§6.2. Конгруэнтность треугольников
Определение 18.7. Если треугольник АВС называется конгруэнтным треугольнику А1В1С1, если
,
.
Обозначение: – треугольник АВС называется конгруэнтным треугольнику А1В1С1.
Теорема 18.9. Если , то .
Доказательство:
Имеем:
, (1)
(2)
По условию теоремы .
Отсюда и из равенств (1) и (2) следует, что , то есть
Аналогично устанавливается и соотношения , . Отсюда .
Теорема 18.10. Если и
то .
Доказательство:
На основании теоремы 18.5. имеем:
,
.
Отсюда, учитывая условия теоремы, получим , то есть .
На основании предыдущей теоремы .
Теорема 18.11. Если , и , .
Доказательство:
Если , то доказанному выше . Если , то отложим на луче [АС) от точки А отрезок [А1С1] (рис.):
. Тогда на основании предыдущей теоремы . Из конгруэнтности этих треугольников следует, что . Имеем: на луче [ВА) в полуплоскости, содержащей точку С, отложены два угла (различных) и , конгруэнтных одному и тому же углу . Последнее противоречит теореме 18.4., следовательно и .