4 Выбор устройств памяти

Одним из основных элементов современных микроЭВМ являются запоминающие устройства (ЗУ), которые во многом определяют их производительность. Необходимость в запоминании некоторых объёмов информации вызвала создание интегральных схем, состоящих из различного числа запоминающих элементов. В настоящее время наиболее широкое распространение получили полупроводниковые ЗУ, благодаря своей технологичности, надежности, малым габаритным размерам и массе. По функциональному назначению полупроводниковые ЗУ делятся на оперативные (ОЗУ) и постоянные (ПЗУ).

4.1 Оперативное запоминающее устройство

Оперативные ЗУ предназначены для хранения переменной информации и имеют практически одинаковое быстродействие при считывании и записи. По способу хранения информации ОЗУ делятся на два основных типа: статические и динамические. Статические запоминающие элементы могут хранить информацию сколь угодно долго, пока подается электропитание. Динамические запоминающие элементы, напротив, способны хранить информацию только непродолжительное время. Поэтому для хранения информации её нужно периодически обновлять, или, другими словами регенерировать. Для обоих типов оперативных ЗУ существует множество различных схем. Их разнообразие отражает не только множество технологий (ТТЛ, n-МОП, КМОП, ЭСЛ и т.д.) и конструкций, но ещё и разнообразие требований, предъявляемым к модулям памяти в отношении быстродействия, ёмкости, плотности упаковки элементов и потребляемой мощности.

Статические ЗУ с произвольной выборкой (Random Access Memory) строятся на триггерах с непосредственными связями, которые могут неограниченно долго хранить информацию при включенном питании. Эти ОЗУ очень просты в эксплуатации, обладают высокой помехоустойчивостью, не требуют дорогих и сложных схем обслуживания, благодаря чему достигается умеренная стоимость всей системы памяти. При интегральной реализации статических ОЗУ используются два вида запоминающих матриц: накопители повышенного быстродействия (время цикла менее 100 нс) без схем дешифрации со средней степенью интеграции в БИС (до 256 бит); накопители среднего быстродействия (время цикла 300-1000 нс) с повышенной информационной ёмкостью от 256 до 16384 бит со схемами дешифрации.

Статические ОЗУ в зависимости от принципа построения накопителя имеют словарную или матричную организацию. При словарной организации ОЗУ обращение производится одновременно к запоминающим элементам нескольких разрядов, соответствующих некоторой части слова или всего слова. Основными достоинствами ОЗУ со словарной организацией является простота базовой ячейки,  и минимальное число шин управления, необходимых для реализации накопителя. Важное значение имеет также и то обстоятельство, что при словарной организации матрицы БИС в виде m одноразрядных слов удается обеспечить минимальную мощность рассеяния в режиме записи и считывания.

Обобщенная структура БИС со словарной организацией матрицы приведена на рисунке 4.1. Код адреса n-разрядного слова подается на адресный дешифратор, который выбирает нужное слово. Адресный усилитель возбуждает соответствующую словарную шину и слово, код которого поступает на входные разрядные шины, записывается в выбранную строку матрицы согласно коду адреса. Аналогично, с помощью разрядных усилителей производится считывание выбранного слова в выходной регистр.

При матричной организации БИС возможно обращение к любому ЗЭ накопителя независимо от других элементов, расположенных на той же

БИС. Микросхемы с матричной организацией называют также ОЗУ с разрядной организацией или с двухкоординатной выборкой.

Обобщенная структурная схема БИС ОЗУ с матричной организацией приведена на рисунке 4.2. Код адреса ячейки поступает на адресные дешифраторы, которые выбирают в накопителе нужную строку и столбец. Выборка ячейки происходит по принципу совпадения сигналов возбуждения соответствующих шин по двум координатам. При матричной организации ОЗУ часто используется метод выборки столбца с помощью селектора данных. Для чтения по линиям , соответствующим столбцам, содержимое всех элементов строки посылается в селектор, который выбирает бит одного столбца в соответствии с заданным адресом и выдает этот бит на выходную линию данных. Специальные схемы в запоминающем элементе осуществляют как доминирование поступающего извне значения, так и сохранение этого значения в ЗЭ выбранной строки.

