно, что мы сразу почувствовали себя не официальными посетителями, а друзьями дома.
Наконец, вошел президент, старый, добродушный, в костюме для верховой езды. Он очепь хорошо помнил свои визиты в наш дом на Медфорд Хилсайд. Масарик нашел, что я потолстел, и советовал побольше двигаться, заняться, например, вроде него, верховой ездой. Его очень тревожили успехи фашистов, и будущее Европы представлялось ему в мрачном свете. Вскоре Масарик пошел отдохнуть. Поговорив несколько минут с его дочерью, наполовину чешкой, наполовину американкой, мы откланялись.
Через несколько дней Маргарет вернулась в Бреслау, а я поехал в Лейпциг, чтобы повидаться со своим двоюродным братом Леоном и поговорить кое с кем в университете. Мне кажется, что именно в этот приезд в Лейпциг я встретился с Кёбе. «Величайший специалист по теории функций» (говорили, что на родине, в Бранденбурге, его иначе не называют) отличался удивительной высокопарностью, которая давала повод для множества анекдотов. Рассказывают, что, приехав по какому-то случаю посмотреть сильно пострадавшую от времени «Тайную вечерю» Леонардо да Винчи, он будто бы сказал: «Какая жалость, что этой картине суждено погибнуть. Но зато моя теорема об униформизации аналитических функций будет жить вечно!»
Вскоре мы поездом добрались до Голландии и сели на пароход, чтобы переплыть Ла-Манш. На сей раз дети чувствовали себя хорошо, а мы еле держались на ногах от усталости. Ночью нам пришлось испытать все прелести зимнего переезда через Северное море. К счастью, девочки спали и не видели, как их родители лежат ниц на полу каюты, борясь с приступами морской болезни.
На следующий день мы были уже в Кембридже. Из-за мороза у нас в ванной лопнула труба; прошло два неприятных дня, прежде чем водопроводчики исправили повреждение. Но все это не имело никакого значения. Я собирался приступить к чтению своего курса, Барбаре предстояло вернуться в детский сад, и никто не сомневался, что все будет хорошо.
Чтение лекций и книга успешно подвигались вперед. Семестр шел своим чередом. Обычно я занимался в библиотеке Кембриджского философского общества, того самого философского общества, которое опубликовало несколько моих ранних работ. Здесь я познакомился с человеком, который стал одним из моих самых близких друзей.
В перерыве между занятиями я читал массу всякой развлекательной литературы: детективы, популярные английские журналы «Стрэнд», «Пирсонс лайбрери» и тому подобное. Однажды, просматривая «Стрэнд», я наткнулся на научно-популярный роман «Добытчики золота». Материал, на котором он был построен, внушал полное доверие, а интрига – с тайными заговорами, преследованиями и бегством – все время держала в напряжении. Роман этот написал профессор Тринити-колледжа Дж. Б. С. Холдейн. На обложке книги красовалась фотография мужчины могучего телосложения, с густыми, нависшими бровями, которого я много раз встречал в библиотеке Философского общества.
Увидев Холдейна в следующий раз, я собрался с духом, подошел к нему, представился и сказал, что «Добытчики золота» доставили мне большое удовольствие. Один из персонажей книги, родом, очевидно, исландец, был почему-то назван датским именем. Разговаривая с Холдейном, я упомянул об этой маленькой неточности.
Холдейну, видимо, понравилась моя дерзость; через несколько недель он пригласил нас с Маргарет в свой очаровательный дом на Олд Честертон. Но сначала Холдейн сам пришел к нам. Это произошло во время пасхальных каникул, когда я вместе с одним американским другом отправился в пешеходно-автобусную экскурсию по Озерному краю. Маргарет никогда раньше не видела Холдейна, а он оказался слишком робким, чтобы ясно объяснить, кто он такой. В конце концов, благодаря моим описаниям, она все-таки его узнала. Холдейн пригласил ее к себе, чтобы познакомить с женой. Но оказалось, что миссис Холдейн уехала на автомобиле в Лондон и из-за трудностей уличного движения вернулась гораздо позже, чем предполагала. Проходил час за часом, а ее все не было. Холдейн совершенно растерялся, но Маргарет полностью сохранила присутствие духа. Когда, наконец, поздно вечером Шарлотта Холдейн появилась дома, она была страшно признательна за то, что Маргарет отнеслась к этому происшествию с должным savoir faire 8.
Шарлотта Холдейн, еврейка по национальности, молодая блестящая журналистка и романистка, совершенно очаровала Маргарет; было решено, что, как только я вернусь с Севера обе семьи непременно встретятся.
Я тем временем бродил по местам, которые, с одной стороны, как будто сильно напоминали Нью-Хемпшир, а с другой, казались совсем непохожими на мой излюбленный ландшафт. Уиндермир невольно вызывал воспоминание об Уинипесоки. Но английское озеро эже и не так причудливо по форме, а холмы вокруг ниже и менее приветливы, чем холмы вокруг наших ново-английских озер. У нас рощи и леса со всех сторон окружены пашнями и торфяными болотами – кажется, что леса наступают на открытые поляны, а там впечатление такое, будто пустоши теснят лес. В местах повыше лежал снег. Его было не так много, как ранним апрелем в Нью-Хемпшире; но все-таки достаточно, чтобы придать открывшейся перед нами картине мрачный и суровый колорит. Дома здесь нз нетесаного камня, а не из дерева, как в наших краях; стены, разделяющие поля, выше и более опрятны, чем стены жилищ. В тот день, когда я взобрался на Скофел 9, было холодно, сыро и дул сильный ветер.
Мы вернулись из путешествия бодрыми и освеженными, и Маргарет сейчас же повела меня к Холдейнам. Помню, что мы проводили много времени за бриджем. Играли семья против семьи, мужчины против женщин, евреи против неевреев. Во время игры много говорили. Я, пожалуй, никогда больше не встречал человека, умеющего так мастерски поддерживать беседу и обладающего такими разносторонними знаниями, как Дж. Б. С. Холдейн.
Вскоре после возвращения из экскурсии по Озерному краю я неожиданно заболел. Пришел врач и сказал, что у меня скарлатина. Накануне мы провели целый день у наших друзей Бизонет, и нам было очень неприятно, что мы подвергли опасности их всех и особенно, конечно, их маленького сына. Но с этим уже ничего нельзя было поделать. Приехала карета скорой помощи и отвезла меня в кембриджскую инфекционную больницу, расположенную в предместье города.
Меня поместили в приятную комнату с верандой и печкой. Последнее оказалось особенно кстати: хотя дело происходило в мае, часто бывало сыро и холодно. Комнаты в больнице отделялись одна от другой стеклянными перегородками. Как только я немного поправился, а это произошло буквально через несколько дней, мы с соседом затеяли не слишком увлекательную игру в крестики и нолики, благо листы бумаги можно было прикладывать к стеклянной перегородке. Ко мне приходило много друзей из университета. Особенно часто посещал меня Пэли; я даже чуть-чуть работал и просматривал корректуры. В начале июня я уже почти выздоровел, и мне было страшно досадно, что я не могу принять участие в празднествах и развлечениях Майской недели 10. Одно утешение, что сиделки пересказывали мне все городские сплетни и происшествия.
Когда я вышел из больницы, семестр уже кончился и в Кембридже воцарилась та обычная скука, которая охватывает все университетские городки во время летних каникул. Мы продолжали регулярно встречаться с семьей Холдейнов, и я часто плавал вместе с Холдейном в Ривер-Кэм, которая протекала перед их домом. Холдейн и в реке не расставался со своей трубкой. Подражая ему, я плавал с сигарой в зубах и с очками на носу. Тем, кто смотрел на нас с лодок, наверное, казалось, что на волнах качаются какие-то морские звери, вроде двух моржей, один побольше, другой поменьше.
Я собирался побывать на математическом конгрессе в Цюрихе, поэтому скоро вместе с Маргарет и девочками уехал в Швейцарию. Остановились мы снова в гостинице Бель-Рив в Бенигепе; она по-прежнему принадлежала нашим старым друзьям, но они собирались вот-вот закрыть дело.
Одна местная девушка согласилась поехать с нами в качестве няни и заботиться о детях, пока мы будем заняты на конгрессе. Уже по дороге в Люцерн, а потом в Цюрих в поезде начали встречаться представители славной когорты математиков. Среди них оказалась Эмми Нётер – наш старый друг еще со времени поездки в Геттинген и, вероятно, самая талантливая из всех известных женщин-математиков. Она, как всегда, внешне походила на очень энергичную и очень близорукую прачку; на самом деле это был исключительно теплый человек – недаром ее многочисленные студенты ходили за ней следом, как только что вылупившиеся цыплята за наседкой.
Мы сняли дешевые комнаты в гостинице «Христлихес хоспиц» 11, расположенной на холмах за Цюрихом. Это был швейцарский вариант гостиницы Y.W.С.А. или Y.M.С.А. 12. Здесь все немного отдавало ханжеством, но пища была хороша, а окрестности великолепны. Впрочем, самое большое достоинство нашего местоположения заключалось совсем в другом: рядом находился небольшой зоопарк, где дети могли резвиться, разглядывая зверей и, главное, зверенышей самых разнообразных пород.
Как всегда во время конгресса, наша жизнь была до отказа заполнена множеством дел и развлечений. Университет и Федеральный технологический институт наперебой организовывали вечера, экскурсии и приемы; их соперничество всем нам доставляло большое удовольствие.
В Цюрихе собралось много наших старых друзей и людей, с которыми мы стали друзьями впоследствии. Я уже приобрел настолько солидную репутацию, что меня попросили председательствовать на заседании одной из многоязычных секций конгресса. Не так легко было выступать в роли судьи во время спора, разгоревшегося между задиристым итальянцем, говорившем на ломаном французском языке, и столь же воинственно настроенным немцем, почти совсем не знающим этого языка.
Во время одной из экскурсий – кажется, это была прогулка на пароходе по озеру – два итальянских математика попытались выяснить, как бы я отнесся к предложению приехать в Италию, чтобы прочесть курс лекций. Я не питал никаких симпатий к фашизму, и мне как-то не понравился сугубо официальный характер приглашения. Позже я обсудил этот разговор с Леоном Лихтенштейном, который тоже принимал участие в конгрессе, и он посоветовал мне забыть о политике и принять приглашение. Но со мной никто больше об этом не заговаривал; итальянцы, очевидно, решили, что мои взгляды не встретят сочувствия в фашистской Италии.
Пэли, тоже присутствовавший на конгрессе, сообщил мне, что получил разрешение приехать осенью в Соединенные Штаты, чтобы поработать вместе со мной. Я был этому рад, но меня немного смущало его специфически британское самомнение, проявлявшееся, например, в постоянных насмешках над промахами незадачливых швейцарцев. Когда мне случалось при этом присутствовать, я всячески пытался сбить с него спесь, понимая, что в Швейцарии, где мы оба были гостями, мне удобнее критиковать его ребяческий национализм, чем в Америке, где я, как хозяин, буду вынужден соблюдать особую вежливость.
После, окончания конгресса, измученные и усталые, мы поездом пересекли Германию и в Гамбурге сели на пароход Северогерманского отделения компании Ллойда.
Если наши каникулы и не были отдыхом, то, во всяком случае, они были праздником, так что мы с удовольствием возвращались домой, чтобы снова начать размеренную, благоразумную жизнь.
Примечания переводчика
1. В средние века косая полоска на гербе означала незаконное происхождение.
2. Религиозное направление в Англии, придающее особое значение церковным обрядам, таинствам и авторитету епископов и священников.
3. Потомки евреев, живших в Испании и Португалии, относятся к сефардической группе, в отличие от потомков евреев, населявших северные страны и относящихся к ашкеназической группе.
4. Рут Джордж Герман (1895–1948) –прославленный американский игрок в бейсбол, известный под именем Бейб Рут.
5. Сэр Фрэнсис Дрейк (1540?–1596) – английский адмирал.
6. Лоренс Давид Герберт (1885–1930) – английский поэт и романист.
7. Самый высокий горный массив Судетских гор.
8. Здесь: пониманием жизни (франц.).
9. Гора на северо-западе Англии около 1000 м высоты.
10. Майской неделей в Кембридже называется время весенних спортивных соревнований после окончания экзаменов, приходящееся обычно на конец мая или начало июня.
11. Christliches Hospiz – Христианский приют (нем.).
12. Young women's Christian association, Young men's Christian association – Христианская ассоциация молодых женщин, Христианская ассоциация молодых мужчин (англ.).
8 СНОВА ДОМА. 1932–1933
Довольные и счастливые, добрались мы до Бостона. Маргарет сейчас же занялась поисками дома, но не успели мы еще перебраться в наше новое жилище, как родители срочно потребовали меня к себе. Я уже привык к их внезапным наскокам, но на сей раз, сколько я ни перебирал в памяти все недавние события, мне никак не удавалось сообразить, что именно могло вызвать неожиданный звонок по телефону и почему в их голосах звучало такое явное раздражение.
Я застал отца и мать в состоянии крайнего возбуждения. Оказывается, отец получил оскорбительное письмо от одного немецкого филолога, с которым он попытался вступить в переписку. Теперь он и мать единодушно считали, что мои долг по отношению к семье состоит в том, чтобы немедленно порвать все связи с немецкими математиками (не имеющими ни малейшего отношения к злосчастному филологу).
Отец питал к Германии противоречивые чувства: ему пришлось возненавидеть традиции, в которых он сам вырос, и познать неприязнь тех, чье одобрение было ему всего дороже. Что касается матери, то ее убеждения частично просто отражали воззрения отца, а частично вытекали из стремления лишний раз продемонстрировать солидарность с мнением ведущей группы гарвардских профессоров, традиционно придерживавшихся улътраамериканских взглядов.
Ни я, ни Маргарет совершенно не могли понять, чем вызван поток обвинений, который обрушился на наши головы. К повседневным более или менее беззлобным колкостям мы уже успели привыкнуть. Но на сей раз выпады отца совершенно не походили на обычные вспышки гнева – в них звучала какая-то зловещая настойчивость, которая показывала, что его нервы действительно натянуты до предела. Случилось что-то серьезное; в этом нельзя было сомневаться.
Вечером родители вышли погулять, и мы остались дома одни. Скоро они вернулись в страшной тревоге: переходя улицу, отец попал под машину. Сначала мы думали, что все обошлось благополучно. Правда, на одну ногу он совсем не мог ступить, но нам казалось, что его мучает боль от ушиба и что никаких более серьезных повреждений нет. Все-таки мы вызвали доктора, пожилого джентльмена одного возраста с отцом, издавна лечившего всю нашу семью. К числу его достоинств относилась та мягкая обходительность, которую пациенты старшего поколения обычно предпочитают большей осведомленности молодых врачей с резкими манерами.
Доктор решил, что на ночь отца можно оставить дома. Но на следующий день отец чувствовал себя так же плохо, как накануне, и мы отвезли его в больницу Маунт Оберн, чтобы сделать рентгеновский снимок. На снимке явственно обнаружился перелом бедренной кости, и мы все поняли, что для отца настали тяжелые времена. Прежде чем прибегнуть к хирургическому вмешательству, нужно было успокоить боль и избавить его от мрачных предчувствий, которые не давали ему покоя.
Отцу назначили паральдегид – одно из самых безобидных наркотических средств, но как раз в его случае паральдегид неожиданно привел к тяжелым осложнениям – отец почти непрерывно бредил. Больных в состоянии возбуждения не слишком любят в обычных больницах, и отца пришлось перевести в специальное лечебное заведение; хорошо еще, что к этому времени хирург уже вправил ему бедро.
Так получилось, что сразу после возвращения в Америку я вынужден был ежедневно навещать отца – сначала в одной больнице, потом в другой, а когда он начал поправляться – вывозить его в нашем автомобиле за город, чтобы дать возможность подышать свежим воздухом. Постепенно бедро зажило и возбуждение отца улеглось. Я отвез его домой, и он снова начал, несмотря ни на какие обстоятельства, регулярно работать в Гарвардской библиотеке. Но та почти юношеская полнота сил, которая, кипела в отце до несчастного случая, больше к нему уже не вернулась.
В это трудное время я узнал, что мой английский коллега Пэли получил государственную стипендию и приезжает в Америку специально, чтобы в течение года работать вместе со мной. В один прекрасный день я пересек мрачные, необитаемые кварталы восточного Бостона и явился на пристань. Пэли был уже там. Только геркулес вроде него мог справиться с двумя огромными чемоданами и, сверх того, тащить еще целую кучу принадлежностей для ходьбы на лыжах.
Следующие несколько недель я делил свое время между посещениями отца и напряженной научной работой с Пэли.
Пэли безгранично восхищался Литлвудом. Мне, правда, кажется, что, не будь Литлвуд превосходным альпинистом, Пэли ценил бы его математические достижения несколько меньше. Но, с другой стороны, несомненно, что, помимо собственной необузданной стремительности, именно Литлвуду обязан Пэли тем своим йlan 1, который позволял ему побеждать любую встречавшуюся на его пути трудность. Пэли был знаменем молодого поколения британских математиков, и, если бы не преждевременная смерть, он, несомненно, стал бы вождем современных математиков Англии.
Мы с Пэли обычно работали вместе, используя большую школьную доску, стоявшую в одной из заброшенных аудиторий МТИ, пропыленной, плохо освещенной комнате, превращенной в склад ненужных вещей. Было решено, что мы продолжим работу, которую я начинал один в связи с моим интересом к теории электрических цепей. В ход пошли все имевшиеся в нашем распоряжении средства. Я обычно ставил задачу и намечал общее направление исследования, после этого в атаку бросался Пэли и доводил дело до конца.
Если рассматривать математику как игру, то Пэли надо признать одним из замечательнейших игроков. Он в совершенстве владел множеством тонких приемов, позволявших ему одолевать почти любое препятствие. Но в связях математики с другими науками Пэли почти совсем не ориентировался. Когда мы ставили перед собой какую-нибудь задачу, я всегда прежде всего стремился понять ее физический и даже инженерный смысл. При этом у меня сразу создавались определенные представления о возможных подходах к задаче и я часто мог предсказать заранее, какими средствами лучше всего воспользоваться для ее разрешения. Пэли с интересом изучал мои методы работы, так же как я его, но мой сугубо прикладной подход к науке был ему глубоко чужд; мне даже казалось, что он считал его недостаточно спортивным. Боюсь, что моя готовность застрелить математического зверя в тех случаях, когда я не мог затравить его по всем правилам, шокировала и его и некоторых других моих английских друзей.
Среди интересных задач, которые мы вдвоем атаковали, можно упомянуть задачу об условиях, определяющих преобразования Фурье функций, обращающихся в нуль на полупрямой. С точки зрения чистой математики эта задача представлялась вполне достойной, и Пэли с жадностью набросился на нее. Однако в ходе работы выяснилось, что у меня есть перед ним некоторые преимущества: в отличие от него, я с самого начала понимал, что наша задача имеет также самое непосредственное отношение к электротехнике. Давно было известно, что острота, с которой электрический фильтр вырезает полосу частот, не может быть безграничной, хотя физики и инженеры не знали глубоких математических причин, определяющих такое положение вещей. При решении задачи, представлявшейся Пэли чем-то вроде очень красивой и трудной шахматной головоломки, ничем не связанной с реальным миром, я исходил из того, что условия, которые мы искали, были, в сущности, ограничениями, возникающими в задаче о фильтрах в связи с невозможностью воздействия будущего течения процесса на его ход в прошлом.
Между мной и Пэли, по существу, была та же разница, что и между любым крупным английским педагогом, воспитанным в классических традициях, и моим отцом. Я любил отца и знал, что при всей своей суровости он способен на настоящую мягкость. Но вместе с тем в нем не было ничего от м-ра Чипса 2. То, что м-ру Чипсу представлялось сложной и тонкой игрой, для отца было кровопролитной битвой за осуществление своих идей, с помощью которых он стремился непосредственно воздействовать на мир. Я понимаю значение английской научной школы и уважаю ее, но всем своим существом я все же связан с традициями континента.
Пэли страстно любил лыжи, хотя совсем не принадлежал к числу замечательных лыжников. У него была привычка бесшабашно ходить по самым опасным местам и так притоптывать на своих огромных лыжах (при его-то весе!), что местные лыжники тревожно переглядывались. Больше всего в жизни Пэли любил риск. Малейшая попытка избежать опасности или принять какие-нибудь меры предосторожности была для него равносильна признанию в собственной слабости, т.е. вещью, несовместимой с кодексом чести настоящего спортсмена.
Пэли приезжал к нам в гости в Нью-Хемпшир; во время этого визита он продемонстрировал замечательное непонимание местной жизни и столь же замечательное неумение себя вести. Впрочем, после всех его бестактностей в Швейцарии я уже ничему не удивлялся. По дороге к нам его автомобиль застрял. Совершенно естественно, что проезжавшие мимо люди помогли вытащить машину, но, сколько я ни говорил Пэли, что это наши соседи, что помогали они из чувства дружбы и что предложение взять деньги глубоко их обидит, он все равно попытался им заплатить. Правда, в конце концов Пэли все-таки понял, что такое жизнь в Америке на лоне природы, и даже научился уважать окрестных жителей за их дружелюбие и независимость. В сущности, Пэли до самой смерти остался школьником, и, проживи он хоть до восьмидесяти лет, в этом отношении все равно ничего бы не изменилось.
Позднее мы узнали, что необузданная гордость Пэли я постоянное стремление к опасности имели свое объяснение: он, очевидно, слышал какой-то неотвратимый зов смерти. Двух его двоюродных братьев постигла такая же страшная участь, как и его: один погиб в автомобильной катастрофе, другой – во время несчастного случая в горах.
Во время рождественских каникул Пэли отправился на лыжную экскурсию в Адирондак 3. Он уехал туда вместе со своим приятелем, ирландцем, который, если я но ошибаюсь, тоже был государственным стипендиатом. После экскурсии они поехали в Монреаль. По дороге в Адирондак они чуть не разбили вдребезги автомобиль, а тут еще им пришлось столкнуться с бандой нью-йоркских гангстеров, которые перебирались в Монреаль, чтобы обойти сухой закон. В результате Пэли вернулся в Бостон не только не успокоенным, но еще более возбужденным. У меня уже тогда была полная уверенность, что самое лучшее для Пэли – это пережить какое-нибудь по-настоящему опасное приключение, какую-нибудь катастрофу с благополучным концом.
В апреле Пэли вместе с несколькими бостонскими друзьями поехал в Канаду кататься на лыжах в Скалистых горах. Рядом с лагерем, где они остановились, было сколько угодно приятных и интересных мест для лыжных прогулок, но некоторые склоны считались лавиноопасными, и кататься там не разрешалось. К сожалению, если Пэли что-нибудь запрещали, он уже не мог этого не сделать.
Вскоре после его отъезда я получил телеграмму с сообщением о несчастье. Пересекая на своих тяжелых лыжах один из запретных склонов, он, очевидно, вызвал лавину. Его тело с оторванной ногой нашли лишь через пару дней на тысячу метров ниже места катастрофы; Пэли похоронили в Бемфе 4. Мне пришлось исполнить печальный долг и сообщить о его гибели матери и друзьям в Англии. Прошло немало времени, прежде чем я обрел необходимое внутреннее равновесие, чтобы возобновить работу и начать замечать, что делается вокруг меня.
После всех этих событий я сблизился с группой ученых, которую возглавлял мексиканский физик Мануэль Сандоваль Байарта. Байарта познакомил меня с мексиканским физиологом Артуро Розенблютом, правой рукой замечательного гарвардского физиолога Уолтера Кэннона, которого я помнил еще с восьмилетнего возраста. Кэннон и Розенблют вместе работали в различных областях физиологии и, главным образом, нейрофизиологии. К тому времени уже было совершенно ясно, что, как бы ни сложилась научная карьера Артуро в Гарварде, продолжателем великих традиций Кэннона в первую очередь будет, конечно, он.
Плотный, энергичный человек среднего роста, Артуро Розенблют быстро говорнл и быстро двигался; размышляя, он обычно торопливо ходил взад и вперед по комнате. Тот, кто видел его среди мексиканцев, не сомневался, что он истинный мексиканец, хотя на самом деле среди его предков были люди самых различных национальностей и большинство из них прожило всю жизнь в Венгрии.
Мы с Артуро с самого начала прекрасно поладили друг с другом. Но поладить с Артуро вовсе не значило прийти с ним к одинаковому мнению; скорее даже, наоборот, это значило во многом с ним не соглашаться и получать радость от этих разногласий. Прежде всего, нас объединял глубокий интерес к вопросам научной методологии, а кроме того, мы оба были убеждены, что деление науки на различные дисциплины есть не более чем административная условность, нужная лишь для удобства распределения средств и сил. Мы не сомневались, что каждый творчески работающий ученый волен ломать любые перегородки, если это нужно для успеха его работы, и нам обоим было совершенно ясно, что наука должна создаваться объединенными усилиями многих людей.
