Задача. Каждое ребро призмы ABCA1B1С1 равно 2.
Точки М и N – середины ребер АВ и A1А. Найти расстояние от точки М до прямой CN, если известно, что угол A1AС paвeн 60° и прямые A1A и АВ перпендикулярны.
Решение.
Рассмотрим базис, состоящий из векторов , , и составим таблицу умножения для этих векторов.
* |
а |
b |
с |
а |
4 |
0 |
2 |
b |
0 |
4 |
2 |
с |
2 |
2 |
4 |
Расстояние от точки М до прямой CN равно расстоянию от точки М до её проекции на прямую CN.
Пусть Р – проекция точки М на прямую CN.
Тогда
для некоторого числа х.
Так как и ,
Поскольку прямые и перпендикулярны, то т.е.
.
Раскрывая скобки и пользуясь таблицей умножения для нашего базиса, получаем: .
Тогда .
Искомое расстояние равно
Снова раскрывая скобки и пользуясь таблицей умножения, находим . Таким образом, расстояние от точки М до прямой равно .
Ответ : расстояние равно .
у 6
Задача. В параллелограмма ABCD точка К – середина стороны ВС, а точка М – середина стороны CD. Найдите AD, если АК = 6, АМ = 3, угол КАМ = 60°.
Решение.
В качестве базиса выберем векторы и и составим таблицу умножения для векторов этого базиса.
* |
k |
m |
k |
36 |
9 |
m |
9 |
9 |
По формуле треугольника и .
Так как X – середина ВС, М – середина CD, то и , и получаем систему:
, откуда
Ответ: 4.
Задача. Ребра СА, СВ, СС, треугольной призмы ABCA1В1С1 равны, соответственно 2, 3 и 4 образуют между собой углы ACB = 90°, ACС1 = 45° и BCC1 = 60°. Найдите объём призмы.
Решение.
Пусть отрезок С1О является высотой данной призмы. Тогда
Для того, чтобы найти высоту С1О, выберем в качестве базиса векторы
и составим
таблицу умножения.
* |
|||
4 |
0 |
||
0 |
9 |
6 |
|
6 |
16 |
Разложим вектор C1O по векторам . Получим: , где , а .
Таким образом .
Коэффициенты х, у находим из условий перпендикулярности вектора C1O с векторами .
.
Следовательно,
Значит С1О =
Тогда V = 3·C1O = 3·2 = 6
Ответ: 6.
С помощью векторов можно решать не только геометрические задачи, но и доказывать алгебраические неравенства.
I. Доказать неравенство
Доказательство:
Рассмотрим векторы и .
Их скалярное произведение
Так как , , то, учитывая неравенство , получим .
II. Докажем, что для любых неотрицательных чисел a, b, c справедливо неравенство:
Доказательство:
Рассмотрим векторы и . Их скалярное произведение: , а длины и . Отсюда, учитывая неравенство , получаем
.