При разработке ОЗУ большой ёмкости (≥16 Кбит) применяется микросхемы ОЗУ динамического типа, в которых увеличение ёмкости достигается за счет уменьшения числа элементов и как следствие уменьшение занимаемой площади. Уменьшение числа элементов происходит при использовании динамических запоминающих ячеек, в которых информация хранится в виде заряда соответствующих ёмкостей. Ток утечки обратно смещенного p-n перехода имеет значение не более 10-10 А, а ёмкость накопительного конденсатора не превышает 0,1-0,2 пФ, следовательно постоянная времени разряда конденсатора t≥1 мс. Поэтому для выдачи состояния низкого или высокого уровня сигнала на выходе БИС необходимо осуществлять периодическое восстановление информации (или её регенерацию) с периодом tREF ≤1÷2 мс.

Таким образом, главные отличия динамических устройств памяти от статических заключаются в следующем: отсутствует источник питания запоминающих ячеек; необходимы логические схемы, обеспечивающие регенерацию ячеек; обрамление требует более сложных схем; максимальная простота схемы накопителя, для обеспечения минимально занимаемой площади; меньшая потребляемая мощность.

Итак, проведя сравнительный анализ принципов работы и основных характеристик статических и динамических устройств памяти [11] выберем ОЗУ статического типа со словарной организацией К537РУ10, условное обозначение которой и наименование выводов показаны на рисунке 4.3. Данная ИМС содержит матрицу запоминающих элементов 128×128 М, представляющую собой

накопитель ёмкостью 16384 бит (16 Кбит), дешифраторы адреса строк (DCK) и столбцов (DCS), блок управления СИ, адресные и выходные формирователи и разрядные усилители записи-считывания. Режим работы устанавливается с помощью сигналов CS, OE, WE.

4.2 Постоянное запоминающее устройство (ПЗУ)

В настоящее время разработаны и выпускаются ПЗУ нескольких типов:

·               ПЗУ масочного типа;

·               программируемые ПЗУ;

·               электрически программируемые ПЗУ;

·               электрически программируемые ПЗУ с ультрафиолетовым стиранием.

Масочные ПЗУ – микросхемы, в которых информация записывается при изготовлении с фиксированным рисунком межсоединений, определяемым маской (шаблоном). В ПЗУ запоминающие элементы объединены в двухкоординатную матрицу, образованную при пересечении совокупности входных (чисел) и выходных (разрядов) информационных шин. В местах пересечений шин могут быть включены диоды, биполярные транзисторы и МОП-транзисторы. Наибольшее распространение получили ПЗУ на МОП-транзисторах ввиду технологической простоты и связанной с этим возможностью получения высокой степени интеграции, а так же малой потребляемой мощностью. Запись информации в масочное ПЗУ производится с помощью сменного заказного фотошаблона. Документом, определяющим хранимую в накопителе информацию, является карта заказа на данную микросхему. Изготовление маски довольно дорого, но с помощью одной маски можно запрограммировать любое число модулей памяти. Следовательно, масочные ПЗУ рентабельны при крупносерийном производстве.

Постоянные запоминающие устройства, допускающие однократное программирование у заказчика – это микросхемы, в которых состояние ячеек можно задать уже после изготовления устройства (создав либо разрушив перемычки). Наибольшее распространение получили перемычки в виде плавких вставок (например из нихрома или поликремния), которые можно избирательно пережечь, с помощью внешнего источника тока. Накопитель ППЗУ представляет собой матрицу на биполярных транзисторах с плавкими перемычками, включенными последовательно с эмиттерами транзисторов, т.е функциональная схема БИС ППЗУ аналогична схеме масочного ПЗУ.