Некоторые свои взгляды на науку Артуро излагал во время необязательного научно-методического семинара, который он вел в Гарвардской медицинской школе. Этот семинар посещали не только те, кто занимался медициной. На нем регулярно присутствовал Мануэль Байарта и еще несколько преподавателей МТИ, включая меня; часто приходили и некоторые преподаватели Гарварда с кембриджской стороны 5. Естественно, что главным руководителем занятий был их организатор Артуро. Но если случалось так, что его место приходилось занять кому-нибудь другому, эта честь обычно выпадала мне. Так в течение нескольких лет благодаря семинару складывалось наше сотрудничество, которое потом превратилось в тесное творческое содружество, длящееся уже двадцать лет.
Хотя семинар никогда не входил в официальную программу Гарвардской медицинской школы или какого-нибудь другого учебного заведения, многие его бывшие участники именно этому начинанию обязаны широким интересом к проблемам философии науки и своеобразием подхода к научным исследованиям. После того как Артуро оставил Гарвардскую медицинскую школу и переехал в Мехико, мы продолжали наш семинар, проводя его иногда вместе, а иногда отдельно, то в Мексике, то в МТИ. В какой-то степени нам удалось сохранить атмосферу наших первых собраний, хотя мы и не могли долго поддерживать тот деятельный энтузиазм, который пылал в нас во времена, когда у каждого главные достижения были еще впереди. В последние годы семинар завоевал настолько прочную репутацию, что некоторые честолюбивые кропатели от науки начали делать попытки использовать в своих личных целях успехи, достигнутые усилиями всех.
В конечном итоге тема многочисленных бесед, которые мы вели с Розенблютом дома и на семинаре, сводилась к обсуждению возможностей применения в физиологии математики вообще и математической теории связи в частности. В результате этих разговоров возникли вполне реальные предпосылки для более тесной совместной работы, для которой, как мы надеялись, могли представиться какие-либо благоприятные возможности в будущем.
Примечания переводчика
1. Порывом (франц.).
2. Герой романа «До свиданья, м-р Чипс» английского писателя Джеймса Хнлтона (James Hilton, 1900–1954); имя Чипса стало нарицательным для хорошего учителя, отличающегося человеколюбивым отношением к ученикам.
3. Горная цепь, расположенная к северо-востоку от Нью-Йорка.
4. Город на западе Канады.
5. Основная часть Гарвардского университета расположена в Кембридже – предместье Бостона, отделенном от города рекой Ривер-Чарльз.
11 ПРЕДВОЕННЫЕ ГОДЫ. 1938–1939
Пока Маргарет жила в Германии, я гостил у Холдейнов в Уилтшире. Как только она вернулась, мы забрали детей, которые все это время оставались на южном побережье, и уехали домой. После годового отсутствия нам пришлось заново восстанавливать нити, связывавшие нас раньше с жизнью МТИ.
Вернувшись на кафедру математики, я застал довольно странную ситуацию. Кроме Эберхарда Хопфа, преподававшего в МТИ уже несколько лет, с нами вместе работал еще один молодой ученый Джесси Дуглас. Он как раз только что закончил блестящую работу о возможной форме так называемых минимальных поверхностей, т.е. поверхностей, подобных тем, которые образует мыльная пленка, натянутая на проволочный каркас. Дугласу удалось настолько продвинуться в разрешении этой классической проблемы, что ему присудили премию Боше – ту самую, которую раньше получил я за работу о тауберовых теоремах.
Надо сказать, что из-за депрессии попытки Комптона довести жалованье сотрудников МТИ до размеров жалованья преподавателей крупнейших университетов потерпели неудачу. Поэтому перед руководством МТИ стояла альтернатива: или довольствоваться посредственными математиками, согласными трудиться за скромное вознаграждение, или же настойчиво искать не оцененных по заслугам молодых ученых в надежде, что, как только экономические условия улучшатся и программа Комптона осуществится, мы сможем платить им то жалованье, на которое они вправе претендовать.
И действительно, прошло всего несколько лет, и жалованье преподавателей института начало повышаться, так что те, кто верил в щедрость МТИ, не обманулись в своих ожиданиях. Но был какой-то период, когда выдающиеся ученые, не добившиеся еще всеобщего признания и вынужденные довольствоваться работой у нас на кафедре, получали за эту работу явно недостаточное вознаграждение и считали, что их безжалостно эксплуатируют. Нет ничего удивительного поэтому, что Хопф и Дуглас, самые блестящие наши молодые преподаватели, чувствовали себя глубоко обиженными. Пока я был рядом, мы откровенно обсуждали создавшееся положение и я старался поддерживать их веру в лучшее будущее. Но за то время, которое я провел в Китае, они успели порядком потрепать друг Другу нервы. Ученые обычно отличаются излишней чувствительностью и так же легко возбуждаются, как художники и поэты. К тому времени, когда я вернулся, Дуглас и Хопф дошли до такого состояния, что на какое-то время оказались потеряны для МТИ.
Случай Хопфа представлял особенный интерес. Он был чистокровным немцем, и к его происхождению никто не мог бы придраться даже в нацистской Германии. Вначале он относился к Гитлеру враждебно или, во всяком случае, сочувствовал его жертвам. Но постепенно под сильным давлением семьи Хопф стал несколько более терпим к нацизму.
Когда мой двоюродный дядя Леон Лихтенштейн умер – в какой-то степени его смерть была связана с приходом Гитлера к власти, – новые руководители немецкой науки начали подыскивать ему замену. В то время большинство хороших математиков уезжало из Германии и разрешить эту проблему было не так просто. В конце концов вспомнили о Хопфе, и он получил предложение занять освободившееся место.
Надо иметь в виду, что в добрые старые времена положение профессора университета в Америке нельзя было даже сравнить с положением его коллег в Германии. Профессор немецкого университета имел в обществе больший вес, чем самый преуспевающий промышленник. Предложение гитлеровских властей экономически было гораздо выгодней любых предложений, на которые Хопф мог рассчитывать у нас в ближайшее время, а с точки зрения престижа оно значительно превосходило все, на что он мог надеяться даже в самом отдаленном будущем.
Должен сказать, что Хопф советовался, как ему быть, со многими немецкими беженцами, и, вопреки ожиданиям, его готовность принять предложение нацистов ни у кого из них не вызывала негодования. Сами они были убежденными противниками фашизма, но Хопф явно стремился приспособиться к новому режиму, и они не могли разговаривать с ним так, как они говорили со своими единомышленниками. Кроме того, они считали, что для Германии будет лучше, если освободившееся место займет человек, который, хотя и не является пламенным антифашистом, во всяком случае, не принадлежит и к ярым сторонникам Гитлера. Большинство немецких беженцев верило, что Германия будет разбита в войне или же рано или поздно сбросит фашизм своими собственными силами, и при всей оппозиционности к нацизму они не переставали гордиться своей страной. По их мнению, Хопф мог бы оказаться некоей частичкой новой Германии и наличие таких людей в стране содействовало бы восстановлению нормальной академической жизни после крушения гитлеризма.
Своим категорическим требованием немедленного повышения в обход более пожилых сотрудников Хопф как будто занес дубинку над головой руководителей МТИ, и это, естественно, не приводило их в восторг. С чисто экономической точки зрения, если бы можно было не принимать в расчет никакие моральные соображения, Хопф, казалось, имел полное право принять предложение нацистов. Но, с другой стороны, все мы надеялись, что Германию в конце концов ждет полный крах, и никто не мог поручиться, что при этом не рухнет и вся манящая Хопфа академическая система. Понятно, что окончательное решение должен был принять сам Хопф и в этом никто не мог ему помочь.
Хопф решил дать согласие. Обрадованный внезапным возвышением, он стал доброжелательнее к своим коллегам. Мне он выразил соболезнование по поводу того, что я занимаю недостаточно высокое положение, и пожелал добиться такого же успеха, какой выпал на долю ему самому. Нечего и говорить, что такого рода доброжелательность никому в МТИ не доставила особенного удовольствия.
Любопытно отметить, что ученые-беженцы, оставшиеся в Соединенных Штатах, внесли огромный вклад в развитие всей американской науки, включая и те ее разделы, которые имеют непосредственное военное значение. Больше половины ведущих американских ученых-атомников – беженцы из стран оси; достаточно вспомнить об Эйнштейне, Ферми, Сциларде и фон Неймане. Позднее в Америку приехал фон Мизес, много сделавший для развития статистической теории, а Курант и его сотрудники перенесли в Америку европейскую школу прикладной математики.
Мой бывший студент Норман Левинсон вернулся из Англии, куда он поехал, получив национальную стипендию, присуждаемую выдающимся молодым ученым. Я сделал все возможное, чтобы удержать его на нашей кафедре, но не встретил единодушия у тех, от кого это зависело. Некоторые преподаватели МТИ придерживались той же точки зрения, что и я, и старались мне помочь, но зато другие достаточно определенно давали почувствовать, что, по их мнению, у нас и без того достаточно евреев. Среди этих последних был, в частности, один мой коллега, тоже еврей, который боялся, что, если количество евреев в институте увеличится, отношение к нему лично станет хуже; он считал, что доброжелательный прием, который он встретил на нашей кафедре, – его личная привилегия.
Я думаю, что в принципе неплохо, когда происходит равномерное распределение людей различных рас и различных культурных традиций, но я был убежден тогда и убежден до сих пор, что все соображения подобного рода – чистая условность, с которой нельзя считаться, когда речь идет о подходящем работнике. Талантливые люди слишком редки, чтобы какое бы то ни было учебное заведение могло позволить себе роскошь, подбирая сотрудников, руководствоваться подобными идеями.
В 1936 году праздновалось трехсотлетие Гарвардского университета, и по этому случаю в Бостон съехались многие выдающиеся ученые со всех концов мира. Из Англии приехал Харди, и я попросил его устроить Левинсона у себя. Ему это удалось, хотя и не без труда. С тех пор Левинсон успел вернуться на нашу кафедру и заслуженно считается одним из ведущих математиков.
Таким образом, в предвоенные годы мне пришлось пережить несколько тяжелых внутренних кризисов. Нацизм грозил захватить весь мир; эта угроза, как кошмар, мучила каждого человека с либеральными взглядами и, в частности, каждого либерального ученого. Активное участие в устройстве большого числа беженцев немного смягчало мое внутреннее смятение, но не настолько, чтобы дать мне душевное спокойствие.
Вернулись мучительные проблемы тех времен, когда я был вундеркиндом. Я любил отца, но все окружающие уж очень упорно стремились подчеркнуть, что, в конце концов, я всего лишь его сын. Тот факт, что я был евреем, двойственно влиял на мое тогдашнее состояние. С одной стороны, жестокий террор нацистов вызвал в Америке волну сочувствия к евреям, но, с другой стороны, мы не могли забыть, что где-то в мире евреям грозили полным уничтожением, и чувствовали, что порожденный нацизмом антисемитизм нашел все-таки отклик и у некоторых американцев.
Я страдал не только от осложнений, непосредственно связанных с моим происхождением и воспитанием, но и от дополнительных трудностей, вызванных своеобразием моей академической карьеры, которую я начал, обладая недостаточным социальным опытом, чтобы отдать себе отчет в том, что я собой представляю и куда я иду. С течением времени, особенно после женитьбы, многие острые углы сгладились, но боюсь, что в значительной мере за счет того, что я переложил на плечи Маргарет основную тяжесть конфликтов, возникающих из-за непримиримых противоречий моей натуры.
Некоторые проблемы с годами теряли свою остроту просто из-за того, что пожилому человеку прощается многое из того, что не прощается юноше, и все-таки тот отрезок времени, который, естественно, должен был бы стать для меня периодом внутренней гармонии, был омрачен трудностями, вызванными депрессией, нацизмом и постоянной угрозой войны; из-за всего этого для меня так и не настало время, когда я мог бы до конца оправиться от пережитых потрясений и насладиться несколькими годами полной безмятежности.
Сложности с Джесси Дугласом и Эберхардом Хопфом, так же как и проблема устройства Левинсона в соответствии с его заслугами, заставили меня еще острее ощутить напряженность и смуту предвоенных лет и увеличили мою внутреннюю тревогу. К возвращению из Китая мне исполнилось сорок два года, и я уже начал чувствовать, что молодость осталась позади; сказывались многие годы тяжелой жизни. По совету Маргарет я обратился к одному знакомому врачу, который оставил терапию и занялся психоанализом.
Вряд ли удивительно, что в той ситуации, в которой я оказался, мне понадобилась помощь психоаналитика. Несмотря на весьма скептическое отношение, которое вызывали у меня принципы психоанализа, я, конечно, гораздо раньше обратился бы к этой науке, знай я только, как приняться за дело. Во время пребывания в Китае я сделал несколько попыток подвергнуться психоанализу, но потерпел неудачу. Тогда я понял, что, чем своеобразнее внутренний мир человека, тем труднее найти врача, который сумел бы ему помочь.
Еще ребенком я читал книги по психиатрии и познакомился с некоторыми работами Шарко и Жане. Задолго до того, как я услышал о Фрейде, личный опыт убедил меня, что в моей душе существуют скрытые побуждения и темные глубины, попытка проникновения в которые вызывает у меня чувство упорного сопротивления. Когда при изучении философии я столкнулся с понятием подсознательного, в этом не было для меня ничего нового; я уже знал, что под покровом сознания часто скрываются жестокие, почти не поддающиеся описанию импульсы и вместе с тем почти непобедимое стремление придать им иной смысл и скрыть их под маской рационализма.
Вот почему, услышав о Фрейде и его идеях, я оказался полностью подготовленным к тому, чтобы воспринять их как великое открытие, имеющее глубокий смысл. И тем не менее внутренний рационализм самых психиатров вызывал у меня чувство протеста. Ответы, которые они предлагали на все общечеловеческие и на мои личные вопросы, казались мне слишком бойкими и приходились как-то уж очень кстати. Не отрицая терапевтической ценности большинства их методов, я считал все-таки, что теоретические основы психоанализа не достигли еще той степени убедительности и научной организованности, которая позволила бы полностью ему доверять. В то же время для психоаналитиков, требующих от своих клиентов полной внутренней покорности и определенных финансовых затрат, было крайне важно – профессионально и материально – создать впечатление полной объективности фрейдизма.
Фрейд, очевидно, широко экспериментировал на самом себе, не впадая, однако, в то классически пассивное состояние, которое он впоследствии считал необходимым для успеха психоанализа. Я тоже видел, что во мне появляются зачатки психоаналитического сознания, которым я обязан только самому себе, и поэтому совсем не стремился погрузиться в рекомендованное мне состояние полной покорности.
Кроме того, я не мог согласиться с принятой в психоанализе оценкой человеческой личности и с теми жизненными целями, которые предложил мне мой друг психоаналитик. Я никогда не считал удовлетворенность и даже счастье самыми большими человеческими ценностями, и у меня появился страх, что одна из задач традиционного психоанализа состоит в том, чтобы обратить пациента в мирно пасущуюся корову.
Лежа на койке психиатра, я пытался составить обычный психоаналитический отчет, дополняя его интуитивными догадками о своих побуждениях и свойственными мне оценками духовных ценностей. Я говорил своему врачу, как много значит для меня импульс творчества, какое глубокое удовлетворение приносит мне успех в работе и как прочно это чувство связано с моим пониманием прекрасного. Я рассказал ему о том, что мне нравится в литературе и, в частности, в поэзии. У Гейне встречаются некоторые отрывки с описанием религиозного экстаза евреев, особенно в «Диспуте» и «Принцессе Шабаш», которые я не могу перечитывать без слез. Я говорил ему, что испытываю глубокое волнение, когда Гейне внезапно переходит от описания убожества и низости повседневной жизни к восторженному прославлению бога и человеческого достоинства презренного еврея.
Но мой врач пренебрег всеми этими сведениями, так как, по его мнению, они не исходили из глубин подсознания. Он считал, что они привнесены извне и не проникли дальше верхних слоев моего сознания, а потому тончайшая петелька, самый слабый отзвук, связанный с любым моим полузабытым сном, казался ему ценнее всех этих разговоров. Возможно, что мои мысли действительно были осознаны, но их воздействие на меня все-таки никак не было связано только с поверхностными слоями сознания.
Врач же воспринимал мои слова как контрабанду и считал, что я нарушаю долг пациента, лежащего на койке психоаналитика. Он не хотел считаться с тем, что я говорил, и расстался со мной с твердым убеждением, что его нарочно вводили в заблуждение. Я был обвинен в самом тяжком прегрешении пациентов, лечащихся у психиатров, – в неподатливости. Я действительно проявлял строптивость, но самый факт моей строптивости был непосредственным следствием моего жизненного опыта и душевного склада. Потеряв полгода в бесплодных попытках извлечь какую-нибудь пользу из человека, который, по моему глубокому убеждению, так и не понял, что я такое, я с ним расстался.
Позднее я обращался к другим психоаналитикам, меиее почитавшим сонники и более энергично стремившимся войти в контакт с моим человеческим Я. Они оказались искушеннее в жизненных делах и человечнее, а главное, они не превращали сеанса психоанализа в священный обряд. Новые врачи тоже не пренебрегали моими снами и подмеченными противоречиями. Но, в отличие от своих более ортодоксальных коллег, превративших фрейдизм в некую религию, они в гораздо большей степени обращались со мной как с личностью. Для них койка психоаналитика не была прокрустовым ложем, и, если я высказывал мнение, отличное от их собственного, они не вешали мне на шею ярлык с устрашающим словом «неподатлив».
К счастью, я не имел возможности сосредоточить все внимание на своих внутренних трудностях и целиком посвятить себя копанию в собственной душе. У меня постоянно было много забот, и в том числе забота об устройстве ученых-беженцев. Правда, с годами эта забота стала отнимать меньше времени, так как проблема иммиграции ученых приобрела иной характер.
Самые различные страны внесли свою лепту в развитие американской науки, включая Финляндию и Китай. Давно приехавшие эмигранты постепенно отвыкали от родного языка (обычно немецкого) и начинали воспринимать американский образ жизни как нечто совершенно естественное. Пожилые люди воспитывали детей уже в американских традициях, молодые женились на американках, и было очевидно, что при любых обстоятельствах только единицы из них захотят навсегда порвать с Америкой и возвратиться в Европу.
Об окончательных результатах мощной волны эмиграции эпохи гитлеризма судить еще рано. Но совершенно ясно, что в нашу математику влилось такое количество новых человеческих индивидуальностей и новых человеческих рас, что по интенсивности этот приток можно сравнить только с волной немецкой эмиграции 1848 года или с массовым бегством гугенотов из Франции в Англию, Голландию и Америку после отмены Нантского эдикта 1.
В Америку приехало много первоклассных ученых, и я рад, что мне удалось поработать вместе с некоторыми из них. Если я не ошибаюсь, Аурел Винтнер приехал в Америку по рекомендации своего учителя и моего двоюродного дяди Леона Лихтенштейна еще до первой большой волны эмиграции. Не помню уже, летом какого года Винтнер вместе с семьей снял коттедж в Нью-Хемпшире, милях в двадцати от нас. В этих местах люди, живущие на расстоянии двадцати миль друг от друга, считаются близкими соседями.
Живой, полный энтузиазма, стремительный в движениях и в мыслях, профессор Винтнер – очень своеобразный и интересный ученый. Он женат на дочери известного немецкого математика Гёльдера. Браки молодых математиков с дочерьми своих учителей – настолько характерное явление академической жизни Европы и Америки, что даже принято говорить о совершенно особой форме наследования математических способностей, передающихся обычно не от отца к сыну, а от тестя к зятю.
В конце концов Винтнер стал более или менее постоянным летним гостем в Нью-Хемпшире. Мы начали вместе работать над рядом вопросов, связанных с различными проблемами, которыми он занимался. Некоторые из них касались распространения моих идей относительно обобщенного гармонического анализа на теорию возмущения планетных орбит, составляющую существенную часть небесной механики. Эта наша работа представляла собой попытку современного подхода к классической задаче XVIII века, связанной с именами Лапласа и Лагранжа.
Кроме того, мы занимались применением понятий современной теории вероятностей к созданной Максвеллом кинетической теории газов, рассматривающей газ как совокупность движущихся и сталкивающихся друг с другом частиц. Я еще раньше интересовался этой областью исследований в связи с работой двух сотрудников кафедры физической химии Колумбийского университета, переехавших потом в Чикаго.
Третье направление нашей совместной работы было связано с усовершенствованием и упрощением доказательств эргодических теорем Купмена, фон Неймана и Биркгофа. Эти теоремы, о которых я уже упоминал выше, восполнили недостающее звено в исследованиях Уилларда Гиббса и позволили строго обосновать его идею о замене осреднения по всем возможным мирам простым осреднением по времени. В работе над эргодическими теоремами нам очень помогли беседы с молодым голландским математиком Е. Р. ван Кампеном, который был нашим товарищем во время многочисленных прогулок по Уайт Маунтинс. Несчастный ван Кампен, которого, казалось, ожидала блестящая карьера, умер год или два спустя от опухоли мозга.
Все это время я не терял надежды вернуться в недалеком будущем к чтению лекций в Китае. Но события следующих нескольких лет заставили меня отказаться от этой мысли. В 1937 году меня заменил в Китае К. С. Уайльдс – мой коллега по кафедре электротехники. Он вернулся в Америку как раз тогда, когда между китайцами и японцами произошло столкновение у моста Марко Поло 2.
Помимо того, что это событие имело серьезные последствия для всего мира, оно глубоко задело меня лично. Инцидент у моста Марко Поло застал Ли и его жену в Шанхае, где они гостили у своих друзей. Начавшаяся война между Китаем и Японией лишила их возможности возвратиться в Бейпин. Какое-то время Ли учительствовал, потом эта работа кончилась, и им пришлось жить на свои сбережения и на то, что Ли удавалось заработать в качестве эксперта в вопросах китайского искусства.
Вынужденный перерыв в научной деятельности, заставший Ли в том возрасте, когда ученый обычно переживает пору творческого расцвета, был страшным ударом для моего друга, и многие годы меня мучала боязнь пропустить хоть какую-нибудь возможность помочь ему выбраться из западни, в которую он неожиданно попал. Я сделал все что можно, чтобы вызвать Ли в Соединенные Штаты, но в то время мои старания не увенчались успехом.
Работа в Китае показалась Уайльдсу такой же интересной и приятной, как и мне за год до него. Несколько следующих лет мы оба пытались воздействовать на общественное мнение Америки, чтобы добиться усиленной помощи Китаю. Мы обратились за содействием к директору МТИ Комптону, и он немало потрудился ради облегчения ситуации в Китае. Другие влиятельные сотрудники нашего института тоже приняли участпе в этом движении.
Для меня это было сложное и беспокойное время еще из-за семейных дел. Незадолго до несчастного случая, о котором я уже рассказывал, отец оставил работу в Гарвардском университете. Он был глубоко разочарован, и равнодушие, с которым ректор университета Лоуэл принял его отставку, не снизойдя до того, чтобы сказать ему несколько добрых слов, еще усилило это чувство. Немного оправившись, отец возобновил свою исследовательскую работу в Гарвардской библиотеке и даже, как прежде, ходил туда пешком из Бельмонта, но силы его таяли с каждым годом.
После моего возвращения из Китая отец начал быстро сдавать, потом появились признаки паралича. Его поместили в больницу, но на этот раз надежд на выздоровление было очень мало. В больнице отец впал в состояние беспокойной депрессии, у него часто бывало неполное сознание. Но он понимал, что разум ему изменяет, и чувствовал, что нити, связывающие его с жизнью, слабеют. Его состояние часто ассоциировалось у меня с гибельной политической ситуацией, в которой оказался современный мир.
Отцу было безразлично, говорить ли на русском, немецком, испанском, французском или английском языке. Когда он пользовался каким-нибудь из знакомых мне языков, я не замечал, чтобы он допускал грамматические ошибки или употреблял слова одного языка вместо слов другого. Правильность и беглость его многоязычной речи не пострадала даже тогда, когда он перестал понимать, что я его сын. Знание языков лежало у отца не на поверхности сознания, а вошло в кровь и плоть.
Я часто навещал отца и время от времени забирал его из больницы, чтобы немного покатать на автомобиле. Но он явно угасал, и едва ли даже стоило желать, чтобы эта оставшаяся ему полужизнь продолжалась слишком долго. В первый год войны, заснув однажды вечером, он мирно и спокойно умер.
Все это время мать Маргарет постоянно жила у нас и лишь один илн два раза ненадолго уезжада в Германию навестить своих родных. Как я уже говорил, за эти годы немецкий язык стал обиходным языком в нашем доме. Но одно происшествие в Бостонском клубе друзей Китая заставило нас отвести ему еще более значительное место.
Однажды мы встретили в клубе аспирантку Рэдклиф-колледжа, отец которой, управляющий угольной шахтой в Бейпине, учился в Германии и женился там на дочери своей квартирной хозяйки. Лотти Ху, родившаяся от этого смешанного китайско-немецкого брака, приехала в Бостон изучать антропологию. Превратности военного времени лишили ее средств к существованию. Набравшись храбрости, она спросила Маргарет, не разрешит ли она ей жить вместе с нами, получая стол, квартиру и скромные карманные деньги за помощь по хозяйству. Так случилось, что мы взяли Лотти к себе в дом и она стала другом и товарищем моих дочерей.
Лотти с одинаковой свободой говорила на дворцовом китайском языке, по-английски и по-немецки. Так как немецкий язык еще раньше стал вторым языком у нас дома, новый порядок явился естественным продолжением уже установившейся традиции и помогал девочкам усовершенствовать свои знания.
Мои дочери учились уже в средней школе. Мы не избежали обычных трений между родителями и детьми; мое научное положение, например, вызывало у них обеих некоторое чувство обиды. Пегги частенько говорила: «Мне надоело быть дочерью Норберта Винера. Я хочу быть просто Пегги Винер». Я не пытался перекраивать дочерей на свой лад, но уже самый факт моего существования неизбежно оказывал на них определенное давление, и с этим я ничего не мог поделать.
Я гордился ими, но не стремился сделать из них вундеркиндов. Особенное чувство удовлетворения я испытал однажды, когда Барбара, прочтя в учебнике какие-то рассуждения о латиноамериканцах, сказала: «Знаешь, папа, автор этой книги, кажется, относится к латиноамериканцам очень покровительственно. У них это, наверное, вызывает ненависть?» – «Черт возьми, – ответил я, – а ты здорово проницательна».
Приблизительно в это время в Бостоне организовали серию радиопередач по образцу «Спрашивают дети». Барбара приняла в ней участие. Я не совсем уверен, что проявил мудрость, дав ей разрешение. Но она справлялась вполне хорошо и даже в какой-то степени овладела искусством выступать перед аудиторией. Я поинтересовался дальнейшей судьбой детей, участвовавших в этих передачах; насколько я мог выяснить, с ними все обстояло благополучно, и никому из них этот эпизод не принес никакого вреда.
Таким образом, нам, как и каждой семье, приходилось рассматривать какие-то проблемы и принимать какие-то решения. Я не уверен в правильности принципов, которыми я руководствовался, и не стыжусь ошибок, которые мне, наверное, приходилось совершать. У каждого из нас только одна жизнь, и она слишком коротка, чтобы в совершенстве овладеть искусством воспитания детей.
Вырастить детей – задача нелегкая, но у нас она в значительной степени облегчалась тем, что вся домашняя работа распределялась между тремя женщинами. Мать Маргарет заботилась о нашем садике в Бельмонте и об участке в Нью-Хемпшире; она собрала замечательный набор садовых инструментов и всевозможных приспособлений и получала большое удовольствие от своей деятельности. Она выросла в немецкой деревне и отличалась романтическим складом характера, который и привел ее на просторы американского Запада. Наш деревенский дом в Новой Англии доставлял ей такую же радость, как всем нам.
Летом 1939 года, как раз перед началом второй мировой войны, она тихо умерла, заснув в своей комнате на втором этаже нашего дома в Нью-Хемпшире. Мы похоронили ее на маленьком местном кладбище, открытом порывам всех ветров, дующих с гор Оссипи. Выбранный нами памятник был в духе тех традиционных надгробий, которые обычно ставят на могилах в Нью-Хемпшире, но высеченная на нем надпись соответствовала ее немецкому происхождению и немецкой энергии. Это было начало лютеровского гимна:
«Ein' feste Burg ist unser Gott» («Бог наш – неприступная крепость»).
Я благодарен судьбе за то, что она избавила ее от ужасов и унижений второй мировой войны, разразившейся вскоре после ее смерти.
Но еще до того, как началась война, потянулась мрачная цепь катастроф. Осень 1938 года была отмечена Мюнхеном и первым из вест-индских ураганов, обрушившихся на Бостон в последние годы. С этого времени мы все жили под гнетом ожидания войны. Так продолжалось до лета 1939 года.
Летом после смерти матери Маргарет мы предприняли небольшое путешествие в Канаду. Мы тогда почти каждое лето совершали такие автомобильные прогулки. Немного позднее, тем же летом, я снова путешествовал по Канаде, на этот раз один, чтобы принять участие в собрании Американского математического общества, которое происходило в Медисоне, штат Висконсин. Я выехал из вашего дома в Нью-Хемпшире и направился по дороге, огибающей Великие Озера с севера; на второй день вечером я добрался до Су Сейнт Мери в штате Мичиган.
Здесь я узнал о начале войны. Это странным образом напомнило мне, как двадцать четыре года тому назад, во время другого путешествия, до меня дошло известие о первой мировой войне; я в то время был пассажиром немецкого парохода, и мы находились где-то посередине Атлантического океана. Вся радость и удовольствие от встречи с коллегами были уничтожены. Раньше мы надеялись, что на собрании удастся окончательно договориться о проведении международного математического съезда, который должен был состояться летом 1940 года в Соединенных Штатах, но все эти планы оказались замороженными на целых десять лет.
Я возвращался на Восток вместе с одним английским математиком. Заехав по дороге к моему другу, живущему в штате Нью-Йорк, мы собирали у него виноград и пытались разобраться в своих чувствах, мыслях и надеждах.
Примечания переводчика
1. По Нантскому эдикту (1598 г.) за гугенотами признавалась свобода вероисповедания и богослужения; этот эдикт был отменен Людовиком XIV в 1685 г.
2. Перестрелка, завязавшаяся 7 июля 1937 г. между японцами и китайцами у р. Юндинхэ близ моста Лугоуцяо (европейцы часто называют его мостом Марко Поло), явилась началом восьмилетней национально-освободительной войны Китая против Японии.
12 ГОДЫ ВОЙНЫ. 1940–1945
Осенью 1939 года, возвратившись после отпуска в МТИ, я попробовал разобраться в том, что же происходит в мире. Ситуация была такова, что рассчитывать на что-нибудь хорошее не приходилось. В научных я промышленных кругах большинство понимало, что Соединенные Штаты, так же как и другие великие державы, в конце концов будут втянуты в мировую войну. Поэтому каждый заранее стремился найти такой участок работы, на котором в этом случае можно было бы применить свои силы.
Из-за близорукости я даже в молодости не мог попасть на действительную военную службу; с годами же мои шансы, естественно, не увеличились. Я не мыслил себя администратором, и никому не пришло бы в голову, что я обладаю такого рода способностями. Очевидно, мне не оставалось ничего другого, как обратиться к какому-то виду научно-исследовательской работы.
Во время первой мировой войны я прошел курс ученичества в области баллистических расчетов. Такого рода расчеты необходимы для составления артиллерийских таблиц стрельбы, в которых указывается зависимость дальности стрельбы и других связанных с нею констант от угла прицела орудия, величины заряда, веса снаряда и т.п. Кроме того, в последние годы я много работал вместе с инженерами-электриками. Исходя из всего этого, я предполагал, что в случае войны мне следует, очевидно, заняться какой-то деятельностью, так или иначе связанной с применением вычислительной математики к электротехническим проблемам. Такая перспектива представлялась мне тем более реальной, что совместная работа с Ли позволила мне заглянуть в тайны конструкторского творчества.
В этом отношении все было ясно, неясным оставалось только, откуда раздастся призывный глас. Когда после выматывающего душу ожидания эпохи Sitzkrieg'a 1 начали приходить тревожные известия о военных успехах и грозных планах Германии, большинство из нас пришло к убеждению, что основная задача Америки – сохранить Англию в качестве активного противника Гитлера до тех пор, пока мы сами не сможем вступить в войну. А для этого в первую очередь мы должны были помочь англичанам справиться с подводными лодками и налетами бомбардировщиков.
К счастью, блистательным изобретением радара Англия сама указала нам наилучший из всех возможных способов помощи, МТИ начал заниматься исследованиями в области радаров, как только появилась сама эта идея, т.е. еще до начала войны в Европе и задолго до вступления в войну Соединенных Штатов. Но в то время, о котором идет сейчас речь, казалось, что проблемы, связанные с радарными установками, касаются только узкого круга инженеров-специалистов, а я не принадлежал к их числу.
Поток беженцев из Германии в какой-то момент усилился, а потом совсем иссяк. Последняя струйка эмиграции состояла, как мне казалось, из людей, резко отличавшихся по своим моральным качествам от тех, кто приехал в самом начале. Гитлеровский давильный пресс вытеснил из Европы какое-то количество людей, которые пытались убедить нас в неотвратимости нацизма. Платные пропагандисты не проявили бы большего рвения. В конце концов стало очевидно, что в добавление к богатой культурной жатве, состоящей из замечательных мужчин и женщин, преследуемых в Европе и обогативших собой нашу научную жизнь, мы получили еще тех, кто возражал против фашизма только потому, что фашизм возражал против них.
Между тем в положенное время наступили летние каникулы, и, несмотря на разразившуюся рядом катастрофу, мы постарались сделать нашу жизнь как можно более веселой. Человек все равно не может постоянно жить в атмосфере уныния.
Семью Ингамов из английского Кембриджа война застала в Америке, и они стали нашими летними соседями. Мы делили с ними радости прогулок по горам и купаний в пруду Беар Кемп.
В то лето венгерский математик Эрдёш, японский математик Какутани и английский математик Стоун нанесли нам не совсем обычный, но очень интересный визит. Гуляя по Лонг Айленду 2, они попали в неприятную историю, случайно подойдя слишком близко к радиолокационной установке. В тот же вечер их посадили в тюрьму как подозрительных иностранцев и освободили только, после того, как тюремное начальство связалось с их покровителем профессором Вебленом из Принстонского университета. По окончании этого невеселого приключения они приехали в Нью-Хемпшир, и на веранде нашего дома состоялось очень приятное маленькое научное собрание. Сейчас Какутани преподает в Соединенных Штатах, а Стоун и Эрдёш вернулись в Европу.
В конце лета Ингам, как он и рассчитывал, возвратился в Англию, а его жена, дети и девушка, помогавшая по хозяйству, провели с нами еще целый год. Мы снова совершали вместе длинные прогулки, которые теперь казались детям уже не такими трудными. Я несколько раз навещал Ингамов после того, как они все вернулись в Англию. Один из мальчиков, если я не ошибаюсь, готовится сейчас поступить в университет, другой стал офицером военно-воздушных сил. Они до сих пор любят Нью-Хемпшир и нашу долину.
Винтнер по-прежнему оставался нашим летним соседом. Мы решили в 1940/41 учебном году поработать вместе, и он ради этого приехал в Кембридж. К несчастью, в тот год военная тематика поглощала все мое внимание. Я понимал, что, нарушая наш неофициальный договор, я поступаю в какой-то степени нечестно по отношению к Винтнеру. Но оказалось, что он в состоянии игнорировать тягостность политической напряженности, а я нет. И хотя я охотно уделял нашей совместной работе часть своего времени, я не мог сосредоточить на ней все свои интересы. Так мы и шли двумя разными дорогами, постепенно уходя все дальше и дальше друг от друга.
Весной разразилась катастрофа в Норвегии, катастрофы во Франции ждали со дня на день. Душевный покой, который приносила нам жизнь в Нью-Хемпшире, куда мы убегали от потрясений внешнего мира, ничего не стоил перед лицом близящейся гибели европейской цивилизации.
В августе 1940 года в Дартмуте состоялся летний съезд Американского математического общества. Он был настолько приятным, насколько мог быть приятным съезд, во время которого всех по-настоящему интересовала только война.
Так как в технике связи приходится производить много сложных вычислений с комплексными числами, сотрудники Телефонной компании Белла построили специальный прибор – цифровую вычислительную машину, выполняющую всевозможные расчеты. При этом они воспользовались одним очень важным нововведением. Дело в том, что обычная арабская цифровая система придает специальное значение числу 10, оправданное только привычкой и не находящее никакого подтверждения в основных законах арифметики. Вместо того чтобы записывать каждое число в виде суммы стольких-то единиц, стольких-то десятков, стольких-то сотен и т. д., мы можем с тем же правом представить целое число в виде суммы единиц, двоек, четверок, восьмерок и т. д. В этом случае вместо десяти цифр, используемых в обычной арифметике, нам понадобятся только две цифры, а именно нуль и единица.
Русские крестьяне при арифметических расчетах в какой-то мере использовали такое представление чисел, называемое двоичной системой счисления 3. Большое преимущество этой системы перед обыкновенной состоит в том, что таблица умножения сводится здесь к единственному утверждению, что 1Ч1 = 1.
Нетрудно понять, что механизировать арифметические расчеты, выполняющиеся в двоичной системе счисления, значительно легче, чем обычные вычисления над числами, записанными в десятичной системе счисления. Это и было учтено в машине Лаборатории Белла, использующей двоичную запись чисел. Единственным серьезным недостатком такой машины является то, что во всех остальных случаях люди все-таки пользуются десятичной системой и встречающиеся числовые данные всегда представляются в виде десятичных чисел. Тем не менее в тех случаях, когда приходится выполнять много громоздких вычислений, часто бывает выгодно пренебречь этим обстоятельством и перевести все исходные данные в двоичную систему, а. все окончательные результаты – обратно в десятичную.
В технике двоичная система счисления иногда используется при измерении толщины механических деталей с помощью специального набора «эталонов толщины». Предположим, что у нас имеется один эталон толщиной точно в один дюйм, один эталон толщиной в два дюйма, один эталон толщиной в четыре дюйма и один – толщиной в восемь дюймов. Тогда, комбинируя эти эталоны, мы можем получить любые толщины, равные целому числу дюймов от одного до пятнадцати включительно. Для этого надо только ставить наши эталоны друг на друга в следующих комбинациях:
1 |
дюйм |
– |
эталон в 1 дюйм, |
2 |
дюйма |
– |
эталон в 2 дюйма, |
3 |
дюйма |
– |
эталон в 2 дюйма и эталон в 1 дюйм, |
4 |
дюйма |
– |
эталон в 4 дюйма, |
5 |
дюймов |
– |
эталон в 4 дюйма и эталон в 1 дюйм, |
6 |
дюймов |
– |
эталон в 4 дюйма и эталон в 2 дюйма, |
7 |
дюймов |
– |
эталон в 4 дюйма, эталон в 2 дюйма и эталон в 1 дюйм, |
8 |
дюймов |
– |
эталон в 8 дюймов, |
9 |
дюймов |
– |
эталон в 8 дюймов и эталон в 1 дюйм, |
10 |
дюймов |
– |
эталон в 8 дюймов и эталон в 2 дюйма, |
11 |
дюймов |
– |
эталон в 8 дюмов, эталон в 2 дюйма и эталон в 1 дюйм, |
12 |
дюймов |
– |
эталон в 8 дюймов и эталон в 4 дюйма, |
13 |
дюймов |
– |
эталон в 8 дюмов, эталон в 4 дюйма и эталон в 1 дюйм, |
14 |
дюймов |
– |
эталон в 8 дюймов, эталон в 4 дюйма и эталон в 2 дюйма, |
15 |
дюймов |
– |
эталон в 8 дюймов, эталон в 4 дюйма, эталон в 2 дюйма и эталон в 1 дюйм. |
Это представление толщины с помощью наборов эталонов эквивалентно записи чисел от 1 до 15 в виде следующих совокупностей единиц и нулей: 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110 и 1111.
Я не помню, до или после собрания в Дартмуте Венивар Буш разослал преподавателям МТИ опросный лист, чтобы собрать предложения о наилучшем использовании ученых в случае вступления США в войну. Я придерживался в этом вопросе совершенно определенного мнения и был твердо убежден в необходимости научного сотрудничества, которое помогло бы преодолеть барьеры между различными науками и в то же время было бы добровольным, сохраняя за учеными значительную долю инициативы и личной ответственности. Я не питал никакого доверия к планам, осуществление которых требовало почти полного подчинения отдельной личностп вышестоящим инстанциям, пользующимся непререкаемым авторитетом и неизбежно ограничивающим работу каждого человека узкими рамками. Поэтому я предлагал такую систему организации, при которой небольшие мобильные объединения ученых, работающих в различных областях, трудятся над разрешением определенного круга проблем. Я предполагал, что, добившись каких-то конкретных результатов, объединение сможет передать их специальной руководящей «группе внедрения» и, обогатившись новыми научными сведениями и опытом совместной работы, в полном составе перейдет к разрешению следующей задачи.
Из всего этого ничего не вышло. Люди, привыкшие работать почти исключительно с помощью различных механических приспособлений, обычно проникаются к ним неумеренной любовью, в значительной мере вызванной тем, что механизмы не подвластны капризам, свойственным человеческим существам.
Механизация легко становится чем-то вроде религии. К счастью, перипетии последних двадцати лет у многих, в том числе и у Буша, поколебали веру в беспредельные возможности машины. Однако осталось еще достаточно людей, которые не успели так близко, как Буш, познакомиться со всеми недостатками и достоинствами машин и, следуя моде, предпочитали большие лаборатории и авторитетную администрацию.
Возвращаясь с собрания Математического общества, я обсуждал с Левинсоном – как ученый он уже прочно стоял на собственных ногах – общие проблемы устройства счетных машин, поскольку я подумывал о том, чтобы избрать эту область своей военной специальностью.
В течение некоторого времени я по просьбе Буша занимался поисками путей использования счетных машин для решения дифференциальных уравнений в частных производных, и у меня создалось впечатление, что наиболее подходящим средством механизации их решения может быть техника сканирования, применяемая в телевидении.
Опыт работы со счетными машинами, основанными на двоичной системе счисления, убедил меня, что электронная двоичная машина как раз и может служить устройством, осуществляющим быстрые вычисления, требующиеся при решении задач, описываемых уравнениями в частных производных.
Я совершенно отчетливо представлял себе, что машина, способная решать уравнения в частных производных, должна производить немыслимо большое количество операций в немыслимо короткое время. Отсюда следовало, что будущее быстродействующих вычислительных машин, предназначенных для таких целей, не могло основываться на развитии моделей Буша, в которых физические величины представлялись электрическими токами или какими-либо переменными механическими параметрами самой машины, а скорее требовало какого-то чудодейственного усовершенствования обыкновенного электрического арифмометра, использующего, как я уже говорил, двоичную систему счисления вместо десятичной.
Теперь, когда я всерьез заинтересовался вопросами, связанными со скоростью вычислений, мне пришлось рассмотреть относительные достоинства двух основных стратегий вычислительной техники. Одна из этих стратегий, которой придерживался Буш, получила название техники аналоговых устройств и заключалась в том, что числам, участвовавшим в вычислениях, сопоставлялись какие-то измеримые физические величины, имеющие значение, равное соответствующему числу. Другой, цифровой метод вычислительной техники, который используется, например, в обычных настольных арифмометрах, исходит из представления каждого числа в виде определенной последовательности цифр.
Существенным различием между аналоговыми и цифровыми вычислительными машинами является то, что только цифровая машина в принципе работает так же, как и мы сами, когда решаем задачу с помощью карандаша и бумаги. Изображая некоторое число символом 56, мы имеем в виду, что оно является суммой пяти десятков и шести единиц. Если нам нужно умножить это число на 38, т.е. нa сумму трех десятков и восьми единиц, мы выполняем эту операцию в таком порядке, как это показано ниже:
|
|
5 |
6 |
|
|
3 |
8 |
|
|
4 |
8 |
|
4 |
0 |
|
|
1 |
8 |
|
1 |
5 |
|
|
2 |
1 |
2 |
8 |
При этом нам ни разу не пришлось воспользоваться чем-либо выходящим за рамки таблицы умножения и простейших правил сложения или вспоминать, что наши числа 56 и 38 – это на самом деле 56 градусов или 38 дюймов.
Однако существуют такие цифровые вычислительные машины, в которых число 10 не играет никакой особенной роли и которые работают, исходя из двоичной системы счисления. Для того чтобы понять, как это делается, рассмотрим, например, умножение 7Ч5 = 35 и представим числа 7 и 5 в виде
7 = 4 + 2 + 1, |
5 = 4 + 1. |
Согласно приведенным равенствам в двоичной системе счисления число 7 изображается числом 111, число 5 – числом 101 (это и значит, что 7 равно сумме одной четверки, одной двойки и одной единицы, а 5 – сумме одной четверки, нуля двоек и одной единицы). При выполнении операции умножения этих двух чисел мы поступим теперь следующим образом:
|
|
1 |
1 |
1 |
|
|
1 |
0 |
1 |
|
|
1 |
1 |
1 |
1 |
1 |
1 |
|
|
1 |
1 |
2 |
1 |
1 |
Вспомнив далее, что в двоичной системе счисления 2 = 10, мы можем переписать число 11211 в виде 12011, или в виде 20011, или, наконец, в виде 100011. Лишь последняя форма является истинно двоичной, ибо только в ней не используются никакие другие цифры, кроме 0 и 1. Переходя теперь обратно к десятичной системе счисления, получим: 5Ч7 = 1·32 + 0·16 + 0·8 + 0·4 + 1·2 + 1 = 35. Этот метод получил название метода умножения в двоичной системе счисления. Я хочу подчеркнуть еще раз, что по существу он ничем не отличается от обычного метода умножения, использующего десятичную систему счисления.
Принцип действия аналоговых вычислительных устройств является совсем другим: здесь за основу может быть, например, принято то, что в электродинамометре две катушки притягиваются друг к другу с силой, пропорциональной произведению сил протекающих по ним токов, и что эта сила притяжения может быть измерена, если снабдить прибор специальной шкалой. Поэтому, если по обмотке одной катушки течет ток в семь единиц, а другой – в пять единиц, то показание прибора в соответствующих единицах будет равно 35. Приборы такого типа, используемые для перемножения чисел, получили название аналоговых в связи с тем, что они заменяют первоначальную ситуацию, в которой было необходимо умножить одну какую-то величину на другую, новой ситуацией, в которой роль этих величин играют уже две силы тока, причем токи эти ведут себя аналогично исходным величинам, т.е. должны перемножаться между собой для определения величины некоторого физического эффекта.
Цифровые вычислительные машины отличаются от аналоговых, в частности, тем, что они в принципе позволяют получить ответ с любой степенью точности, определяемой лишь точностью задания исходных данных, в то время как точность аналоговых устройств ограничена той точностью, с которой исходная ситуация оказывается аналогичной некоторой другой, используемой в качестве модели в наших вычислениях. Типичными аналоговыми устройствами были, например, машины Буша, предназначенные для решения дифференциальных уравнений.
Что же касается относительных достоинств вычислительных машин этих двух типов, то разнообразие и гибкость современных электрических и прочих измерительных приборов позволяют в настоящее время построить достаточно хорошую аналоговую машину с меньшими затратами труда и времени, чем надо для создания цифровой машины такого же качества. Однако если нам нужны большая скорость или высокая точность вычислений, то все преимущества оказываются на стороне цифровых машин. Только некоторые исключительные по своим качествам физические приборы могут обеспечить точность, превышающую одну десятитысячную часть измеряемой величины, что соответствует всего лишь точности, получаемой при использовании четырех десятичных разрядов или менее четырнадцати двоичных разрядов в цифровой машине.
Кроме того, физические измерения с такой степенью точности вряд ли могут оказаться очень быстрыми. Аналоговые устройства принципиально не способны обеспечить скорость вычислений, достаточную для проведения наиболее точных и сложных из тех расчетов, необходимость в которых возникает в современной науке и технике. Поэтому мне кажется, что наивысший расцвет использования устройств такого рода сейчас уже позади.
Что же касается цифровых машин, то мне пришлось углубиться в изучение самих принципов их работы. В обычном настольном арифмометре принцип работы заключается в том, что в зависимости от положения одних колес определяется положение некоторых других. Каждое из таких положений выбирается из числа десяти возможных, отличающихся величиной угла поворота относительно некоторого «начального положения». Эти десять положений нетрудно задать с помощью десяти зубцов. Однако при использовании металлических колес мы сталкиваемся со сложными проблемами преодоления инерции и сил трения, существенно ограничивающих возможности наших машин.
Со всех точек зрения казалось желательным заменить механическую систему выбора, осуществляемую в старых цифровых машинах, электронной. Можно было ожидать, что в результате такой замены новые машины окажутся по крайней мере в двух отношениях более совершенными, чем старые. Во-первых, инерция потока электронов значительно меньше инерции любой механической системы, и, во-вторых, в электрических цепях технически гораздо легче с помощью усилителей бороться с потерями энергии, вызываемыми процессами типа трения (например, выделением тепла в сопротивлениях). По этим причинам я был абсолютно уверен в том, что быстродействующие вычислительные машины недалекого будущего будут электронными и цифровыми. Надо, однако, сказать, что в то время такие идеи стали уже довольно часто встречаться в научной литературе, так что здесь моя точка зрения была лишь одним из проявлений духа эпохи.
Как я уже сказал, в десятичных цифровых машинах в качестве основной логической операции используется выбор из десяти различных возможностей, в то время как в двоичной машине такую же роль играет выбор из двух возможностей. Повсеместное использование десятичной системы счисления, по-видимому, объясняется просто тем, что десять – это число пальцев на наших руках. Некоторые народности, например индейцы майя, вероятно, использовали для счета пальцы рук и ног и поэтому пришли к двадцатеричной системе счисления. Любопытно отметить, что если бы люди не отличались от героев забавных рисунков Уолта Диснея, т.е. имели бы всего по четыре пальца на каждой руке, то, по-видимому, у нас была бы распространена восьмеричная система счисления, лишь незначительно отличающаяся от двоичной (так как 8 = 2Ч2Ч2).
Тем не менее можно считать, что нам повезло, так как десятичная система счисления хотя и не является самой удобной, но все же много удобнее, чем, скажем, тринадцатеричная. В самом деле, в вычислительных машинах, основанных на десятичной системе, используются колеса с десятью зубцами, расположенными на одинаковых расстояниях друг от друга. Для создания таких колес надо уметь строить правильные десятиугольники, т.е. правильные многоугольники с десятью вершинами. Эта задача планиметрии неизмеримо более проста, чем задача построения правильного многоугольника с тринадцатью сторонами.
Однако при использовании электронных схем устройства, заменяющие колеса в механических счетных машинах, не зависят уже от законов планиметрии и здесь выбор из десяти равноправных возможностей моделируется не так легко. Наиболее естественным в электронных схемах оказался выбор одного из двух возможных исходов.
Схемы с двумя различными состояниями устойчивого равновесия были известны уже давно и получили название триггерных. Единственная возможность для построения схемы с десятью различными состояниями заключается, по-видимому, в использовании комбинации из нескольких таких триггерных схем. По самому принципу работы триггера число различных состояний сложной триггерной схемы определяется числом различных комбинаций состояний каждого из триггеров, и это число должно быть степенью двух. Поэтому естественный способ построения схемы с десятью устойчивыми состояниями заключается в использовании схемы с шестнадцатью состояниями, шесть из которых не употребляются.
Однако при конструировании машины нам приходится затрачивать усилия и деньги не только на то, что машина будет делать, но и на все то, что эта машина могла бы делать; поэтому, используя лишь десять состояний из шестнадцати возможных, мы вынуждены будем расходовать на 37,5% больше того, что в действительности необходимо. По этим причинам я считал, что быстродействующая машина для решения дифференциальных уравнений в частных производных должна быть двоичной цифровой электронной машиной.
Для того чтобы работать в двоичной системе счисления, нужно иметь машины, которые осуществляют выбор одной из двух возможностей, таких, как, например, наличие или отсутствие отверстия в кусочке картона – перфорационной карте. Устройство этого типа уже в то время использовалось в машинах «Холлерит», выпускавшихся фирмой ИБМ 4. Однако такой метод физического представления чисел в двоичной системе счисления непригоден для действительно быстродействующей вычислительной машины. Пробивание отверстий в перфокарте – очень медленная операция в масштабах времени, где за единицу берется продолжительность одной операции порядка миллионных долей секунды. А именно такого порядка продолжительности операции надо достичь, чтобы можно было утверждать, что наша машина действительно быстродействующая. Кроме того, при сложных вычислениях число уже использованных перфокарт, от которых нам нужно теперь как-то избавиться, и число новых перфокарт, которыми нужно запастись на будущее, очень скоро стало бы астрономическим.
Разумеется, скорость пробивки отверстий можно значительно повысить, заменив механический перфоратор устройством, в котором для этой цели используется электрический разряд, однако задача хранения и использования огромных масс карточек при этом нисколько не упростится. Поэтому естественно было прийти к мысли об использовании металлической ленты с магнитными отметками, наносимыми электромагнитом. Такие отметки можно считывать с высокой скоростью и с такой же скоростью стирать их, после чего лента становится пригодной для повторного использования.
Одна из основных задач, связанных с использованием таких лент, заключается в том, что размеры отметок нужно делать как можно меньшими, с тем чтобы на данной площади можно было разместить как можно больше четко различимых отметок. А для этого необходимо использовать записывающие и считывающие магнитные головки с исключительно малыми размерами полюсов. В то же время мне казалось, что уменьшение размеров полюсов магнитных головок не приведет к желаемому результату вследствие распространения магнитного поля вдоль ленты, если только сама лента или по крайней мере ее эффективный магнитный слой не будут чрезвычайно тонкими.
В результате, частично в качестве вывода из собственных размышлений, частично под влиянием совместного обсуждения этих вопросов с моими коллегами, хорошо знакомыми с техническими новинками в этой области, у меня возникла идея о том, что задачи обеспечения двух основных требований, предъявляемых к магнитной ленте, – прочности и возможности намагничивания – нужно решать по отдельности. А именно, следует выбрать какой-либо достаточно прочный немагнитный металл, на который наносится тонкий магнитный слой. В то время я больше всего думал о тонком слое железа, нанесенном на ленту из меди или какого-нибудь другого немагнитного металла, но по совету кого-то из моих коллег я подумывал также о ленте, которая в настоящее время получила самое широкое распространение, – о бумажной ленте, покрытой тонким слоем магнитной окиси железа.
Недавно я разговаривал с одним из моих знакомых, работающих в фирме ИБМ, о современных быстродействующих вычислительных машинах и, в частности, о машинах, использующихся для решения дифференциальных уравнений в частных производных при помощи метода, получившего теперь название метода Монте-Карло и основанного на использовании многократно повторяющегося процесса осреднения. У меня создалось впечатление, что системы, о которых я думал в 1940 году, принципиально ничем не отличались от того, что сейчас реально используется.
Шансы сторон в большом игорном доме в высшей степени постоянны и предсказуемы, и метод Монте-Карло как раз и состоит в том, что математическая задача формулируется как задача о некоторой идеальной игре, после чего игра эта многократно разыгрывается и определяется достигнутый выигрыш. Вычислительное устройство, предложенное мною в 1940 году, как и метод Монте-Карло, не основывалось на достижении некоторого состояния равновесия, а также было связано с определением исходов ряда идеальных игр.
Я послал отчет о моих соображениях по этому вопросу Венивару Бушу, но этот отчет был встречен без особого энтузиазма. Буш признал, что в предложенном мной подходе содержатся некоторые возможности, но он считал, что это дело далекого будущего, не имеющее никакого отношения ко второй мировой войне. Он посоветовал мне вернуться к этому вопросу после войны, а сейчас сосредоточиться на более насущных проблемах.
Впоследствии я узнал, что он не был особенно высокого мнения о моем предложении в первую очередь потому, что я не был инженером и никогда не собрал ни одной схемы. Буш весьма низко оценивал любую работу, еще не получившую физического воплощения. Сейчас единственным утешением для меня может служить лишь мысль, что я подошел к правильному решению чуть ли не на десять лет раньше создания технических методов, доказавших справедливость моих идей. Выяснив, что проблема создания совершенной вычислительной техники не является той, в которой я легче всего могу быстро принести пользу, я стал осматриваться в поисках такой области, в которой моя работа в условиях надвигающейся войны была бы более полезной. Одно время у меня появились мысли о математических и практических аспектах проблемы кодирования и декодирования сообщений. Мои идеи в этой области позволяли создать некоторые новые методы кодирования и декодирования, но этого было еще недостаточно, чтобы оправдать их дальнейшую разработку. В самом деле, для того чтобы иметь практическую ценность, новые методы должны были оказаться значительно лучшими, чем все реально используемые или не используемые, но легко изобретаемые методы.
Вопрос о том, какое из двух кодирующих-декодирующих устройств является лучшим, совсем не прост. Можно с уверенностью утверждать, что любой достаточно большой кусок зашифрованного текста всегда может быть расшифрован, если только противник располагает достаточным временем. С другой стороны, нужно учитывать, что задача дешифровки зашифрованного текста не обязательно является тривиальной, даже если код известен заранее. В хорошем шифре должны сочетаться простота и автоматичность дешифровки для лица, знающего шифр, с большими трудностями его дешифровки тем, кто этого шифра не знает.
Как это обычно бывает, когда системе предъявляются два противоречивых требования, одной наилучшей системы шифровки не существует, а есть целый ряд оптимальных систем, отличающихся друг от друга тем, какое значение придается одному из этих требований по сравнению с другим. Так, например, существуют несложные шифры, используемые при передаче сообщений, которые должны оставаться секретными лишь в течение нескольких часов, и гораздо более сложные шифры для сообщений, которые должны оставаться секретными целые месяцы. Между этими двумя крайними случаями располагается множество промежуточных шифров. Поэтому нельзя разрабатывать новые шифры с академических позиций, не зная уже сложившихся традиций и практических требований, предъявляемых к ним в каждом частном случае. Таким образом, мне снова пришлось отказаться от продолжения начатых исследований и заняться поиском еще одной возможной области приложения моих способностей. Такую область я нашел в задачах о конструировании систем управления огнем противовоздушной артиллерии.
Когда я был еще мальчиком, проблема управления огнем ставилась только для береговых батарей, обстреливающих приближающиеся военные корабли противника, т.е. для орудий, стреляющих по цели, движущейся настолько медленно, что с помощью самых примитивных счетных устройств типа специальных таблиц удавалось выполнить все нужные для наводки орудия вычисления прежде, чем цель выходила за пределы эффективного огня батареи.
Появление самолетов в ходе первой мировой войны в корне изменило такое положение вещей. Задача управления огнем противовоздушной артиллерии совсем не похожа на задачу артиллерийского обстрела крепости, а скорее напоминает охоту на уток. Пока вы стреляете, утка не остается на месте, и если целиться в ту точку, в которой утка находится в момент выстрела, то, когда прилетит пуля, она окажется уже далеко. Поэтому нужно стрелять с определенным упреждением и уметь оценивать величину этого упреждения быстро и точно. Если такая оценка окажется неверной, то вам, наверное, не удастся выстрелить по этой же утке еще раз.
По тем же причинам в систему управления огнем противовоздушной артиллерии приходится вводить что-то эквивалентное таблице поправок, позволяющей автоматически определять необходимое упреждение для орудия, с тем чтобы самолет и снаряд оказывались в одной и той же точке одновременно. Задача об этих поправках на первый взгляд может казаться чисто геометрической, но при более тщательном подходе к ее решению выясняется, что оно сопряжено с необходимостью как можно более точной оценки будущего положения самолета по данным наблюдений его положения в прошлом. Задача предсказания будущего положения самолета сводится при этом к тому, что математики называют проблемой экстраполяции.
Еще раньше в работе над некоторыми электротехническими задачами я познакомился с теорией операторов – устройств, преобразующих некоторый электрический сигнал, поступающий на вход устройства, в какой-то сигнал на выходе. С математической точки зрения оператор может быть описан формулой, задающей преобразование одного сигнала в другой, причем не всем возможным формулам такого рода соответствуют операторы, которые можно реализовать на практике. Основное условие физической реализуемости операторов сводится к тому, что выходной сигнал системы должен определяться лишь значениями входного сигнала в прошлом и в настоящем. Решение задачи о стрельбе по самолету связано с необходимостью приближенного представления с помощью физически реализуемого оператора операции перехода от прошлого к будущему положению цели. Эта операция строго выражается оператором, физически нереализуемым. В самом деле, только пророк, знающий, что творится в голове пилота, может абсолютно точно предсказать положение самолета в будущем. Однако на практике мы очень часто располагаем достаточными средствами для выполнения менее сложной задачи – приближенного прогнозирования будущего положения самолета с удовлетворяющей нас точностью.
Математическое решение проблемы прогнозирования, напрашивавшееся с самого начала, было практически непригодным, так как фактически предполагало, что у нас есть информация и о будущем поведении самолета. Тем не менее я смог показать, что это решение может быть приближено оператором, свободным от этого недостатка.
Я не хочу углубляться здесь в технические подробности, доступные лишь инженерам и ученым. Достаточно сказать, что я исследовал возможности приближенной замены физически нереализуемых операторов операторами, физически реализуемыми. Я изложил свои взгляды профессору Колдуэллу, который до войны руководил работами над вычислительными машинами Буша в МТИ, а теперь должен был заниматься применениями этих машин в военном деле. В соответствии с существовавшими в то время обычаями Колдуэлл немедленно объявил мою работу секретной, так что после этого я уже не мог открыто излагать свои идеи всем, кому я хотел.
Для проверки полученных мною результатов мы с Колдуэллом решили применить дифференциальный анализатор Буша, воспользовавшись тем, что из его частей с легкостью можно собрать много новых приборов для решения самых различных задач. С этой точки зрения дифференциальный анализатор напоминал большой радиотехнический конструктор. И в самом деле, когда англичане решили пойти по стопам Буша и построить свой дифференциальный анализатор, они воспользовались деталями, взятыми из обычных детских конструкторов, и добились вполне удовлетворительных результатов.
Мы провели несколько опытов с различными схемами обработки и обнаружили, что те методы, которые мы заранее считали лучшими, оказались лучшими и на практике. Наши приборы представляли собой ряд сумматоров, множительных устройств и механических интеграторов.
На этом этапе разработка теории прогнозирования стала правительственным заданием и к работе был привлечен молодой инженер Джулиан Байглоу, уже работавший в течение некоторого времени в фирме ИБМ. Так было положено начало нашему длительному сотрудничеству. Байглоу – тихий, прекрасно воспитанный человек, выходец из Новой Англии. Единственный его научный порок – это преизбыток научных добродетелей. Он всегда стремится к идеальному, и еще ни одна работа в его глазах не выглядела достаточно завершенной.
Раньше он был энтузиастом любительской авиации, но во время войны этот вид спорта, если и не стал совсем недоступным, то, во всяком случае, оказался слишком дорогим для рядового любителя. В практике пилотов-любителей аварии, как правило, бывают не слишком серьезными в том смысле, что чаще всего пилоту удается избежать тяжелых повреждений. Но для самолета не существует незначительных аварий. Ремонт самолета всегда производится квалифицированными механиками, и качество его проверяется официальными представлениями Управления гражданской авиации. Поскольку аварии обычно происходят в самых отдаленных местах страны, ликвидация их последствий требует очень значительных затрат.
На несколько лет Байглоу переключился на выхаживание безнадежно старых и дряхлых автомобилей. Для обычного автомобилиста машина является просто средством передвижения, позволяющим ему добираться туда, куда хочется, но для истинного любителя каждая новая машина – это вызов его способностям к преодолению трудностей. Инженер такого типа никогда не удовлетворится обычной машиной. Либо он постарается сделать свою машину лучшей в мире, либо употребит всю свою изобретательность для того, чтобы заставить работать машину, место которой уже давно на свалке металлолома. Если вы пускаетесь в путь с таким любителем за рулем, то можете не опасаться никаких серьезных происшествий, но без приключений вам никогда не обойтись. Помню, однажды фон Нейман хотел поговорить с Байглоу, которым он интересовался как одним из возможных участников работы по созданию быстродействующих вычислительных машин. Из Принстона мы позвонили в Нью-Йорк, и Байглоу согласился приехать к нам на своей машине. Мы подождали до назначенного часа, но Байглоу не появился; не приехал он и еще через час. И только потеряв всякую надежду, мы услышали пыхтение древней машины. Это Байглоу, наконец, добрался к нам буквально на последнем такте мотора машины, которая в других руках остановилась бы уже много месяцев тому назад.
Мы с Байглоу вначале попытались определить границы применимости нашего метода прогнозирования, так как заранее почти с полной уверенностью можно было предположить, что возможности этого метода довольно ограничены. На этот раз, вместо того чтобы испытывать нашу систему прогнозирования на гладких кривых, мы решили испытать ее на кривой, состоящей из двух прямых, образующих угол.
Следует сказать, что прибор для прогнозирования состоял из двух блоков, одного, который все время следил за данной кривой, и другого, который на основе полученной информации о поведении кривой в прошлом устанавливал, как будет выглядеть эта кривая через некоторое время в будущем. Когда мы испытывали прибор не на гладкой кривой, а на кривой, в которой за одним отрезком прямой следует другой, наклоненный под определенным углом к первому, мы обнаружили, что система по-прежнему работает, но чрезвычайно странным образом.
Удивительным, волнующим и, по правде говоря, неожиданным было то, что прибор, сконструированный для наилучшего слежения за гладкой кривой, оказался слишком чувствительным для угловых точек. При переходе через такую точку в нем возникали сильнейшие автоколебания. Мы несколько раз исследовали это явление и каждый раз получали одни и те же результаты. Отсюда было уже недалеко до мысли о том, что встретившееся нам явление находится в порядке вещей и никак не может быть изменено. Но это значит, что в самой природе процесса прогнозирования заложено то, что приборы, рассчитанные на точное слежение за гладкими кривыми, оказываются чрезмерно чувствительными в применении к ломаным. По-видимому, здесь мы еще раз сталкиваемся с тем же противодействием природы, которое проявляется в принципе неопределенности Гейзенберга, согласно которому нельзя одновременно точно определить, где находится частица и с какой скоростью она при этом движется.
Чем больше мы изучали возникшую задачу, тем больше убеждались в том, что мы правы и что встретившаяся нам трудность является принципиальной. Но если уж мы не могли достигнуть того, к чему стремились (впрочем, без особой надежды на удачу), т.е. построить идеальную систему прогнозирования, годную во всех случаях, нам оставалось по одежке протягивать ножки и попытаться разработать такую систему прогнозирования, которая была бы наилучшей среди всех, не противоречащих законам математики. При этом было необходимо ответить на один важный вопрос: что следует понимать под наилучшей системой прогнозирования? Уменьшение ошибки слежения за гладкой кривой ведет к увеличению ошибок, связанных с излишней чувствительностью следящей системы при слежении за ломаной. Чем же следует руководствоваться в поисках компромисса между ошибками этих двух типов?
Ответ на этот вопрос заключается в том, что при выработке разумного компромисса можно руководствоваться только статистическими представлениями. Зная статистическое распределение кривых, которые нам надо экстраполировать, т.е., например, зная статистическое распределение путей самолетов, по которым ведется стрельба, можно искать такой метод прогнозирования, при котором некоторая величина, характеризующая ошибку, принимает наименьшее значение. Наиболее естественной величиной, с которой мы и начали (руководствуясь в первую очередь надеждой на простоту соответствующих расчетов, а не на то, что полученные при этом результаты будут иметь особенно большое военное значение), является средний квадрат ошибки прогнозирования. Иначе говоря, мы каждый раз определяли квадрат ошибки прогнозирования (т.е. квадрат разности между истинным и предсказанным значениями координаты кривой), а затем подсчитывали среднее значение этой величины за все время работы нашего прибора, которое и старались минимизировать. При этом мы смогли сформулировать задачу прогнозирования как некоторую задачу о нахождении минимума, т.е. придать ей определенную математическую форму, зависящую, разумеется, от предположений о свойствах статистической совокупности кривых, которые нам придется экстраполировать. Область математики, посвященная решению задачи о нахождении минимума величин, зависящих от вида некоторых кривых, известна под названием вариационного исчисления и представляет собой специальную математическую дисциплину, имеющую многочисленные применения. В наиболее обычных случаях задачи вариационного исчисления сводятся к некоторым дифференциальным уравнениям, определяющим функции или кривые, удовлетворяющие требуемым условиям минимума; однако в ряде случаев (с одним из которых как раз нам и пришлось встретиться) они приводят к родственным уравнениям другого типа, называемым в математике интегральными.
К счастью, я уже занимался теорией интегральных уравнений и раньше, но еще более удачным оказалось то, что уравнения, к которым привело нас решение задачи прогнозирования, представляли собой лишь немного более общий случай уравнений, ранее изученных Эберхардом Хопфом и мною. Таким образом, я смог не только поставить задачу прогнозирования, но и решить ее. В довершение всех удач полученное решение было по форме довольно простым. Оказалось, что решение, найденное нами на бумаге, нетрудно воплотить в конкретный прибор; для этого нужно было только собрать несложную схему из индуктивностей, емкостей и сопротивлений и подключить ее к небольшому электродвигателю того типа, который можно купить у любой фирмы, выпускающей измерительные приборы.
Мы построили прибор, преобразовывавший высоту движущейся точки в электрическое напряжение. Затем мы пропускали это изменяющееся во времени напряженно через совокупность сопротивлений, конденсаторов и катушек с магнитными сердечниками. В другой точке системы мы снимали напряжение и непрерывно измеряли его вольтметром. Конкретный тип вольтметра, использовавшегося нами, позволял строить непрерывный график изменения напряжения. Эта запись использовалась в качестве выходного сигнала и служила для прогнозирования значения напряжения на некоторый интервал времени вперед.
Следующая задача, которой я занялся, состояла в прогнозировании на основании неточных данных о прошлом. Эта задача также сводилась к задаче на нахождение минимума, причем здесь уже нам надо было располагать не только статистикой самих упреждаемых кривых, по и статистикой ошибок в определении прошлых координат этих кривых. После этого рассматриваемая задача о нахождении минимума свелась к другому уравнению Винера–Хопфа, решаемому при помощи тех же методов. Таким образом, и здесь удалось построить вполне удовлетворительную математическую теорию.
В науке часто недостаточно решить какую-нибудь задачу или группу задач. После этого нужно присмотреться к этим задачам и заново осмыслить, какие же задачи вы решили. Нередко, решая одну задачу, мы автоматически находим ответ и на другой вопрос, о котором раньше вовсе не думали.
Именно так обстояло дело с новой теорией прогнозирования. Оказалось, что в теории прогнозирования будущих значений полезного сигнала, наблюдаемого в смеси с шумами, на основе данных о статистических характеристиках полезного сигнала и шума содержится также и основная идея нового подхода к задаче о таком разделении полезных сигналов и шумов, которое можно было бы считать наилучшим.
Мы обнаружили это в самое подходящее время, когда только что появившаяся новая техника радиолокации встретилась с серьезными трудностями. При использовании радиолокаторов было крайне важно уметь обнаруживать слабые сигналы на фоне маскирующего сигнал шума. Для инженера-электрика шум – это отнюдь не только те звуки, которые можно услышать но и любое нежелательное электрическое возмущение. Например, шумом являются мерцание и мелькание изображения в плохо настроенном телевизоре. Шумами называются и все те сигналы, которые приходят через радиолокационную систему и вместо того, чтобы уточнять характер полезного сигнала, лишь искажают его.
Отделение полезного сигнала от шума осуществляется при помощи фильтра. Электрические фильтры известны давно и уже много лет назад начали использоваться в телефонии, для того чтобы очищать полезный сигнал от сопутствующих ему шумов. Первоначально они конструировались так, чтобы пропускать все сигналы из определенного диапазона частот, практически не изменяя их интенсивности, и как можно сильнее ослаблять сигналы с частотами, лежащими вблизи указанного диапазона, но все же выходящими из него.
Когда же на основании опыта телефонных фильтров были созданы фильтры для телевизионных установок, оказалось, что, начиная с некоторого момента, чем лучше становились характеристики фильтра, тем хуже он работал в телевизионной схеме. В чем же здесь дело? Ответ заключается в том, что телефонные фильтры были рассчитаны на специальные характеристики человеческого уха. Ухо человека представляет собой весьма чувствительный прибор для определения высоты звука, оно достаточно точно оценивает его громкость и очень мало реагирует на так называемые фазовые соотношения, другими словами, лишь очень грубо регистрирует те моменты времени, когда колебания воздуха проходят через нуль. Переменный же ток, как я уже говорил, характеризуется не одной величиной, определяющей его интенсивность, а сразу двумя величинами, определяющими его интенсивность и фазу. Рисунок, изображающий переменный ток, можно сравнить с плоским гребнем. Перемещая такой гребень взад и вперед в его плоскости, я меняю определенную величину, которую и называют фазой. В акустике такие изменения фазы не являются совершенно неосязаемыми, но роль их очень невелика, и поэтому первоначальные телефонные фильтры и другие фильтры для звуковых колебаний обычно строились без всякого учета возможных изменений фазы.
Радиолокатор же, так же как и телевизор, порождает сигналы, воспринимаемые глазом, и для класса сообщений, передаваемых по телевидению или содержащихся в сигнале радиолокатора, глаз ничуть не менее чувствителен к ошибкам в значении фазы, чем к ошибкам в значении амплитуды. Таким образом, при использовании обычных телефонных фильтров в радиолокации и телевидении свойственные этим фильтрам фазовые искажения оказались слишком дорогой ценой за отличное качество передачи амплитуды в широком диапазоне частот. Для того чтобы свести к минимуму суммарную ошибку в телевидении и радиолокации, необходимо было за счет некоторого увеличения амплитудных искажений по сравнению с возможностями лучших телефонных фильтров существенно уменьшить фазовые искажения. Для определения разумного компромисса между этими двумя типами искажений предложенный мною метод хотя и не являлся идеальным, но все же оказался вполне полезным и давал лучшие результаты, чем все другие известные ранее методы.
Мне, конечно, не хотелось бы создать впечатление, что только я обратил внимание на непригодность старых методов конструкции фильтров для создания радиолокационных и телевизионных фильтров или что только я понимал, в чем кроется причина этой непригодности. Просто мой метод впервые позволил указать простой, удобный и разумный способ подхода к общей задаче нахождения наилучших фильтров.
Для того чтобы исследовать потенциальные возможности систем прогнозирования, мы с Байглоу организовали маленькую лабораторию. Кроме нас в ней работали еще два человека. Один из них, отличный механик и электрик, переводил наши идеи в реальные схемы, едва только мы успевали их продумать. Второй был вычислителем, который до этого работал бухгалтером.
Читатель, если ты когда-нибудь захочешь организовать вычислительную лабораторию, последуй моему совету и не беря в качестве вычислителя бывшего бухгалтера, как бы честен и квалифицирован он ни был. Вычислитель должен делать расчеты с определенной степенью точности. Это значит, что он должен учитывать определенное число значащих цифр независимо от того, появляется ли первая значащая цифра в шестом знаке после или в шестом знаке до запятой. Бухгалтер же делает расчеты с точностью до центов, и он будет работать так до судного дня. Какие бы числа ни попадались нашему бухгалтеру в процессе расчетов, он неизменно ограничивался двумя знаками после запятой все равно, были ли это числа порядка миллионов, где даже первый знак перед запятой не имел никакого значения, или порядка нескольких стотысячных.
Быть точным до последнего цента – это было делом его совести, и он просто не мог понять, что физические величины измеряются не в центах, а по скользящей шкале, в которой то, что является центом в одной задаче, может оказаться долларом в другой. В частности, когда ему нужно было вычислить малую разность между двумя большими числами, он никак не мог уразуметь, что эти большие числа должны быть измерены с гораздо большей точностью, чем та точность, с которой мы можем определить их разность.
Я чувствовал огромную ответственность за эту работу. Я старался сделать ее как можно быстрее, хотя как раз к этому я максимально не приспособлен. Не одну ночь я просидел за расчетами, безуспешно стараясь успеть к какому-то крайнему сроку, которого мне никто не назначал. В то время я еще не представлял себе всей опасности бензедрина 5 и боюсь, что это серьезно отразилось на состоянии моего здоровья.
Как бы там ни было, я с огорчением заметил, что груз секретности тяжело давит мне на плечи и что бензедрин играет злые шутки со способностью людей хранить тайны. Я и так не очень скрытен по натуре, а употребление этого лекарства сделало меня просто болтливым, что было совсем не ко времени. Мне пришлось отказаться от бензедрнна и поискать более разумное средство для поддержания сил, необходимых, чтобы нести бремя военных тягот.
За нашей работой наблюдал доктор Уоррен Уивер из Рокфеллеровского института. Мы с Байглоу несколько раз приезжали к нему для консультаций и для того, чтобы сопоставить свои идеи с представлениями других ученых, работавших над теорией прогнозирования и по проблеме сглаживания радиолокационных данных о движении самолетов. Мы совершили две или три поездки на юг, в Форт Монроу в штате Виргиния и на военную базу на побережье Северной Каролины. Там мы встретились с сотрудниками Телефонной лаборатории Белла, которые охотно поделились с нами своими соображениями. В результате нам удалось объединить в единое целое весь материал, накопленный всеми работавшими в этой области. Должен сознаться, что несколько раз на этих встречах я засыпал, утомленный дорогой и предшествовавшей тяжелой работой.
Вернувшись домой, мы построили экспериментальную установку, позволяющую генерировать нерегулярные функции того типа, который встречается в задаче о прогнозировании движения самолетов, и затем на основе статистических данных, полученных на этой установке, построили систему прогнозирования. Нам удалось создать систему, которая определяла изменение напряжения во времени, скажем, за полсекунды до того, как это изменение реально наступало. Это позволило проверить правильность нашей теория и выяснить критерии, которыми следует руководствоваться при построении приборов, обеспечивающих хорошее прогнозирование.
Весьма любопытной оказалась и сама задача генерирования нерегулярных кривых со статистически заданной степенью нерегулярности. Мы проектировали на потолок луч света, совершавший более или менее периодическое движение. Затем стремились следовать за этим лучом при помощи другого луча, отражавшегося от зеркала, угол поворота которого определялся поворотом рукоятки определенного прибора. Однако в этом приборе перемещение пятна на потолке не было пропорциональным повороту рукоятки, управлявшей движением зеркала, а довольно сложным образом зависело от характеристик всего прошлого пути зайчика (от интеграла и производных этого пути). Более того, сама рукоятка была соединена с целой системой пружин и противовесов, и потому у оператора создавалось ощущение, очень далекое от обычного для подобных рукояток. Таким образом, управление движением светового пятна было, во-первых, достаточно сложным, а во-вторых, совершенно необычным. Естественно, что каждый человек реагировал на работу прибора несколько по-своему; поэтому при конструировании системы прогнозирования мы исходили не только из общих характеристик прибора, но и из конкретных возможностей каждого человека, находившегося на определенном уровне тренированности.
За эту работу мы были вознаграждены ясными и последовательными результатами. С одной стороны, мы построили механическую систему, позволившую в значительной степени осветить характер поведения человека, решающего некоторую искусственную задачу, и природу нерегулярного поведения, вызванного участием человека в системе управления. С другой стороны, мы нашли способ воспроизведения основных черт нерегулярного движения самолета в полете. Поэтому мы могли надеяться, что наша теория позволит создавать системы, которые и на практике помогут сбивать реальные самолеты.
Для задачи управления противовоздушным огнем наши идеи имели двоякую ценность. В таких задачах мы сталкиваемся с необходимостью учитывать два субъективных психологических фактора. С одной стороны, характер полета самолета, управляемого пилотом, стремящимся обеспечить безопасность своей машины, в значительной мере зависит не только от технических возможностей самолета, но и от состояния нервной системы человека, так что действия пилота мало отличаются от той гипотетической модели поведения, которую мы построили. С другой стороны, наводчик зенитного орудия по техническим причинам не может идеальным образом следить за целью и, кроме того, совершает случайные ошибки, связанные с ограниченными возможностями его органов чувств и мускулов. Два вида этих субъективных факторов входят в качестве составных частей в тот полумеханизированный процесс, в результате которого зенитное орудие сбивает самолет.
В начале войны единственный известный метод слежения за самолетом заключался в том, что наводчик зенитного орудия должен был держать самолет на прицеле своего орудия, управляя движением орудия вручную. В ходе войны в связи с усовершенствованием радиолокаторов этот процесс был механизирован. Появилась возможность непосредственно связать орудие с радиолокатором, определявшим местоположение самолета, исключив, таким образом, субъективный элемент в операции наведения орудия.
Однако у нас не было ни малейшей возможности устранить психологические факторы в поведении противника, а чтобы иметь возможность дать наиболее полное математическое описание общей задачи управления зенитным огнем, необходимо рассматривать все факторы этой задачи с единой точки зрения – либо с точки зрения человека, либо с точки зрения машины. Поскольку наше понимание процессов в механическом устройстве для наведения орудия на цель было куда более полным, чем понимание психологии пилота, мы решили попытаться построить механические модели поведения наводчика зенитного орудия и пилота самолета.
И в том и в другом случае поведение людей основывается на том, что они наблюдают совершаемые ими ошибки и стараются исправить их, сознательно действуя в направлении, обеспечивающем уменьшение этих ошибок. Такой метод управления показался нам довольно похожим на метод, уже давно известный в электротехнике и начавший в это время применяться в следящих системах и в системах, использующих для целей управления внешние источники энергии, скажем, при управлении грузовиком. Такой принцип управления называется принципом отрицательной обратной связи.
Отрицательная обратная связь может использоваться, например, для управления вращением орудийной башни корабля. Если орудия башни направлены не в том направлении, которое определено вычислительным устройством, разница в направлениях используется в качестве сигнала управления устройством поворота башни таким образом, чтобы вызвать поворот этой башни в направлении, заданном вычислительным устройством.
Все физиологи прекрасно знают, что патологическое состояние какого-нибудь органа в значительной мере позволяет уяснить законы его нормального функционирования. Поэтому мы задали себе вопрос, обладают ли системы с отрицательной обратной связью какой-либо ярко выраженной специфической патологией. Такая постановка вопроса является, по-видимому, совершенно закономерной.
Для того чтобы разобраться в общих принципах использования отрицательной обратной связи, рассмотрим пример орудийной башни, поворот которой регулируется простым поворотом рукоятки. Если поворот башни выполняется непосредственно с помощью рукоятки, то одно и то же усилие, приложенное к рукоятке, вызовет различные результаты в зависимости от того, нагрелась ли башня или нет (ибо от этого зависит, является ли смазка жидкой или застывшей). Кроме того, результаты поворота рукоятки будут зависеть и от того, опущены ли орудия башни, так что ее момент инерции относительно вертикальной оси велик, или же эти орудия подняты, что сразу приводит к уменьшению момента инерции. Основная цель использования отрицательной обратной связи в системе управления орудийной башней заключается в том, чтобы сделать реакцию башни более точно пропорциональной усилию, приложенному к рычагу, и, следовательно, меньше зависящей от трения, момента инерции и других внешних условий.
В системе с отрицательной обратной связью зависимость реакции от изменения нагрузки не просто меньше, чем в системах без обратной связи. Эта зависимость становится все меньшей и меньшей по мере того, как все большая и большая часть реакции системы подается обратно на ее вход, – другими словами, по мере того, как повышается коэффициент усиления в цепи обратной связи. Однако такое улучшение характеристик системы не продолжается до бесконечности, так как на определенном этапе при некотором большом значении коэффициента усиления в цепи обратной связи в системе самопроизвольно возникают колебания, система начинает вести себя совершенно диким образом, и зависимость реакции от нагрузки оказывается даже большей, а не меньшей, чем для систем без обратной связи. Мы решили, что если процессы управления в человеческом организме и в самом деле в значительной степени определяются использованием отрицательной обратной связи, то должны существовать условия очень сильной обратной связи, при которых человеческий организм вместо того, чтобы эффективно осуществлять управление, попадет в режим все более и более сильных свободных колебаний, которые будут продолжаться либо до полного разрушения организма, либо до полной перестройки его поведения.
Это соображение, в равной степени принадлежащее мне и Байглоу, я изложил моему другу нейрофизиологу доктору Розенблюту. В то время он еще не переехал в Мексику и работал вместе с доктором Кэнноном в Гарвардской медицинской школе. Мы задали ему конкретный вопрос: не существует ли такого нервного расстройства, при котором у больного в состоянии покоя не наблюдается никакого тремора, но как только он пытается взять, например, стакан воды, у него начинается дрожь, которая становится все сильнее и сильнее до тех пор, пока эта попытка не потерпит полную неудачу, т.е. пока он не прольет воду?
Доктор Розенблют ответил, что такое патологическое состояние хорошо известно и называется интенционным тремором; обычно причина этого заболевания связана с расстройством мозжечка, управляющего целенаправленной мышечной деятельностью человека и определяющего уровень, на котором эта деятельность происходит. Таким образом, оказалось, что наше предположение о значительной роли обратной связи в системе управления человека можно подтвердить ссылкой на бесспорное сходство расстройства систем с обратной связью и общеизвестной в медицине формой патологии целенаправленного организованного поведения человека.
Около двух лет тому назад мне самому пришлось столкнуться с событием, которое можно рассматривать как иллюстрацию к излагаемым здесь идеям. Совершенно неожиданно моя маленькая внучка, жившая тогда у нас, заболела интенционным тремором того типа, о котором я только что рассказал. Мы сразу же отвезли ее в больницу и узнали, что заболевание вызвано особой формой энцефалита, затронувшего мозжечок. Положение было очень серьезным, но по счастливой случайности девочка полностью выздоровела, избежав каких бы то ни было остаточных явлений. Если бы я был суеверен, ее заболевание и многие другие похожие случаи, о которых рассказывали мне врачи, заставило бы меня поверить, что болезнь – это злобное существо, с особенным удовольствием мстящее ученым, которые с ней борются.
Теперь я хочу вернуться к работе нашей тройки. Мы изложили свои идеи в статье, но, главное, мы с Байглоу почувствовали, что можем уверенно обращаться с субъективными факторами в системе управления, рассматривая их просто как дополнительные технические элементы с обратной связью. В результате этого мы пришли к выводу, что можем уже перейти от наших грубых экспериментальных установок к созданию полной системы управления противовоздушным огнем.
Было очевидно, что в принципе система управления огнем зенитной артиллерии должна быть системой с обратной связью, содержащей множество второстепенных обратных связей, характеристики которых должны были влиять на всю систему в целом. На самом деле эти характеристики были нам неизвестны, поэтому можно было рассчитывать лишь на создание весьма несовершенной и плохо отрегулированной установки.
Исходя отсюда, было решено, что нет особого смысла развивать дальше работу в этом направлении отчасти еще потому, что предварительные математические расчеты не давали надежды на особенно высокое качество работы подобных систем управления.
Наши идеи были с энтузиазмом подхвачены другими специалистами в этой области и в конечном счете привели к определенному повышению качества практически используемых систем, в частности систем для отделения ошибок экспериментальных данных. Окончательно отработать конструкцию предложенной системы слежения нам не поручили; вместо этого меня попросили написать книгу, посвященную временным рядам, экстраполяции и интерполяции. Эта книга была размножена фотолитографским способом и благодаря желтой суперобложке получила название «Желтой опасности», перехватив это прозвище у книг математической серии, выпускаемой немецким издательством Шпрингера в одинаковых желтых переплетах. Мой учебник довольно широко использовался проектировщиками систем управления наводкой и огнем зенитной артиллерии во время войны, а также специалистами по следящим системам и системам связи, которым он оказался полезен и в военные и в послевоенные годы. После войны книга была еще раз переиздана в расширенном и переработанном виде с приложением, написанным профессором Норманом Левинсоном, помогающим лучше уяснить способы применения предложенного метода.
Проделанная мною работа по статистической теории управления огнем зенитной артиллерии привела в конце концов к выработке общей статистической точки зрения на проблемы связи. За прошедшие годы эта точка зрения стала общепринятой, но это еще не самое главное. Более важно то, что в настоящее время статистический подход проникает почти во все разделы техники и что этот подход находит сейчас применение и в таких бывших ранее далекими от математики областях, как метеорология, социология и экономика.
Теперь я хотел бы вернуться к своим предыдущим замечаниям, касающимся Уилларда Гиббса и того переворота, который он и его современники совершили в физике. Ортодоксальная ньютоновская точка зрения на физическую динамику сводит законы природы к определенным уравнениям, называемым дифференциальными уравнениями относительно скоростей изменения неизвестных параметров. С помощью этих уравнений скорость изменения физических параметров может быть определена по их значениям, и зная начальные значения (т.е. значения в нулевой момент времени) наших параметров, мы можем шаг за шагом проследить во времени все течение описываемого явления. В самом деле, в каждый момент времени мы будем знать значения всех интересующих нас параметров; но тогда по этим значениям мы определим также и скорость их изменения, а это уже позволяет нам приближенно определить значения наших параметров и в близкий последующий момент времени.
Выбрав какой-то достаточно короткий промежуток времени, мы можем, двигаясь такими небольшими шагами, в конце концов определить значения всех интересующих нас параметров в любой наперед заданный момент. Именно так поступают астрономы, рассчитывая орбиты планет, и специалисты по баллистике, определяя траектории вылетающих из орудия снарядов.
В астрономии, как я уже говорил раньше, расчет орбит производится с очень большой точностью и с такой же точностью определяются и все исходные данные. Однако в баллистике, как и в большинстве других технических дисциплин, дело обстоит совсем не так. В момент выстрела, например, мы можем определить угол прицеливания лишь с весьма ограниченной точностью. То же самое справедливо и относительно веса снаряда, мощности заряда и параметров, характеризующих атмосферные условия. В результате с самого начала вместо точных значений всех параметров задачи мы располагаем лишь определенными диапазонами их возможных значений. Классический метод решения такой баллистической задачи состоит в том, что исходные данные сперва считаются точно известными. После этого определяют дальность действия, угол встречи, скорость при ударе и другие существенные параметры. Затем полученные результаты пересматриваются с помощью методов интерполяции или коррекции, в корне отличных от тех методов, которые использовались на первом этапе решения. При этом мы довольно бессмысленно расходуем значительные усилия сначала на то, чтобы обеспечить нереальную точность наших результатов, а затем на то, чтобы скорректировать эти недостаточно реальные данные. Существует, однако, другой метод, который все более и более начинает распространяться в последнее время; духовным отцом этого метода и является Уиллард Гиббс.
Гиббс отметил, что с процессом изменения состояния динамической системы, происходящим в соответствии с законами физики, например со свободным вращением волчка, можно связать другой процесс, очень напоминающий течение жидкости. Для того чтобы описать движение волчка, нужно указать определенную точку в некотором пространстве, существенно отличающемся от обычного трехмерного пространства, знакомого всем из курса стереометрии. Для определения положения волчка необходимо задать шесть «координат», и еще шесть «координат» требуется для описания скоростей их изменения (или тесно связанных со скоростями импульсов). Все эти величины образуют набор из двенадцати чисел, и совокупность всех таких наборов можно по аналогии назвать двенадцатимерным пространством. Оказывается, что в этом пространстве существует мера объема такая, что множество волчков, заполняющих в какой-то момент определенный объем, заполняло бы точно тот же объем и в любой другой момент времени. Такой не меняющийся во времени объем можно ввести для всех динамических систем, движение которых не сопровождается притоком или расходом энергии.
Поток, напоминающий поток жидкости, о котором мы упоминали выше, можно рассматривать как поток вероятности; именно так его и интерпретировал Гиббс. Вероятность того, что частица в определенный момент времени попадет в определенную область этого странного пространства, оказывается равной вероятности того, что она через некоторое время попадет в другую область, а именно в ту, в которую в процессе своего движения перейдет исходная область.
Типичные уравнения, описывающие такой поток, уже не принадлежат к классу так называемых обыкновенных дифференциальных уравнений, а являются интегральными. Эти интегральные уравнения связывают распределения вероятностей в прошлом с распределениями вероятностей в будущем. Получаемая связь оказывается при этом такой, что если в начальный момент времени мы будем иметь сумму нескольких разных распределений, то и в будущие моменты времени получим распределение вероятностей, являющееся суммой распределений, получаемых из каждого из тех, которые имелись вначале. Подобная система, реакция которой на сумму входных воздействий оказывается равной сумме реакций на отдельные воздействия, называется линейной. Соответственно этому и интегральные уравнения потока, описывающего динамику всевозможных аналогичных систем, также надо считать линейными.
Описанный метод весьма удобен для практических расчетов; в случае же очень сложных задач он часто оказывается гораздо более простым, чем классический метод Ньютона. В несколько упрощенном виде этот метод сейчас широко практикуется некоторыми сотрудниками технического отделения МТИ.
Кроме достоинств, связанных с простотой расчета более сложных задач, этот метод по сравнению с ньютоновским имеет принципиальное преимущество с логической точки зрения. Ведь на самом деле уменьшение точности конечных результатов объясняется вовсе не одной только неточностью уравнений и неточностью определения начальных условий; вообще все имеющиеся у нас данные содержат принципиальную неточность. Поэтому бессмысленно сначала получать результат с искусственно повышенной точностью, а затем специально изучать ошибки при расчете, с тем чтобы выяснить его реальную точность. Мы можем с самого начала выложить все наши карты на стол; в конце концов при этом мы получим ровно то, что нам нужно, не больше и не меньше. Такой подход не только позволяет сэкономить много ненужных усилий, но и приводит к повышению реальной точности расчетов.
Никакие физические измерения не являются абсолютно точными, и уже поэтому все теоретические расчеты, основывающиеся на неточных данных, также приводят к неточным результатам. Классическая ньютоновская физика приписывает неточным данным точность, которой они не обладают, определяет по этим данным решение задачи, а затем понижает точность этого решения с помощью учета неточности исходных данных. В современной физике, в отличие от ньютоновского подхода, при использовании неточных данных ученые стремятся с самого начала учитывать истинную точность наблюдений, не стараясь ни на одном этапе вычислений получить бульшую точность, чем та, которая на самом деле является реальной.
Если бы при решении таких задач с неточными данными мы воспользовались методом, которым пользуется астроном, определяя орбиты планет, то вполне могло бы оказаться, что мы выбрали такие начальные условия, которые приводят к результатам, не типичным для более широкого круга начальных условий, с которыми мы на самом деле сталкиваемся в исследуемой задаче. Такая нестабильность траектории может привести к неверному представлению о возможной ошибке в конечных результатах.
Как я уже говорил раньше, рассказывая о моей работе по теории прогнозирования, наиболее чувствительные из наших приборов оказываются и самыми неустойчивыми. Неустойчивость же приводит к ошибкам, вообще говоря, отличающимся от ошибок, связанных с неточностью прибора, но не менее серьезным. То, что я говорил о физических приборах, справедливо и относительно вычислительных методов. Компромисс между ошибками, связанными с неточностью данных, и ошибками, связанными с неустойчивостью методов, может быть найден только на основе статистических рассмотрений. Почему же тогда нельзя встать на статистическую точку зрения с самого начала и вычислять одновременно как средний результат, так и ошибку этого результата с единой точки зрения? И если такое признание статистической природы науки уже сейчас принесло большую пользу во многих технических задачах ньютоновского типа, то во сколько же раз эта польза будет больше при таком подходе к решению задач, в которых ошибки наблюдения обычно очень велики!
В качестве примера возьмем метеорологию. Мы достаточно хорошо знакомы с законами динамики атмосферы, и если бы можно было с высокой точностью определять начальные условия для метеорологических задач, то можно было бы решать эти задачи чисто ньютоновским методом, хотя и в этом случае пришлось бы затратить много лишних усилий. Однако на самом деле для определения состояния атмосферы берется по три, четыре пробы в день на сотню тысяч кубических миль атмосферы.
Недавно по предложению Джона фон Неймана была предпринята попытка решения задачи прогноза погоды, при которой эта задача рассматривалась как некоторая очень сложная задача того же типа, что и астрономическая задача об определении планетных орбит. Идея заключалась в том, чтобы ввести все данные о начальном состоянии атмосферы в сверхмощную вычислительную машину и, используя затем законы движения, выражаемые уравнениями гидродинамики, рассчитать погоду на продолжительное время вперед.
Однако основное препятствие на этом пути состоит в :гом, что бюро прогнозов располагает лишь ограниченной информацией о состоянии атмосферы в отдельных точках, разделенных колоссальными промежутками. Это препятствие можно как-то преодолеть, лишь прибегнув к помощи статистических методов. Поэтому наиболее соответствующим природе задачи здесь был бы метод, органически объединяющий динамические и статистические соображения. Существуют определенные доводы, показывающие, что статистические соображения в метеорологии можно отбросить, лишь вообще отказавшись от любых исследований.
Разумеется, я не собираюсь отрицать значение классической механики; мне хотелось бы, однако, обратить внимание на важные преимущества подхода Гиббса, при котором законы динамики используются для построения некоторого статистического потока.
Положение дел в метеорологии является типичным для всех тех наук, которые лишь недавно стали рассматриваться как точные и использовать количественные методы. В экономике так называемая эконометрика, изучающая экономическую динамику, жестоко страдает от того, что исходные числовые данные в ее задачах никак не могут быть точно определены и должны заменяться грубыми оценками. Кто может сказать, как точно определить, что такое спрос, и как измерить его таким образом, чтобы это удовлетворило сразу всех экономистов? И разве могут совпасть мнения двух экономистов о размерах безработицы в США в данный момент времени?
Эконометрика не сдвинется с мертвой точки, пока не будут сделаны два следующих шага. Во-первых, необходимо, чтобы вое величины, рассматриваемые в эконометрике, такие, как спрос, объем запасов и тому подобное, определялись с той же степенью точности и строгости, с которой рассчитываются соответствующие динамические процессы. Во-вторых, с самого начала нужно признать статистический и недостаточно точный характер этих величин и вытекающую отсюда необходимость гиббсовского подхода к их исследованию.
Все сказанное о метеорологии и экономике в равной степени справедливо и для изучения динамических процессов в социологии, для биометрики и в особенности для крайне сложной проблемы изучения нервной системы, так сказать, метеорологии мозга. Это азбучные истины принципов использования математического метода в науках, находящихся на полпути между точными и гуманитарными. Я думаю также, что эти соображения будут играть центральную роль и в технике будущего.
Новые методы, о которых я говорю, в какой-то степени содержались уже в моих работах военных лет по системе упреждения для управления огнем зенитной артиллерии и в моих последующих работах по теории связи. Пока эти методы освоены лишь небольшим числом специалистов, работающих в некоторых специальных областях науки и техники, но они опираются на здоровые философские принципы и обещают решительно изменить лицо всех точных или хотя бы полуточных наук.
Когда я писал свою первую работу по теории прогнозирования, я не предполагал, что некоторые из основных математических идей этой статьи были уже опубликованы до меня. Но вскоре я обнаружил, что незадолго до второй мировой войны советский математик Колмогоров напечатал в «Докладах» Французской академии наук небольшую, но очень важную заметку, посвященную этой же теме. В своей работе Колмогоров ограничился изучением прогнозирования для дискретных последовательностей, в то время как я изучал случаи непрерывного времени. Колмогоров ничего не говорил о фильтрах и вообще не касался вопросов, имеющих хоть какое-нибудь отношение к электротехнике. Кроме того, он не указывал никаких путей физической реализации своих систем прогнозирования или возможности их использования для управления огнем зенитной артиллерии.
Тем не менее все идеи по этому поводу, которые мне казались действительно глубокими, появились в заметке Колмогорова до того, как я опубликовал свою статью, хотя я и узнал об этом только через некоторое время. Работы Колмогорова и таких его учеников, как Крейн 6, продолжали появляться в «Докладах» Академии наук СССР, и хотя эти статьи в основном базировались на представлениях о теории прогнозирования, которые были развиты Колмогоровым в его первой статье и были несколько эже моих концепций, у меня нет никакой уверенности в том, что Колмогоров самостоятельно не нашел также и известных мне возможностей применения этих методов. Если дело обстояло именно так, ему, наверное, просто не удалось опубликовать свои результаты в открытой печати ввиду того, что они имели военное значение. Недавняя статья Крейна, в которой он прямо ссылается на мои прикладные работы, еще более убеждает меня в этом.
Я никогда не встречался с Колмогоровым, никогда не был в России и никогда не переписывался ни с ним, ни с кем-нибудь из его учеников 7. Все, что я говорю о нем, в значительной степени основано на догадках. Когда я только еще начинал работать для Военного министерства США и ничего не знал о статье Колмогорова,, возник вопрос, не интересуется ли кто-нибудь за границей теми же проблемами, что и я. Я говорил тогда, что немецкие ученые вряд ли подготовлены к работе в этой области, что мои друзья Крамер в Швеции и Леви во Франции вполне могли бы увлечься теми же идеями, но что если кто-нибудь в мире занимается сейчас тем же, что и я, то, вероятнее всего, это Колмогоров в России. Я сказал это, исходя из того, что за последние двадцать-тридцать лет почти ни разу ни один из нас не опубликовал какой-нибудь работы без того, чтобы очень скоро не появилась тесно связанная с ней работа другого на ту же тему.
Года два-три тому назад мне попалась русская книга по теории связи, прогнозирования и другим тесно связанным вопросам, в которой приводилось множество ссылок на мои работы и работы Колмогорова. В этой книге приоритет признавался за Колмогоровым, и хотя это справедливо лишь отчасти, все же, как я уже говорил, вполне можно утверждать, что Колмогоров не только независимо разобрал все основные вопросы в этой области, но и был первым, опубликовавшим свои результаты. Мои собственные работы рассматриваются в русской книге очень обстоятельно, и их оценка является гораздо более объективной, чем та, на которую можно было бы рассчитывать при нынешних отношениях между нашими странами.
«Желтая опасность» по-прежнему играет важную роль в современной исследовательской жизни Америки как в военных, так и в открытых исследованиях. С разрешения правительства она была переиздана; экземпляр этой книги, должно быть, попал в Россию, что и послужило основанием для тех замечаний, о которых я только что говорил.
С определенной точки зрения мою работу, или, точнее, работу нашей группы, можно считать покрывающей очень широкую область теории и практики связи. Прежде всего «Желтая опасность», без сомнения, представляет собой статистическое исследование вопросов теории связи. В то время, когда книга писалась, почти никто не рассматривал теорию связи с этой точки зрения. Поэтому я думаю, что мне можно извинить некоторую гордость, которую я испытываю сегодня в связи с тем, что статистический подход к вопросам теории связи получил повсеместное распространение.
Я подошел к теории информации с позиций изучения электрических систем, проводящих непрерывный ток или что-нибудь такое, что по крайней мере может быть интерпретировано как непрерывный ток. В то же время Клод Шеннон из Телефонной лаборатории Белла параллельно разрабатывал близкую и во многом эквивалентную теорию с точки зрения теории электрических переключательных схем. Эта работа представляла собой непосредственное развитие его предыдущих работ, посвященных использованию алгебры логики для решения задач теории релейных схем.
Как я уже говорил выше, Шеннон любит дискретное и сторонится непрерывного. Он рассматривает дискретные сообщения как последовательность во времени утвердительных и отрицательных ответов, и каждый выбор между «да» или «нет» считает элементом информации. В то же время я, занимаясь теорией непрерывной фильтрации и исходя из точек зрения, казавшихся вначале совершенно отличными от точки зрения Шеннона, пришел к весьма близкому определению единицы количества информации.
Введя определение понятия количества информации по Шеннону–Винеру (ибо оно в равной мере принадлежит нам обоим), мы совершили радикальный переворот в этой области. В течение многих лет предполагалось, что пропускная способность линии связи за единицу времени определяется шириной полосы частот, используемой этой линией. Считалось, что по линии с шириной полосы частот в 200 гц можно передать за одно и то же время в два раза больше информации, чем по линии с полосой пропускания в 100 гц. При этом игнорировался тот факт, что при передаче в отсутствие шумов любая полоса частот окажется достаточной для того, чтобы можно было передать любую информацию за одну секунду. Одно значение мгновенного напряжения, измеренное с точностью до одной десятитриллионной, могло бы передать всю информацию, содержащуюся в Британской энциклопедии, если бы только шумы в наших цепях не ограничивали возможную точность измерения пределами порядка одной тысячной.
Первое время после изобретения телефона лишь очень немногие линии были загружены до предела пропускной способности. Однако с развитием телефонии и появлением новых способов связи, таких, как радио и телевидение, возникла необходимость в более полном использовании имеющихся возможностей передачи сообщений. Стало ясно, что уровень шумов в линиях или воздушном канале связи является еще одним важным фактором, требующим пристального внимания. Весь эфир заполнен возмущениями, которые радисты называют атмосферными помехами, и ни один проводник, будь он металлическим или газовым, не может переносить электричество порциями, меньшими чем заряд одного электрона. Пульсации, связанные с нерегулярностью потока электронов, получили название дробового эффекта, и их учет играет важную роль при проектировании современных систем связи.
Лишь совсем незадолго до второй мировой войны нагрузка линий связи возросла настолько, что неизбежные шумы стали серьезным препятствием на пути еще большего повышения их загруженности. При этом статистический подход к теории связи, который я в какой-то мере предугадал в своих старых работах по обобщенному гармоническому анализу и которому мы вместе с Шенноном придали столь большое значение в наших работах периода начала войны, вскоре после войны стал основным методом исследования в подавляющем большинстве работ.
Наша работа, посвященная теории обратной связи в приложении к системам управления зенитным огнем и нервной системе человека, привела к еще одному перевороту, который, как и первый, получил повсеместное признание за последние несколько лет. Когда я впервые начал работать в МТИ, электротехника делилась на два основных раздела, которые в Германии назывались электротехникой слабых и электротехникой сильных токов, а в Соединенных Штатах – электроэнергетикой и электросвязью.
Между этими двумя областями действительно существует принципиальное различие, но его сущность и точное положение границы раздела в течение длительного времени оставались неясными. Генераторы телевизионной станции или радиостанции, ведущей трансатлантические передачи, могут вырабатывать относительно большие мощности; в то же время слабенький двигатель в бормашине у зубного врача потребляет лишь малые доли лошадиной силы. Тем не менее в первом случае электричество явно используется прежде всего для обеспечения связи, а во втором служит лишь источником энергии.
В эпоху, когда истинная природа различия между двумя разделами электротехники еще не была полностью понятна, естественно, считалось, что следящие системы, управляющие движением орудийной башни, как и все другие части мощных и громоздких устройств, должны относиться к области электроэнергетики, а не электросвязи. Существенно отметить при этом, что в электроэнергетике сложилась определенная традиция рассматривать все электрические токи и напряжения как величины, непрерывно меняющиеся во времени, в то время как в теории связи, в первую очередь под влиянием работ Хевисайда, принято было рассматривать сигналы как суммы большого или даже бесконечного числа гармонических колебаний различных частот. В то время было совсем не легко понять, что в теории следящих систем и автоматического регулирования, так же как, например, в телефонии или телевидении, наиболее удобным является именно частотный подход к задачам, а не подход, исходящий из представления всех процессов в виде явных функций времени.
Мне кажется, что я могу гордиться тем, что впервые отчетливо это понял и отнес теорию следящих систем к области теории связи. Исходя из своих общих идей, я рассматривал автоматические вычислительные машины также как одну из форм систем связи, поскольку основное внимание здесь уделяется передаче сигналов, а не мощностей. С моей точки зрения, такие системы представляют собой просто последовательность переключающих устройств, соединенных между собой таким образом, что информация, содержащаяся в сигнале на выходе каких-то из них, используется в последующих устройствах в качестве входного сигнала и сигнала управления.
Ясно, что такие переключающие устройства могли реализоваться и в форме зубчатых колес или других подобных механизмов, и в форме механических, или электрических реле, использующих электронные лампы или другие средства электроники. Как я уже говорил, мне казалось, что наиболее удобными будут переключающие устройства, которые осуществляют выбор между двумя, а не десятью возможностями, и я попытался популяризировать эти идеи среди широких кругов инженеров.
Вскоре я познакомился с первой из новых цифровых машин, построенных на реле. Она находилась в Гарвардском университете. Работы по созданию, этой машнны велись по правительственному заданию, и руководил ими Говард Эйкен. Его успехи произвели на меня большое впечатление и вызвали чувство глубокого восхищения. Эйкен рассматривал свою машину как современный вариант тех весьма примитивных вычислительных машин, которые около ста лет тому назад разрабатывал Бэббедж в Англии. В свое время Бэббедж прекрасно разобрался в математических возможностях вычислительных машин, но совершенно не понял возникающих при этом чисто технических задач.
Меня очень удивило, что Эйкен в качестве основных элементов своей машины выбрал сравнительно медленно действующие механические реле, не придав особого значения громадному увеличению скорости вычислений, которого можно было бы достигнуть, используя электронные реле. Порочность этой точки зрения в настоящее время очевидна, в частности благодаря самому Эйкену, ставшему одним из наиболее энергичных и оригинальных изобретателей и конструкторов электронных вычислительных машин. Но тогда у него была какая-то странная причуда, заставлявшая его считать работу с механическим реле нравственной и разумной, а использование электронных реле – делом, никому не нужным и морально нечистоплотным.
В этой связи мне хочется напомнить об одном чрезвычайно опасном свойстве, которым часто отличаются наиболее талантливые и целеустремленные изобретатели. Люди такого склада обычно стремятся навеки законсервировать технические приемы своей области на том уровне, которого они сами достигли, и проявляют чудеса моральной и интеллектуальной изворотливости, сопротивляясь, а иной раз даже воздвигая непреодолимые препятствия на пути новых работ, основанных на новых оригинальных принципах. Мы, математики, нуждаемся лишь в таких недорогих материалах, как бумага и, быть может, типографская краска, и мы давно примирились с мыслью, что при работе в какой-нибудь бурно развивающейся области наши открытия начинают устаревать в тот самый момент, когда они изложены на бумаге, и даже раньше – в момент, когда они еще только зарождаются в наших умах. Мы знаем, что в течение долгого времени все наши результаты будут служить лишь отправными точками для других ученых, работающих над теми же проблемами и заранее предвидевших все то, что нам удалось достигнуть. Именно в этом и заключается смысл знаменитого изречения Ньютона, сказавшего: «Если я видел дальше, чем другие, то потому, что я стоял на плечах гигантов».
В то же время коммерческие возможности, связанные с изобретательством, заставляют людей, работающих в промышленности, закрывать глаза на этот основной факт и надеяться, что им удастся остановить прогресс как раз на том уровне, которого они смогли достичь. Изобретателей толкает на этот путь патентная система и коммерческое отношение к техническим идеям как к объекту продажи. Однако такой взгляд на вещи безусловно нереалистичен. Изобретатель, как практик, должен иметь практическое чутье, подсказывающее ему, что в течение многих лет его основным достижением будет не изобретение какого-нибудь одного устройства, а содействие рождению нового круга идей, касающихся широкого класса технических устройств прошлого, настоящего и будущего. Он должен работать в согласии с этим новым кругом идей и должен понимать, что раз ему удалось превзойти тех, кто жил до него, то и его работа неизбежно послужит лишь фундаментом для будущих работ, а не останется навеки последним словом науки и техники.
Что касается меня, то личная заинтересованность в развитии вычислительных машин увела меня далеко за пределы круга идей, связанных с прошлым, настоящим и будущим машин, сделанных из латуни, меди, стекла и стали. Человеческий мозг и нервная система в некоторых отношениях также напоминают вычислительные машины. Подобно тому, как на выходе реле возможны лишь два сигнала «да» и «нет», для нервного волокна возможны лишь два основных состояния: состояние, в котором по волокну передается сигнал, и состояние, в котором никакого сигнала не передается. К этому сводится проявление известного принципа «все или ничего» в деятельности нервной системы, и хотя приведенная здесь нарочито грубая и упрощенная формулировка этого принципа, возможно, и не является вполне точной, она достаточно хорошо определяет основную закономерность передачи раздражении по нервным тканям.
Нервное волокно, правда, может быть приведено в раздражение при помощи сигналов различной интенсивности, но в конце концов возможны лишь два исхода: либо возникшее раздражение затухнет в волокне, так и не дойдя до его конца, либо же в волокне возникнет то, что химики называют процессом автокатализа, и появится электрический импульс, который от одного конца волокна дойдет до другого. В тот момент, когда этот импульс доходит до второго конца нервного волокна, он оказывается уже практически не зависящим от интенсивности исходного раздражения, и следовательно, эту интенсивность можно не принимать во внимание. Таким образом, между нервным волокном и электрическим триггером – цепью с двумя и только двумя состояниями равновесия – существует определенная аналогия. Эта аналогия оказывается очень полной, так как уже задолго до того, как сигнал достигает конца нервного волокна, вся содержащаяся в нем полезная информация заключается лишь в числе импульсов, а не в их величине (т.е. интенсивности).
Нервные волокна являются не только переключающими устройствами, но и входят как составная часть в целую систему переключающих устройств. Они соединяются друг с другом в особых точках или узлах, называемых синапсами. При этом ответ на вопрос о том, будет или не будет распространяться сигнал по выходящему из синапса волокну, зависит от всего множества сигналов, пришедших в этот синапс по входным волокнам. В простейших случаях синапс просто характеризуется определенным порогом раздражимости, т.е. выходное волокно раздражается и передает сигнал, если за какой-то определенный критический промежуток времени входные волокна передают больше какого-то определенного числа сигналов, и не раздражается, оставаясь невозбужденным, если этого не происходит.
В повседневной жизни мы так привыкли к явлению обратной связи, что часто забываем о его роли в самых простых процессах. Если нам удается стоять на ногах, то достигается это совсем иначе, чем в случае, например, статуи, так как для того, чтобы удержать в вертикальном положении самую устойчивую статую, ее нужно все же прикрепить к какому-то пьедесталу. Люди стоят потому, что они непрерывно сопротивляются тенденции упасть вперед пли назад и умеют непроизвольно компенсировать эти тенденции с помощью мускульных усилий, отклоняющих тело в обратном направлении. Равновесие человеческого тела, так же как и другие виды равновесия, наблюдаемые в живых организмах, не является статическим, а достигается за счет непрерывно протекающих процессов, активно препятствующих развитию любой тенденции, направленной на то, чтобы его нарушить. Таким образом, стоя на месте или передвигаясь, мы непрерывно сражаемся с силами земного притяжения, а вся наша жизнь есть непрекращающаяся борьба со смертью.
Все эти соображения заставили меня склониться к мысли, что нервная система человека является неким аналогом вычислительной машины, и я поделился своими соображениями с доктором Розенблютом и другими нейрофизиологами. Мне удалось собрать группу нейрофизиологов, инженеров-связистов и специалистов по вычислительной технике на неофициальный семинар в Принстоне. Выяснилось, что представители каждой из этих профессий были очень рады познакомиться с работами своих коллег и воспользоваться новой для себя терминологией. В результате специалисты в этих различных областях очень быстро начали говорить на одном языке, словарь которого содержал термины, заимствованные и у инженеров-связистов, и у специалистов по автоматическому регулированию, и у нейрофизиологов.
Например, всех их интересовали вопросы хранения информации, предназначенной для использования впоследствии, и все пришли к выводу, что слово память (широко применяемое в нейрофизиологии и психологии) хорошо подходит для того, чтобы объединить разнообразные методы хранения информации, рассматриваемые в различных областях науки я техники. Все согласились также, что термин обратная связь, впервые появившийся в электротехнике и подхваченный специалистами по автоматическому регулированию, правильно описывает многие явления не только в машинах, но и в живых организмах. Наконец, все были согласны измерять количество информации числом ответов типа «да» или «нет» и в конце концов остановились на термине «двоичная единица» или «бит» 8 для обозначения этой единицы количества информации. Я считаю, что встреча в Принстоне дала жизнь новой науке кибернетике – теории управления и связи в машинах и живых организмах.
Я надеялся, что новая наука будет быстро развиваться в самых различных направлениях. Со временем кибернетика действительно сделала огромные успехи, и в них есть и моя доля труда. Но тогда обстановка не благоприятствовала нормальному распространению новых идей, и мне пришлось долго ждать, пока к тому, что я считал серьезным вкладом в науку, в обществе перестали относиться как к научной фантастике и пустой погоне за сенсацией.
В наше время научная фантастика стала модой; даже серьезные ученые пишут теперь научно-фантастические романы и считают это своей заслугой. Ребенком я сам страстно увлекался Жюлем Верном и Гербертом Уэллсом, отцами современной научно-фантастической литературы, но то, что пишется сейчас, делается гораздо более ловко и приносит несравненно больше вреда. С одной стороны, такого рода литература возбуждает инстинкты насилия и жестокости, оказывая такое же пагубное влияние, как лишенные комизма комиксы или гангстерские истории, в которых «ощупью крадутся в темноте, и мертвые тела падают на землю с глухим стуком». С другой стороны, эта литература способствует воспитанию поколения молодежи, которое, овладев языком научно-фантастических произведений, считает, что оно мыслит научными терминами. Наши учебные заведения, занимающиеся подготовкой научных и технических кадров, испытывают серьезные затруднения, перевоспитывая юношей, которые решили посвятить себя науке только потому, что привыкли играть с идеями всеразрушающпх сил, иных миров и ракетных путешествий.
Все эти порочные сказки в значительной степени порождены второй мировой войной, в результате которой целое поколение ученых оказалось почти полностью деморализованным. Во время войны положение науки, и в частности математики, резко изменилось. Прежде всего, из жизни людей совершенно исчез досуг. До войны в какой-нибудь комнате отдыха Уокер Мемориал 9 нередко можно было наткнуться на группу студентов МТИ, развлекающихся одной-двумя партиями бриджа. Мне частенько случалось играть с ними. Я не считал это время потерянным ни для себя, ни для них, потому что в перерыве между партиями возникали самые разнообразные споры, которые иногда превращались в пустой студенческий треп, а иногда приводили к интересному столкновению идей. С того момента, как началась война, все стали убийственно серьезны, возможности какой бы то ни было интеллектуальной игры оказались крайне ограничены. Даже сейчас, спустя много лет после того, как война кончилась, трудно встретить молодых людей, которые осмелились бы оторвать время от своей работы, чтобы подумать о том, что эта работа собой представляет. По-моему, часы, проведенные за чтением фантастических историй о космическом пространстве, не могут заменить хорошей студенческой трепотни.
Перед войной, особенно в период депрессии, доступ в науку был сильно затруднен. К тем, кто хотел заниматься научной работой, предъявлялись очень высокие требования. Во время войны произошли два существенных изменения. Во-первых, обнаружился недостаток в людях, способных осуществить все необходимые для войны научные проекты. Во-вторых, поскольку их все равно нужно было осуществлять, пришлось перестроить всю систему так, чтобы иметь возможность использовать людей с минимальной подготовкой, минимальными способностями и минимальной добросовестностью.
В результате молодые люди вместо того, чтобы готовиться к долгому и трудному пути, жили с легким сердцем, не беспокоясь о завтрашнем дне, считая, что бум в науке будет продолжаться вечно. Дисциплина и тяжелый труд были для них не обязательны, и надежды, которые они подавали, расценивались ими как уже исполненные обещания. Ученые старшего поколения задыхались от недостатка помощников, от нехватки рабочих рук, а зеленые юнцы выискивали хозяина, который спросит поменьше, но зато не поскупится на лесть и деньги и проявит максимальную терпимость.
Это было одним из проявлений общего падения нравов, начавшегося тогда среди ученых и продолжающегося до сих пор. Почти во все предыдущие эпохи в науку шли только те, кого не пугала суровость труда и скудость результатов. У Теннисона в стихотворении «Северный крестьянин. Новое летоисчисление» есть такая строка: «Не женись из-за денег, но иди туда, где они есть!».
В соответствии с этой мудростью честолюбивые люди, относящиеся к обществу недостаточно лояльно, или, выражаясь более изящно, не склонные терзаться из-за того, что тратятся чужие деньги, когда-то боялись научной карьеры, как чумы. А со времен войны такого рода авантюристы, становившиеся раньше биржевыми маклерами или светочами страхового бизнеса, буквально наводнили науку.
Нам пришлось отказываться от многих старых представлений. Мы все знали, что у ученых есть свои недостатки. Среди нас были педанты, любители спиртного, честолюбцы, но при нормальном положении вещей мы не ожидали встретить в своей среде лжецов и интриганов.
Расставшись со своей уединенной жизнью и погрузившись в научный водоворот военного времени, я начал понимать, что среди тех, кому я доверяю, есть люди, не заслуживающие ни малейшего доверия. Не один раз мне приходилось переживать жестокое разочарование, и каждый раз это причиняло боль.
Вскоре после событий в Пирл-Харборе состоялось заседание, созванное для объединения усилий ученых, работавших в области теории связи. Читатель, наверное, удивлен, что, говоря столько времени о войне, я ничего не сказал о Пирл-Харборе и о формальном вступлении Америки в войну. Я не сделал этого потому, что все мы давно были убеждены в неизбежности войны – как именно это произойдет, в конце концов было не так уж важно, – и начало войны ничего не изменило в моей оборонной работе.
Осенью 1941 года напряжение, созданное разгромом союзников в Норвегии, Голландии и Франции, битвой за Англию и зыбкостью ситуаций в Северной Африке, достигло предела, а тут еще оно осложнилось почти всеобщей уверенностью, что в Японии тоже что-то готовится.
Никто из нас не ожидал того, что произошло в Пирл-Харборе, но, кажется, никто не сомневался, что в условиях военной диктатуры Япония не станет разыгрывать войну согласно общепринятым дипломатическим церемониям, тем более, что это явно было бы нам наруку. Поэтому я, по крайней мере, воспринял Пирл-Харбор как позор и унижение, но не как что-то неожиданное.
События в Пирл-Харборе, непосредственно вызвавшие вступление Америки во вторую мировую войну сразу на обоих полушариях, имели для меня лично ряд серьезных последствий. Мне не пришлось более активно включаться в военные исследования, потому что я уже больше года делал в этом направлении все, что мог. Но война полностью разрушила наши планы – мои и Мануэля Сандоваля Байарты: мы собирались поехать в Южную Америку с миссией доброй воли; основные средства на поездку должен был дать Государственный департамент (или, если бы с просьбой пришлось обращаться Байарте, мексиканское правительство).
Еще больше мучил меня вопрос, что же теперь будет с моими друзьями Ли. Мы, наконец, получили для них разрешение приехать в Америку на одном из пароходов, отплывавшем из Гонконга. А тут разыгрались события в Пирл-Харборе, и пароход не смог выйти из гавани или, во всяком случае, не смог взять на борт наших друзей. В результате Ли, который уже пять лет был оторван от научной работы из-за китайско-японской войны, оказался вынужденным ждать еще пять лет, и только после дня победы над Японией нам удалось добиться его возвращения в Соединенные Штаты. В течение всего этого времени место, которое предназначалось ему на кафедре электротехники МТИ, оставалось свободным или полусвободным; когда Ли в конце концов приехал в Америку, он сразу получил должность преподавателя. Вскоре он стал ассистентом, а потом и доцентом.
Положение специалиста, который, наподобие Рип Ван Винкля 10, проспал целое десятилетие и, проснувшись, обнаружил, что мир стал иным, очень трудно. Первое, что приходит в голову, – потратить один-два года на изучение перемен, происшедших за это время. В каком-то смысле это вполне возможный, хотя далеко не самый правильный путь. Необходимость поглотить огромное количество нового материала может привести к умственному несварению. К тому же тот, кто догоняет, вынужден вступить в соревнование с людьми младшего поколения, которые овладевали определенной отраслью знания по мере ее развития, т.е. более легким путем, и потому чувствуют себя в этой области, как дома. Рип Ван Винклю тягаться с ними не под силу.
Положение Ли облегчалось тем, что я недавно изложил значительную часть статистической теории связи в «Желтой опасности». Беседуя с Ли, я сказал ему, что один из способов не оказаться безнадежно отсталым – это постараться немного забежать вперед, обеспечив себе преимущество в несколько лет и предоставив другим возможность догонять. Ли ухватился за эту идею.
Ему помогли многолетние навыки нашей совместной работы, благодаря которым он прекрасно разбирался в особенностях моей манеры мышления и изложения. Вот почему Ли взял на себя задачу, исходя из набросанных мной (в весьма общем виде) идей, детально разобрать все проблемы, представляющие интерес для инженеров-связистов, т.е. познакомить широкие технические круги с той областью знания, которую я позже назвал кибернетикой.
Ли упорно проводил в жизнь свою программу и за несколько лет добился блестящего успеха. Сейчас он пишет книгу для инженеров, в которой теория связи рассматривается с новой точки зрения 11; в своей работе он проявляет огромное терпение, исключительную тщательность и полное понимание интересов читателя. Так как я слишком близок к появлению на свет этой теории, для меня подобная объективность изложения была бы невозможна.
Ли познакомил с новыми идеями сотрудников многих государственных и частных лабораторий. Он научил целое поколение молодых инженеров-электриков широко пользоваться статистическими соображениями и рассматривать возникающие в их области задачи с пропагандируемой мной точки зрения. Он организовал летние конференции для инженеров, творчески работающих в промышленности связи; приезжая в МТИ, они получали возможность освежить свои знания с позиций кибернетики.
Таким образом, трудности, созданные десятилетней изоляцией, были успешно преодолены. Старт, взятый Ли в области новых методов, позволил ему быстро наверстать упущенное за 1936–1946 годы, а главное, интересующие его специфические проблемы служили великолепной лакмусовой бумажкой, с помощью которой Ли всегда мог определить, до конца ли он разобрался и достаточно ли близко познакомился с исследованиями предыдущего периода. Короче говоря, курс, который был избран в тот момент, когда по окончании войны семья Ли прибыла на южный вокзал Бостона, полностью себя оправдал.
Возвращение Ли в МТИ очень помогло мне продвинуться в исследовании следящих систем и всего того круга проблем, которому я позднее дал название кибернетики. Как я уже говорил, Ли сейчас сам кончает книгу на эту же тему.
К сожалению, всего того, что могли сделать мы вдвоем, и того, что могли бы сделать на нашем месте сто человек, все равно было бы недостаточно, чтобы охватить хотя бы ничтожную часть литературы по следящим системам и заводам-автоматам, к созданию которых привели наши ранние совместные работы. Заводы-автоматы обещают стать не исключением, а правилом уже для тех, кто занимается сейчас в колледжах. Они породили новый вид специалистов, которые умеют не только строить такие заводы, но и решать с их помощью самые разнообразные задачи. Современная техника создания заводов-автоматов выходит далеко за рамки возможностей сугубого теоретика вроде меня.
Как читатель увидит из следующей главы, я считал своей обязанностью не столько дальнейшее совершенствование заводов-автоматов, сколько объяснение их природы и тех последствий, к которым приведет их распространение; я хотел прежде всего предупредить рабочих и работодателей о необходимости разумного отношения к этой проблеме.
Примечания переводчика
1. Сидячая война (нем.).
2. Остров в Атлантическом океане у побережья Северной Америки, на котором расположена восточная часть Нью-Йорка.
3. На самом деле сведение произвольных умножений к последовательности удвоений, сложений и вычитаний, а произвольных делений – к последовательности делений пополам, сложений и вычитаний, эквивалентное в какой-то степени использованию двоичной системы счисления, до начала XX века было очень распространено в народной арифметике целого ряда европейских и азиатских стран, а не только России. (Прим. ред.)
4. ИБМ (IBM) – сокращенное «International Business Machines» («Международные деловые машины») – название самой известной американской фирмы, занимающейся производством счетных машин.
5. Лекарство, употребляемое, в частности, как возбуждающее средство.
6. На самом деле одесский математик проф. М. Г. Крейн не является учеником Колмогорова, но его работа по теории прогнозирования действительно возникла в результате разговоров с Колмогоровым. (Прим. ред.)
7. После написания этой книги Винер в 1960 г. посетил СССР.
8. Сокращение английского термина «binary digit», т.е. «двоичная цифра».
9. Уокер Мемориал (Walker Memorial) – название одного из зданий МТИ.
10. Герой рассказа американского писателя Вашингтона Ирвинга (1783–1859), проспавший двадцать лет и после этого вернувшийся в родную деревню.
11. Книга Ли под названием «Статистическая теория связи» («Statistical theory of communication») была опубликована в США в 1960 г.
15 НАНСИ, КИБЕРНЕТИКА, ПАРИЖ И ПОСЛЕ ПАРИЖА. 1946–1952
Летом 1946 года во Франции, в университете города Нанси, должна была состояться организованная группой ученых математическая конференция по гармоническому анализу. Меня пригласили принять в ней участие. По существу бульшая часть вопросов, которые предстояло обсудить на конференции, была непосредственно связана с вещами, которыми я занимался. Я отплыл на голландском пароходе в Англию и, прежде чем поехать на конференцию, нанес свой обычный визит английским друзьям и их стране. В этот приезд я побывал в университетском колледже в Лондоне, где преподавал Дж. Б. С. Холдейн. Он развелся с первой женой и теперь был женат вторично на блестящей молодой даме, специалистке в области генетики, помогавшей ему во время войны проводить физиологические опыты по изучению влияния различных газов под высоким давлением на человеческий организм.
Надев водолазные костюмы, они оба по нескольку раз погружались в стальные цистерны с водой; в костюмы нагнетались газы, давление которых повышалось до тех пор, пока они не становились настолько ядовитыми, что у Холдейна и его будущей жены начинались конвульсии. Я верю, что Холдейн четыре раза доводил себя до судорог, а его помощница – семь. Это вполне соответствует и стилю Холдейна, который обычно для самых невероятных физиологических испытаний использует не морских свинок, а самого себя, и его бесстрашию, которое он продемонстрировал еще раньше во время войны, избрав своей специальностью поиски и разрядку вражеских мин, выброшенных на побережье.
Вообще Холдейн принадлежит к тому типу людей, которые с готовностью подвергают себя опасности и спокойно мирятся с неудобствами и неприятностями, когда это нужно для работы, которую они считают важной. Хотя по натуре он более рационалистичен, в нем есть что-то напоминающее мне необузданность Пэли.
Живя у Холдейнов, я с удовольствием проводил время, навещая своих коллег в Национальной физической лаборатории в Теддингтоне, в Лондонском, Манчестерском я Кембриджском университетах. Я узнал, что в Манчестерском университете готовятся приступить к работе о быстродействующими счетными машинами. В Национальной физической лаборатории Тьюринг занимался исследованиями в той же области, объединяющей математическую логику и электронику, в которой с таким блеском работал Шеннон в Соединенных Штатах. Короче говоря, я нашел, что научная обстановка в Англии вполне благоприятствует восприятию моих новых идей, касающихся контроля, связи и организации.
В сущности, к тому времени, когда я оказался в Париже, у меня уже появилось желание написать исчерпывающую книгу на эту тему. В Париже кто-то из преподавателей МТИ познакомил меня с одним из самых интересных людей, с которыми мне когда-либо приходилось встречаться – с издателем Фрейманом из фирмы «Герман и К°».
Фрейман, который, к сожалению, совсем недавно умер, был мексиканцем и впервые приехал в Париж вместе с мексиканской дипломатической миссией в качестве атташе по делам культуры. Один из его прадедов, капитан дальнего плавания, немец по национальности, уйдя в отставку, поселился в области Тепик на западном побережье Мексики. Другой прадед Фреймана был вождем индейского племени Хуичоль из той же области. Обе его прабабки родом из Испании. Фрейман держал маленькую невзрачную книжную лавочку напротив Сорбонны, куда время от времени заглядывал кто-нибудь из светил науки или какой-нибудь блестящий представитель парижской интеллигенции; сам он в это время с наслаждением рассказывал мне, как каждый из прадедов пытался уберечь его от влияния другого, причем один без конца твердил, что он европеец, а другой неустанно напоминал, что он индеец.
Мы долго беседовали о Мексике, и, наконец, разговор зашел о моей научной работе. Тогда Фрейман приступил к делу, которое интересовало его больше всего. Он спросил, не изложу ли я свои идеи о связи, заводах-автоматах и нервной системе в брошюре для одной из его серий?
Фрейман рассказал мне, что он зять прежнего издателя Германа, после смерти которого он оказался единственным членом семьи, захотевшим продолжать дело. Фрейман говорил о множестве уловок, к которым ему пришлось прибегнуть, чтобы добиться заключения издательских договоров с рядом научных обществ, и как он использовал эти договора для создания действительно серьезного издательства, настолько свободного от коммерческих соображений, насколько это вообще возможно для издательства.
Я уже слышал о странной группе французских математиков, объединившихся под общим псевдонимом «Бурбаки»; этот псевдоним возник в результате мистификации, которую затеяли несколько студентов, начав писать книги и статьи под именем одного давно умершего французского генерала. Фрейман сказал, что практически организовал эту группу он и что теперь он же собирается расширить ее деятельность, поддержав создание нового вымышленного университета, названного в честь двух современных математических школ в Нанси и Чикаго «Университет Нанкаго».
Мне показалось вполне забавным принять участие в работе этой интересной группы. Я дал согласие Фрейману написать книгу, и мы скрепили договор за чашкой какао в соседней patisserie 1.
Все это время я поддерживал связь с Мандельбройтом, который по существу был организатором конференции в Нанси. Мы вместе занимались некоторыми математическими проблемами и вместе поехали на конференцию на маленьком скоростном дизеле, который тогда уже заменил экспресс на линии между столицей и Нанси. Меня, так же как всех важных иностранцев, поместили в прекрасном отеле, который составляет часть четырехугольного ансамбля зданий, окружающих площадь Станислава.
Слава этого квартала началась еще в XVIII веке, когда бывший король Польши стал князем лотарингским. Как столица Нанси в то время чуть ли не соперничал с Парижем и Версалем. Говорят, что придворный этикет в Нанси был даже строже, чем в Версале. В конце концов это привело к смерти самого князя. Рассказывают, что однажды, гуляя навеселе по крыше, князь упал в один из дымоходов, и, так как поблизости не оказалось ни одного лица достаточно высокого ранга, чтобы прикоснуться к персоне короля, он так и лежал там, пока не задохнулся.
Отель, в котором я остановился, был штаб-квартирой иностранных гостей. Там жили Харальд Бор из Дании, Карлеман из Швеции, Островский из Базеля и милый старый папа Планшерель из Цюрихского федерального технологического института. Младшее поколение представляли Иессен из Дании и Бёрлинг из Швеции.
Харальд Бор и Карлеман теперь уже умерли. Смерть Карлемана особенно трагична, потому что это типичная смерть скандинава, хорошо известная всем, кто знаком с пьесами Ибсена и Стриндберга. Карлемана погубило пьянство; не то компанейское пьянство, которое часто приводит к разорению, а непреодолимый сжигающий человека алкоголизм – заболевание, распространенное даже в избранных кругах скандинавского общества. На конференции он часто бывал нетрезв. Потом в Париже я видел его дома у Мандельбройта, куда он приходил, чтобы заранее получить обещанные ему деньги на дорогу; у него были красные глаза и трехдневная борода.
Из множества людей, собравшихся в Нанси, я чаще всего виделся с Лораном Шварцем. Он был женат на дочери Поля Леви, которую я встречал год назад, навещая ее отца в Пуг-лез-О. Шварц занимался вопросами, очень сходными с теми, которыми интересовался я сам. Он обобщил еще дальше тот обобщенный гармонический анализ, которому была посвящена моя старая статья в «Acta Mathematica». Шварц свел его к высоко абстрактным положениям, характерным для школы Бурбаки, к которой он тоже принадлежал.
Нас, гостей, каждого в отдельности и всех вместе всячески привлекали к участию в светской жизни маленького города. Франция переживала тогда трудное и суровое время; вместо вина пили виноградный сок, чудесный французский хлеб на пятьдесят процентов состоял из кукурузы, но наши хозяева изо всех сил старались превзойти радушием один другого. Можно было не сомневаться, что если в первый вечер нам предложили три сорта печенья, во второй во что бы то ни стало будет четыре, а в третий – пять. На всех этих вечерах неизменно присутствовали мсье ректор, мсье мэр и мсье префект. Мы уехали с убеждением, что мсье ректор, мсье мэр и мсье префект вместе с их женами годами неизменно встречаются друг с другом. Жизнь, которую мы здесь наблюдали, свидетельствовала о процветании учтивости, культуры, воспитания, но она оставляла впечатление такой чопорности, что по сравнению с Нанси любой маленький городок Новой Англии казался обителью социальной свободы.
В то время, о котором я пишу, университет в Нанси меньше других провинциальных университетов страдал от воздействия центростремительной силы Парижа. Теперь Шварц, в согласии с общепринятым каноном академической карьеры, конечно, перешел уже в столицу. Но тогда Нанси был прекрасным местом для иностранных математиков, которые приезжали, чтобы познакомиться с лучшими сторонами французской университетской жизни, и стремились войти в контакт с молодыми французскими учеными, находящимися в расцвете сил и только начинающими свою карьеру. Сейчас, судя по некоторым признакам, университет в Нанси снова впадает в спячку, характерную для французской провинции.
Конференция прошла с большим успехом, и нам удалось очень хорошо поработать. После конференции я вернулся в Париж. Потратив несколько дней на статью, которую мы начали писать вместе с Булиганом, и обсудив свои дела с Фрейманом, я пересек Ла-Манш и, прежде чем сесть на пароход в Саутгемптоне, еще немного побыл в Англии.
Сейчас мне кажется, что именно во время этой второй поездки я снова побывал в Оксфорде и даже еще западнее, в Бристоле, где встретился с Греем Уолтером, который познакомил меня со своей исключительно интересной работой в области электроэнцефалографии.
Ричард Кэтен занимался в Англии изучением электроэнцефалограмм животных еще в 1875 году, но первые наблюдения за электрическими потенциалами, распределяющимися на человеческом черепе, осуществил немец Ганс Бергер. Потенциалы, которые он наблюдал, обязаны своим происхождением электрохимической активности мозга и меняются при различных нервных и мозговых расстройствах, однако эти изменения не так легко поддаются расшифровке. Вначале, когда ученые вплотную занялись изучением физиологии мозга, на эти явления возлагались очень большие надежды; в случаях заболевания эпилепсией и при угрозе эпилепсии они действительно давали какие-то характерные изменения, поддававшиеся прочтению.
Помимо закономерностей, связанных с эпилепсией, существуют некоторые другие регулярные мозговые волны, которые при соответствующих условиях тоже поддаются наблюдению. Самое отчетливое и стойкое из этих явлений, так называемый альфа-ритм, представляет собой колебания с периодом приблизительно в одну десятую секунды.
Искусство чтения таких нерегулярных колебаний – вещь очень сложная, и многое из того, что они могут сказать, недоступно невооруженному глазу. Как я уже говорил в предыдущей главе, рассказывая об исследованиях в области физиологии, которые мы проводили вместе с Артуро Розенблютом, мне недавно удалось разработать математический аппарат, помогающий наблюдателю давать более определенные заключения о мозговых волнах. Сейчас этой проблемой занимаются научные сотрудники МТИ и Главной массачусетской больницы.
Д-р Грей Уолтер, хотя и американец по происхождению, так долго жил в Европе, что может считаться одним из вождей европейских ученых, занимающихся электроэнцефалографией, т.е. изучением мозговых волн. Уолтер полон энтузиазма и энергии; он изобрел прибор, с помощью которого можно получить исчерпывающую картину мозговых волн в различных частях мозга. Нет сомнений, что эта картина окажется интересной и полезной при изучении нормальной физиологии мозга и при диагностировании мозговых расстройств. Однако она более обобщена и менее точна в математических деталях, чем те данные, которыми мы пользуемся в наших исследованиях. По существу научный подход Уолтера скорее напоминает подход художника-графика, чем математика.
Уловив приблизительно в то же время, что и я, аналогию между обратной связью в машине и нервной системой человека, Уолтер начал конструировать механизмы, которые повторяли бы некоторые особенности поведения животных. Я работал над созданием «мотылька», который автоматически летел бы на свет. Уолтер назвал свои автоматы «черепахами», включив в их репертуар более сложные номера. «Черепахи» были снабжены устройством, помогавшим им не сталкиваться друг с другом при движении, и, кроме того, приспособлением, благодаря которому, чувствуя «голод», т.е. истощение аккумуляторных батарей, они направлялись к специальному «месту кормления», где глотали электричество до тех пор, пока аккумуляторные батареи не перезаряжались.
Я возвращался домой из Саутгемптона на том же голландском корабле, на котором плыл в Англию. Во время обоих рейсов большинство пассажиров состояло из голландских крестьян, эмигрировавших в Америку и осевших в штате Мичиган в окрестностях города Гранд Рэпидс. В основном это были выходцы из фермерских семей, получившие строгое кальвинистское воспитание, которое так распространено в Голландии. Все они впервые после войны ездили домой, чтобы повидаться с родными, тяжело пострадавшими во время военных событий; эмигранты многое делали для восстановления Голландии. Боюсь, что я сильно подмочил свою репутацию, выругавшись пару раз по-голландски, – даже на фермах Новой Англии никто так не ежился, услышав что-либо подобное.
Попав в курительную комнату, эти простые, достойные всяческого уважения люди доставали из-за пояса бутылки, выпивали стаканчик-другой голландского джина и начинали петь старинные голландские песни и танцевать на старый голландский манер, точь-в-точь, как это изображено на картинах Яна Стена, Адриена Броуэра и Брейгеля старшего. Одежда стала иной, но физиономии степенных фермерш и их подвыпивших здоровяков-мужей остались все такими же; даже песни и, как мне казалось, некоторые танцы вели свою родословную с XVII века.
Вернувшись в Соединенные Штаты, я узнал, что мне нужно возобновить работу в Мексике. В то лето моя дочь Барбара не очень знала, что ей делать, и мы поехали вместе. Я начал еще одну нейрофизиологическую работу вместе с Артуро, продолжая встречаться с той же группой людей и ведя почти такой же образ жизни, как в свои предыдущие приезды. Мы с Барбарой (позднее к нам присоединилась и Маргарет) поселились в многоквартирном доме, построенном в новом жилом квартале на месте бывшего ипподрома; нам даже принадлежала часть сада на крыше, откуда мы могли любоваться снегами Попокатепетля 2 и Истаксиуатлы 3. В том же доме жила молодая супружеская пара, приехавшая из Америки. Муж тоже работал в Институте кардиологии, и мы часто обсуждали с ним книгу по теории прогнозирования и автоматическому управлению, которую я обещал написать для Фреймана.
Я упорно трудился, но с первых же шагов был озадачен необходимостью придумать заглавие, чтобы обозначить предмет, о котором я писал. Вначале я попробовал найти какое-нибудь греческое слово, имеющее смысл «передающий сообщение», но я знал только слово «angelos». В английском языке «angel» – это ангел, т.е. посланник бога. Таким образом, слово «angelos» было уже занято и в моем случае могло только исказить смысл книги. Тогда я стал искать нужное мне слово среди терминов, связанных с областью управления или регулирования. Единственное, что я смог подобрать, было греческое слово kybernetes, обозначающее «рулевой», «штурман». Я решил, что, поскольку слово, которое я подыскивал, будет употребляться по-английски, следует отдать предпочтение английскому произношению перед греческим. Так я напал на название «Кибернетика». Позднее я узнал, что еще в начале XIX века это слово использовал во Франции физик Ампер, правда, в социологическом смысле, но в то время мне это было неизвестно.
В слове «кибернетика» меня привлекало то, что оно больше всех других известных мне слов подходило для выражения идеи всеобъемлющего искусства регулирования и управления, применяемого в самых разнообразных областях. Много лет назад Венивар Буш в разговорах со мной предположил, что для того, чтобы овладеть процессами управления и организации, нужно создать какой-то новый научный аппарат. В конце кондов я начал искать этот аппарат в теории связи. Мои ранние работы по теории вероятностей и, в частности, по изучению броуновского движения убедили меня, что осмысленное представление об организации невозможно для мира, где все обусловлено и для случайности не осталось места. Такой негибкий мир можно назвать организованным только в том смысле, в каком организован мост, все детали которого жестко скреплены друг с другом. В подобном сооружении каждая деталь зависит от всех остальных и все части постройки играют одинаково важную роль. В результате на этом мосту нет участков, которые могли бы принять на себя наибольшее напряжение, и если только он не сделан целиком из материалов, могущих выдержать без заметных деформаций большие внутренние напряжения, то почти наверняка концентрация напряжений приведет к тому, что мост рухнет, лопнув или разорвавшись в том иди другом месте.
На самом деле мост, как любое другое строение, выдерживает нагрузку только потому, что он не является стопроцентно жестким. Аналогичным образом любая организация может существовать, только если составляющие ее части в большей или меньшей степени способны реагировать на присущие ей внутренние напряжения. Таким образом, мы должны рассматривать организацию как нечто обладающее взаимосвязью между отдельными организованными частями, причем взаимосвязь эта не единообразна. Связи между одними внутренними частями должны играть более важную роль, чем между другими, иными словами, связи внутри организации не должны быть абсолютно устойчивыми, чтобы строгая определенность одних ее частей не исключала возможности изменения каких-то других. Эти изменения, различные в различных случаях, неизбежно носят статистический характер, и поэтому только статистическая теория обладает достаточной гибкостью, чтобы в своих рамках придать понятию организации разумный смысл.
Итак, я был вынужден снова вернуться к работе Уилларда Гиббса и к концепции, согласно которой мир рассматривается не как отдельный изолированный феномен, а как элемент множества «возможных миров», характеризующихся определенным распределением вероятностей, При этом мне пришлось считать, что причинность есть нечто, могущее присутствовать в большей или меньшей степени, а не только просто быть или не быть.
Основой моих идей в области кибернетики послужили все те проблемы, которыми я занимался раньше. Интерес к теории связи привел меня к теории информации и прежде всего к вопросу об информации о всей системе в целом, содержащейся в сведениях об одной какой-либо ее части. Так как я занимался гармоническим анализом и знал, что в случае непрерывного спектра приходится обращаться к рассмотрению функций и кривых, слишком нерегулярных для того, чтобы их можно было изучать с помощью средств классического анализа, у меня выработалось свое отношение к нерегулярности, из которого родилось представление о существенной нерегулярности вселенной. Так как я много работал в тесном контакте с физиками и инженерами, я хорошо знал, что наши данные никогда не могут быть абсолютно точными. А познакомившись со сложным механизмом нервной системы, я осознал, что мир, который нас окружает, воспринимается нами только с ее помощью и что вся наша информация о мире ограничена возможностью передачи информации по нервным волокнам.
Мое первое детское эссе по философии, написанное в средней школе, когда мне не было еще одиннадцати лет, не случайно называлось «Теория невежества». Уже тогда меня поразила невозможность создания идеально последовательной теории с помощью такого несовершенного механизма, как человеческий разум. Занимаясь под руководством Бертрана Рассела, я не мог заставить себя поверить в существование исчерпывающего набора постулатов логики, не оставляющего места ни для какого произвола в пределах определяемой им системы. Таким образом, не владея великолепной техникой Гёделя и его последователей, я тем не менее предвидел некоторые критические замечания, которые они позднее выдвинули против Рассела, создав реальную основу для отрицания существования какой бы то ни было единой замкнутой в себе логики, неизбежно и вполне определенно следующей из конечного числа исходных правил.
Я никогда не представлял себе логику, знания и всю умственную деятельность как завершенную замкнутую картину; я мог понять эти явления только как процесс, с помощью которого человек организует свою жизнь таким образом, чтобы она протекала en rapport 4 с внешней средой. Важна битва за знание, а не победа. За каждой победой, т.е. за всем, что достигает своего апогея, сразу же наступают «сумерки богов», в которых само понятие победы растворяется в тот самый момент, когда она достигнута.
Мы плывем вверх по течению, борясь с огромным потоком дезорганизованности, который, в соответствии со вторым законом термодинамики, стремится все свести к тепловой смерти, всеобщему равновесию и одинаковости. То, что Максвелл, Больцман и Гиббс в своих физических работах называли тепловой смертью, нашло своего двойника в этике Кьеркегора 5, утверждавшего, что мы живем в мире хаотической морали. В этом мире наша первая обязанность состоит в том, чтобы устраивать произвольные островки порядка и системы. Эти островки не существуют вечно в том виде, в котором мы их некогда создали. Подобно Черной королеве 6 мы должны бежать со всей быстротой, на которую только способны, чтобы остаться на том месте, где однажды остановились.
Мы вовсе не боремся за какую-то определенную победу в неопределенном будущем. Величайшая из всех побед – это возможность продолжать свое существование, знать, что ты существовал. Никакое поражение не может лишить нас успеха, заключающегося в том, что в течение определенного времени мы пребывали в этом мире, которому, кажется, нет до нас никакого дела.
Это не пораженчество; скорее, это ощущение трагичности мира, в котором необходимость представлена как неизбежность исчезновения дифференциации. Требования нашей собственной натуры, попытка построить островок организованности перед лицом преобладающей тенденции природы к беспорядочности – это вызов богам и вместе с тем ими же созданная железная необходимость. В этом источник трагедии, но и славы тоже.
Вот те идеи, которые я стремился обобщить в моей книге о кибернетике. Моя первая задача была вполне конкретна и довольно ограничена. Мне хотелось рассказать о новой теории информации, созданной Шенноном и мной, и о новой теории прогнозирования, основы которой были заложены довоенной работой Колмогорова и моими исследованиями, касающимися учета будущего движения самолета при зенитной стрельбе. «Желтая опасность» была доступна ограниченному кругу людей, а мне хотелось, чтобы более широкие слои общества узнали о связи между этими идеями и увидели, в чем состоит новый статистический подход к инженерным задачам связи. Кроме того, я хотел, чтобы представители этих более широких слоев обратили внимание на множество аналогий между человеческой нервной системой, с одной стороны, и вычислительными машинами и системами автоматического регулирования, с другой (т.е. тех аналогий, которые вызвали мою совместную работу с Розенблютом). Но я не мог разрешить этих задач, не составив описи всего своего научного багажа. Почти с самого начала мне стало ясно, что новые концепции связи и управления влекут за собой новое понимание человека и человеческих знаний о вселенной и обществе.
Возможность передавать и получать информацию совсем не является привилегией людей, поскольку обнаружено, что в различной степени этой же способностью обладают, во всяком случае, млекопитающие, птицы, муравьи и пчелы; но какая бы информация ни содержалась в криках и брачных танцах птиц, в беззвучных танцах пчел, с помощью которых они указывают своим товарищам по ульям, в каком направлении и на каком расстоянии находятся источники меда, и что бы ни означали остальные способы сообщения, которые мы как раз сейчас начинаем понимать, язык человека все равно гораздо более развит и гибок, чем язык животных, и потому с ним связаны проблемы совсем особого рода.
Кроме явной множественности языков и широких возможностей, заключенных в каждом индивидуальном языке как в способе самовыражения, уже одно то, что обширные разделы мозга заняты, очевидно, управлением различными аспектами речи, слуха, чтения и письма, свидетельствует об исключительном значении, которое имеет для людей тонко развитая система связи.
Поддерживать связь с внешним миром – это значит получать сообщения из внешнего мира и посылать ответные сообщения. С одной стороны, это значит наблюдать, экспериментировать и учиться, с другой – осуществлять свое влияние на внешний мир так, чтобы наши действия были целенаправлены и эффективны. Экспериментирование по существу есть одна из форм двустороннего общения с внешним миром, в процессе которого мы употребляем исходящие команды для того, чтобы определять условия поступления наблюдений, и одновременно используем поступающие наблюдения, чтобы увеличивать эффективность исходящих команд.
Обмен информацией – цемент, скрепляющий общество. Общество – это не просто множество индивидуумов, сталкивающихся друг с другом для раздоров и воспроизведения себе подобных, общество – это совокупность индивидуумов, тесно связанных между собой и образующих один большой организм. Общество обладает своей собственной памятью, гораздо более емкой и разносторонней, чем память любого входящего в него члена. В тех человеческих коллективах, которым настолько повезло, что они обладают хорошей письменностью, значительная часть общих традиций хранится в письменном виде, но существуют общества, которые и без письменности сохранили свои традиции, например в форме ритуальных родовых песен и устных сказаний.
Социология и антропология – прежде всего науки о связях, поэтому они входят в кибернетику. Частный раздел социологии, известный под названием экономики и отличающийся от других главным образом более аккуратным использованием числовых мер для рассматриваемых величин, тоже представляет собой раздел кибернетики благодаря кибернетическому характеру самой социологии.
Каждая из этих областей вносит свою долю в создание общей кибернетической идеологии, хотя многие из них еще недостаточно точны, чтобы здесь стоило использовать математический аппарат, которым обладают более развитые дисциплины.
Помимо той роли, которую кибернетика играет в этих уже известных науках, она оказывает большое влияние на философию науки, в частности на научную методологию и эпистемологию, или учение о познании. Прежде всего, статистический подход, так ярко проявившийся в кибернетике и в моих ранних исследованиях, принуждает нас по-новому отнестись к понятиям порядка или регулярности. Идеальная информация не содержит в себе ничего поддающегося измерению, следовательно, доступная намерению информация не может быть идеальной. Если мы в состоянии измерить степень причинности (а значительная часть моих работ по теории информации посвящена доказательству того, что это вполне в наших силах), то это происходит только потому, что вселенная представляет собой не абсолютно жесткую структуру, а нечто, допускающее небольшие изменения в различных частях. Тогда, очевидно, можно пронаблюдать, насколько изменения в одной части вызывают изменения в других.
Таким образом, с точки зрения кибернетики мир представляет собой некий организм, закрепленный не настолько жестко, чтобы незначительное изменение в какой-либо его части сразу же лишало его присущих ему особенностей, и не настолько свободный, чтобы всякое событие могло произойти столь же легко и просто, как и любое другое. Это мир, которому одинаково чужда окостенелость ньютоновой физики и аморфная податливость состояния максимальной энтропии или тепловой смерти, когда уже не может произойти ничего по-настоящему нового. Это мир Процесса, а не окончательного мертвого равновесия, к которому ведет Процесс, и это вовсе не такой мир, в котором все события заранее предопределены вперед установленной гармонией, существовавшей лишь в воображении Лейбница.
В таком мире знание есть квинтэссенция процесса познания. Нет никакого смысла искать знания при асимптотическом состоянии вселенной, к которому она, быть может, стремится при неограниченном увеличении времени, так как это асимптотическое состояние (если оно существует) заключается в полной одинаковости, безвременности, бессмысленности и беззаконности. Знание есть один из аспектов жизни: если мы нуждаемся в объяснениях, то только потому, что мы живы. Жизнь представляет собой непрерывное взаимодействие между индивидуумами, а не просто способ существования, протянутый в вечность,
Я привожу здесь все эти положения, чтобы показать, каким образом я пытался добавить, как мне казалось, что-то положительное к пессимизму Кьеркегора и тех писателей, которые видели в нем своего вдохновителя. Среди этих последних наиболее значительную группу составляют экзистенциалисты. Я не стремился противопоставить представлению о беспросветности существования какую-нибудь оптимистическую философию в любом из вариантов оптимизма Польяны 7, но я был, по крайней мере, убежден в совместимости моих предпосылок, недалеко ушедших от предпосылок экзистенциалистов, с положительным отношением к миру и к нашему существованию в мире.
Вот основные идеи, над которыми я размышлял, работая над книгой по кибернетике. Я обсуждал их с Артуро я с физиологом-американцем, который оказался нашим соседом по дому. Мы все надеялись, что эти мысли найдут какой-то отклик, хотя никто из нас, включая и меня, не мог представить себе, какое волнение они вызовут, появившись в печати.
Меня мучили угрызения совести за то, что я отрывал столько времени от нашей совместной работы с Артуро. Я немного успокаивал себя тем, что виноваты в этом обстоятельства, которые ни я, ни он не могли изменить. Артуро принадлежит к числу людей, хорошо работающих во вторую половину дня и вечерами; по-настоящему он загорается часам к 3–4 дня и сидит далеко за полночь. Я работаю утром, лучше всего сразу после того, как проснусь; к двум часам дня я начинаю остывать, а после того как стемнеет, уже совершенно не могу заниматься творческой работой. Из-за этого расхождения в нашем сотрудничестве оказалось много пробелов, которые я мог заполнить только какой-то самостоятельной работой и, естественно, заполнял «Кибернетикой».
В работе над этой книгой меня еще пришпоривало случайное стечение обстоятельств: мои финансовые дела по временам принимали довольно скверный оборот, и я волей-неволей должен был отдавать всю энергию новому начинанию, ставшему краеугольным камнем моей дальнейшей карьеры. Счета сыпались со всех сторон, а я не накопил никаких богатств, чтобы компенсировать растущие расходы. Я решил сделать то, что делали многие другие писатели: писать по возможности столько, сколько нужно, чтобы заткнуть образовавшуюся брешь. Забегая немного вперед, я должен сказать, что мне это вполне удалось и, хотя писательство никогда не обещало сделать меня богатым человеком, именно «Кибернетика» положила начало моему теперешнему экономическому благополучию.
Тем временем подошел второй семестр учебного года в МТИ, и я начал готовиться к возвращению домой. Перед самым отъездом я кончил книгу и отослал ее Фрейману в Париж. С меня свалилась огромная тяжесть, и я провел оставшиеся дни, посещая Таско 8 и развлекаясь со своими мексиканскими друзьями.
В течение нескольких лет у меня на глазах развивалась катаракта; к тому времени, о котором я сейчас пишу, болезнь зашла так далеко, что начала серьезно мешать мне читать. Оставался единственный выход – удалить хрусталик обоих глаз. Операция глаза, естественно, доставляет достаточно много волнений. Но мне очень повезло, так как нашелся окулист, не только внушавший мне полное доверие, но и сумевший психологически правильно меня подготовить. В результате первая операция показалась мне менее тяжким испытанием, чем я ожидал, и, когда подошло время, у меня хватило душевных сил перенести операцию на втором глазу и несколько менее ответственных операций на обоих глазах, которые были необходимы, чтобы возвратить мне как можно больший процент зрения.
Моя близорукость и операции катаракты в значительной мере уравновесили друг друга. В конечном счете я теперь довольно сносно читаю и вижу без очков на большем расстоянии лучше, чем раньше. Правда, после операций я стал довольно чувствителен к чрезмерному свету и к длительному напряжению. Из-за этого мне пришлось изменить свои рабочие навыки, но изменения эти в некоторых отношениях оказались даже к лучшему.
Сейчас я записываю бульшую часть своих математических работ на доске, а не на бумаге, что избавляет меня от неприятной необходимости смотреть то прямо перед собой, то вдаль, для чего мне нужны бифокальные или трифокальные очки. Кроме того, я вынужден был пожертвовать привычкой самому делать записи от руки или на машинке и начал прибегать к помощи опытных секретарей, что сделало мою работу более эффективной.
Сам процесс письма для человека с моей физической неловкостью – тяжкий крест, и антипатия, которую я питал к этому занятию, отражалась на стиле того, что я писал, внося элемент раздраженности в каждую мою литературную работу. Теперь я был избавлен от всех этих неприятностей; после глазных операций я стал до такой степени человеком литературы, что раньше сам бы в это никогда не поверил.
Я всегда считал, что литература существует, по меньшей мере, столько же для уха, сколько для глаза. Возникновение этого убеждения в значительной степени связано с тем периодом моей жизни, когда в возрасте восьми дет я шесть месяцев не мог ни читать, ни писать и все, чему меня учили, вынужден был воспринимать на слух. Когда диктуешь свою работу, появляется ощущение звучания того, что пишешь, и это ощущение мне очень приятно. Я обладаю памятью значительно выше средней, и невозможность делать заметки для меня не такая уж проблема. Когда мне приходит в голову идея, требующая более подробного изложения, я диктую секретарю и мы вместе стремимся достигнуть плавности переходов от одной части к другой.
Я привык делать все изменения сразу и тоже с помощью секретаря, поэтому безличность записывающего аппарата внушает мне отвращение. Если женщина, выполняющая обязанности моего секретаря, – человек необразованный и не обладает вкусом, она не справится со своей работой; мне нужно, чтобы она была в состоянии критиковать и постоянно критиковала то, что я ей диктую, проявляя свое отношение какими-нибудь замечаниями или любым другим способом. Благодаря такому сотрудничеству возникает процесс, который, пользуясь кибернетическим словарем, я должен назвать процессом обратной связи; все его преимущества я и стараюсь использовать.
Кроме того, диктуя, я делаю долгие паузы, обдумывая, что оказать дальше; во время этих пауз я вряд ли в состоянии вспомнить, что надо выключить записывающее устройство стоящей передо мной проклятой машины, а возобновив диктовку, включить его снова.
Я показал рукопись своей книги о кибернетике руководителям МТИ и сотрудникам институтского издательства «Текнолоджи пресс». В издательстве очень, заинтересовались книгой и уверили меня, что смогут найти какой-нибудь способ опубликовать ее в Америке.
С одной стороны, это было нетрудно, так как книга, хотя и предназначалась для французской серии, была написана по-английски. Но, с другой стороны, поскольку я передал все права на ее издание Фрейману (книга была принята к изданию сейчас же по получении), прежде чем воспользоваться его матрицами для офсетной перепечатки американского издания, нужно было уладить целый ряд юридических и моральных сложностей.
Когда все вопросы были, наконец, разрешены, «Текнолоджи пресс» вместе с издательством «Джон Уайли и сыновья» приступили к публикации книги. Кстати, эти два издательства примерно в то же время вторично опубликовали «Желтую опасность».
Фрейман не очень высоко оценивал коммерческие перспективы «Кибернетики», как, впрочем, и остальные мои знакомые по обе стороны океана. Когда «Кибернетика» стала научным бестселлером, все были поражены, и я не меньше других.
Появление книги в мгновение ока превратило меня из ученого-труженика, пользующегося определенным авторитетом в своей специальной области, в нечто вроде фигуры общественного значения. Это было приятно, но имело и свои отрицательные стороны, так как отныне я был вынужден поддерживать деловые отношения с самыми разнообразными научными группами и принимать участие в движении, которое быстро приняло такой размах, что я уже не мог с ним справиться.
«Кибернетика» представляла собой новое изложение ряда вопросов, о которых я никогда раньше не писал с абсолютной уверенностью, и в то же время это было некое полное собрание моих идей. Книга появилась в неряшливом виде, так как корректуры проходили в то время, когда неприятности с глазами лишили меня возможности читать, а молодые ассистенты, которые мне помогали, отнеслись к своим обязанностям недостаточно серьезно.
После опубликования книги, которая заслужила хорошие отзывы и, как я уже говорил, пользовалась совершенно неожиданным коммерческим успехом, на меня со всех сторон посыпались заказы на более или менее популярные статьи и приглашения выступать с публичными лекциями. В течение некоторого времени я принимал все эти лестные предложения говорить и писать, в результате чего у меня появилось новое и, наверное, ложное ощущение собственной значительности.
Потом мне пришлось убедиться, что если я хочу сделать еще что-нибудь для науки и сохранить сколько-нибудь сносное здоровье, я должен беречь свои силы. В общем, чтение лекций ни в смысле денег, ни в смысле завоевания положения не компенсировало той усталости, которую оно приносило. К тому же на горьком опыте я узнал, сколько сил должен тратить лектор, чтобы защитить себя от эксплуатации.
По этим же причинам я решительно отказался давать консультации инженерам. В той области, в которой я работаю, люди, приходящие консультироваться, гораздо больше заинтересованы в моем имени, чем в моих идеях. А пытка, которой подвергается человек, чувствуя на себе любопытные взгляды целой смены инженеров какой-нибудь компании или встречаясь и вступая в общение с группой незнакомых людей, заинтересованных прежде всего в том, чтобы выжать его досуха, и занимающихся вымогательством, соблюдая все правила вежливости, – это пытка, которую инквизиторы просто забыли включить в свой репертуар.
За это время мои дочери успели кончить колледж и перейти из возрастной категории около двадцати к возрасту двадцать с небольшим. В течение нескольких лет Барбара не могла сделать выбора между научной карьерой и журналистикой. Она начала с того, что провела год в Рэдклиф-колледже, потом некоторое время занималась в МТИ. Журналистику она изучала в Бостонском университете, но, только выйдя замуж за Гордона Рейзбека, довела до конца свои занятия уже в университете Дру 9 недалеко от Мористауна в штате Нью-Джерси, где она в то время жила. В промежутке Барбара довольно много работала в области научной журналистики, выполняя различные поручения Службы науки в Вашингтоне.
Пегги поступила в Тафтс-колледж, студентом которого был и я. Она избрала своей специальностью биохимию и после окончания колледжа продолжала заниматься в аспирантуре МТИ, потом в Лондоне и в Бостонском университете. Некоторое время Пегги работала в Уорчестерском фонде экспериментальной биологии. Вскоре она вышла замуж и сейчас энергично трудится в одной фармацевтической фирме на севере штата Нью-Джерси.
Оба мои зятя – инженеры и работают в Телефонной лаборатории Белла, занимаясь проблемами, имеющими непосредственное отношение к математике, и работой, свяванной с приложениями. Таким образом, в моей собственной семье еще раз подтвердился странный генетический закон передачи математических способностей от тестя к зятю, о котором я уже говорил.
В начале 1950 года я получил приглашение приехать во Францию, чтобы прочесть курс лекций в «Коллеж де Франс» 10. Инициатором этого приглашения был Мандельбройт. После некоторых раздумий я решил, что не могу потратить целый год на чтение лекций, и отплыл во Францию только в декабре.
Мои французские друзья подыскали гостиницу в Савойе 11, где я мог отдохнуть, пока не наступила горячая пора. А горячая пора действительно приближалась, так как мне предстояло принять участие в конгрессе, посвященном быстродействующим счетным машинам и проблемам автоматизации, который должен был состояться в Париже в начале января 1951 года.
По окончании конгресса я провел несколько недель в Англии у Холдейнов. Там ко мне присоединились Маргарет и Пегги.
Мы с Маргарет тут же уехали в Париж. На несколько недель нас поместили в здании, принадлежащем Парижской обсерватории, и мы немедленно оказались втянутыми в интеллектуальную и светскую жизнь маленького кружка сотрудников.
Я получал большое удовольствие от преподавания, и в «Коллеж де Франс» ко мне относились как к одному из своих профессоров. В тот день, когда я читал лекции, а таких дней было двадцать, я заходил в маленькую комнатку, обдумывал несколько минут то, что мне предстояло сказать, расписывался в журнале и в сопровождении appariteur'a (университетского служителя) с деревянной ногой шел в лекционный зал. Я читал лекции по-французски, а если мой словарь иссякал, обращался за помощью к аудитории.
В первый же день я встретил на лекции своего старого друга. Это был французский врач, который работал в Национальном институте кардиологии в Мексике и лечил меня, когда я сильно переутомился. Он наблюдал за моим здоровьем все время, пока я жил во Франции, и мы с Маргарет часто с удовольствием проводили вечера у него в доме. С тех пор он несколько раз бывал в Америке, так что у нас была возможность расквитаться с ним за гостеприимство.
Математики в буквальном смысле слова приняли нас в свою семью. Мы часто бывали у милого старого Адамара и его жены; нам казалось, что они оба окончательно лишились признаков возраста, хотя им перевалило уже за восемьдесят. В числе знакомых, которых мы навещали, были также Фреше и Булиган.
Кроме курса в «Коллеж де Франс», я читал ряд других лекций, некоторые из них на инженерные темы, перед группой слушателей из Высшей школы инженеров связи. Кроме того, я прочел лекцию по философии почти что в цитадели экзистенциализма – в холле квартиры Сартра. Посетили мы и салон одного из профессоров философии, где со мной носились, как со знаменитостью, совсем на французский манер.
Я проводил много времени, сплетничая с Фрейманом в. задней комнате его лавки или играя в шахматы иногда в «Бар Селект» на бульваре Монпарнас, а иногда в других увеселительных заведениях Парижа. Мы часто ходили в кино и немного лучше познакомились с хорошими парижскими ресторанами и кафе.
За год до поездки во Францию я написал еще одну книгу для широкой публики. Это был популярный отчет о кибернетике с особым упором на социальные проблемы. Я назвал ее «Человеческое использование человеческих. существ» 12, впервые она была опубликована издательством «Хоутон Мифлин», а затем выпущена в дешевом издании в серии книг «Энкор Букс оф Даблдэй». Я попытался продать ее какому-нибудь парижскому издателю, чтобы она появилась также на французском языке. В конце концов мне удалось договориться с мсье Дюфэзом из издательства «Эдисьён де дё Рив».
На пасху к нам приехала Пегги, и мы всей семьей отправились в Нанси, где я должен был прочесть лекцию. Лоран Шварц и его друзья отнеслись к нам с такой же сердечностью, как и во все наши предыдущие приезды во Францию. Маргарет говорит по-французски лучше меня, а Пегги тоже оказалась на высоте и вполне могла принимать участие в наших беседах и светских развлечениях.
Весной, когда я кончил курс лекций в Париже, мы с Маргарет уехали в Мадрид. Летом предыдущего года в Кембридже (Массачусетс) состоялся Всемирный математический съезд, в работе которого я тоже принимал участие. На этот раз испанцы были со мной очень любезны, и я получил приглашение прочесть несколько лекций в Мадриде. Я пытался отказаться, говоря, что мои идеи при более близком знакомстве могут им не понравиться, но они решили, что это препятствие несерьезно.
Я принял предложение. Тем временем мой наниматель прочел кое-что из того, что я написал, и нашел, что мои взгляды слишком либеральны, чтобы их можно было с безопасностью излагать в тоталитарном государстве. Хотя я говорю по-испански не хуже, чем по-французски, он потребовал, чтобы я читал лекции на французском языке; сейчас я убежден, что это было сделано только для того, чтобы меня поняло меньшее число людей. Мне предложили говорить только об инженерных задачах и математике, не касаясь никаких политических, философских или биологических проблем.
Мы с Маргарет жили в великолепном отеле, нам оказывали самое широкое гостеприимство, но у нас все время было ощущение, что мы изолированы и что от нас умышленно хотят скрыть то, что происходит в стране. Знание испанского языка и опыт предыдущих путешествий помешали осуществлению этого плана – я часто гулял в соседнем парке и разговаривал с людьми, и мы вместе с Маргарет ездили поездом в Эскориал 13. Узнав об этой поездке, наш хозяин понял, что мы ускользнули от его надзора, и страшно рассердился, но когда один испанский знакомый пригласил нас совершить вместе с ним автомобильную экскурсию в Севилью, он рассердился еще сильнее.
Мы были рады покинуть Испанию и вернуться к свободной жизни во Франции. Часть каникул мы провели в очаровательном баскском городке Сен-Жан-де-Люз. Там я всерьез занялся работой, которую начал еще в Америке и продолжал в Париже и Мадриде, – писал предыдущий том автобиографии, опубликованный под заглавием «Бывший вундеркинд». Мне приходилось заново переживать свое суровое детство вундеркинда. Работа требовала громадного внутреннего напряжения, но в то же время самый процесс создания книги был наилучшей психотерапией, которую только можно было придумать по этому поводу.
Возвращение домой натолкнулось на какие-то трудности, и мы уехали в Париж, чтобы выяснить, в чем дело, и заодно разрешить некоторые другие важные вопросы. В Париже мы остановились в очаровательном отеле на берегу Сены около церкви Сен-Жермен. Потом мы вернулись в Савойю, чтобы отдохнуть перед возвращением в Штаты.
Один из врачей в савойском городке, где мы жили, оказался отцом нашего друга – врача из Парижа. К концу пребывания в Савойе переутомление, вызванное чтением лекций и работой над книгой, заставило меня слечь с мучительной головной болью; мне даже пришлось провести некоторое время в Женевской кантональной больнице. Тем временем мой друг из Парижа написал своему отцу, порекомендовав соответствующий курс лечения, и благодаря его помощи я скоро поправился. Несмотря на это, путешествие в Геную, где мы должны были сесть на пароход, обратилось в сплошную муку, и когда мы добрались до порта, меня пришлось поручить заботам пароходного врача. Врач продолжил начатый курс лечения, и к моменту возвращения домой я был вполне здоров, хотя чувствовал смертельную усталость.
Мы с Маргарет почти сразу же уехали в Мексику на торжества, посвященные четырехсотлетию университета. По этому случаю университет раздавал почетные звания, и я тоже получил одно из них. Мексиканские празднества доставляют большое удовольствие, но они насыщены до предела, и после двух недель различных церемоний я был совершенно измотан. Тем не менее до самого возвращения в США в январе 1952 года я продолжал работать с Артуро.
Еще до поездки в Мексику индийские математики начали переговоры о том, чтобы я приехал в Индию прочесть курс лекций. В рождественские каникулы 1953 года я почувствовал, наконец, что могу принять это приглашение.
Примечания переводчика
1. Кондитерской (франц.).
2. Вулкан на юго-востоке Мексики.
3. Гора к северу от вулкана Попокатепетля.
4. В соответствии (франц.).
5. Кьеркегор Сёрен (1813–1855) – датский философ.
6. Персонаж книги Льюиса Кэрролла «Алиса в Зазеркалье».
7. Главная героиня нескольких романов американской писательницы Элеоноры Портер (1868–1920), отличающаяся неизменной бодростью и жизнерадостностью.
8. Город недалеко от Мехико, известный своими художественными ремесленными изделиями.
9. Университет в г. Медисоне (штат Нью-Джерси).
10. Один из крупнейших научных институтов Франции.
11. Область на юго востоке Франции, граничащая с Италией.
12. Полное название книги: «Cybernetics and society. The human use of human beings»; в русском переводе эта книга называется «Кибернетика и общество», Москва, ИЛ, 1958.
13. Ансамбль зданий в 27 км от Мадрида, воздвигнутый между 1563 и 1584 гг. в честь святого Лаврентия.