Программирование БИС ППЗУ разных серий производится на специальных устройствах-программаторах. В табл.1 приведены некоторые типы отечественных программаторов

Постоянные запоминающие устройства, допускающие многократное программирование и сохраняющие информацию при отключении питания (Errasеble-Programmable-Read-Only-Memory – стираемая программируемая память только со считыванием) – микросхемы, использующие элементы коммутации, которые можно устанавливать в одно (замкнутое) состояние избирательно, а в другое (разомкнутое) – коллективно.

Программирование таких ПЗУ сводится сначала к коллективной установке всех перемычек в одно состояние, что равносильно стиранию ранее записанной информации и последующей поочередной установки нужных перемычек в другое состояние.

Электрически программируемые ПЗУ характеризуются сочетанием положительных качеств ПЗУ – энергонезависимым хранением информации и высокой удельной плотностью её записи с возможной многократной сменой информации, как в ОЗУ.

Микросхемы со стиранием ультрафиолетом представляют собой РПЗУ на основе лавинно-инжекционных  МОП-транзисторов с плавающим затвором, в которых запись информации осуществляется электрическим способом, а для стирания информации требуется облучение ультрафиолетовым излучением.

Ячейка памяти (запоминающий элемент) накопителя – это МОП-транзистор с двумя расположенными друг над другом затворами (рисунок 4.4).

Отличие работы такого транзистора от обычного транзистора заключается в том, что его пороговое напряжение по верхнему затвору (получившему название управляющего), а следовательно и вся вольт-амперная характеристика могут изменяться в зависимости от накопленного заряда на нижнем затворе. Нижний затвор получил название "плавающего затвора", так, как он со всех сторон окружен окислом и не имеет электрического контакта с другими элементами схемы. При операции записи на управляющий затвор и сток элемента памяти подается высокое напряжение (порядка 25 вольт). Электроны под действием поля в канале приобретают большую энергию, «выбрасываются» в окисел и под действием поля управляющего затвора дрейфуют на плавающий затвор, где и накапливаются.

После программирования микросхемы у всех запрограммированных ячеек памяти пороговое напряжение по управляющему затвору сдвигается на 10-12 вольт за счет экранирования канала зарядом плавающего затвора и лежат в пределах 14-16 вольт. Такой сдвиг порогового напряжения ячейки возможен при длительности программирования ячейки памяти порядка 100-300 мс.

В режиме считывания на управляющий затвор подается напряжение не больше 10 вольт, что значительно ниже указанного выше порогового напряжения. запрограммированного элемента памяти. В данном случае транзистор не проводит ток.

Время хранения информации в ячейке памяти определяется временем теплового растекания (растекания под действием собственного поля заряда, накопленного на плавающем затворе и поля управляющего затвора в режиме считывания). Растекание заряда определяется качеством окисла, изолирующего плавающий затвор.

Стирание информации осуществляется ультрафиолетовым излучением с длиной волны менее 400 нм. При взаимодействии квантов ультрафиолетового излучения с электронами на плавающем затворе энергия квантов передается электронам, которые, преодолевая потенциальный барьер, уходят в подложку кристалла

Необходимо отметить, что ПЗУ с УФ-стиранием наиболее оптимально подходят для применения в аппаратуре, выпускаемой небольшими партиями или единичным производством.

Итак, сравнительный анализ принципов работы и основных характеристик различных типов ПЗУ [11] показал, что наиболее оптимальным для применения в разрабатываемом микропроцессорном блоке являются ПЗУ с ультрафиолетовым стиранием типа К573РФ2, основные параметры и условно-графическое обозначение которой приведены ниже.

Ток потребления, мА:

        ICC                                                                               £100

        IWE                                                                               £5

Выходное напряжение низкого уровня

        при IOL=1,6 мА UOL, В                                               £0,45

Выходное напряжение высокого уровня

        при IOH=200 мкА UOH, В                                           ³2,4

Время выборки адреса, tAA, нс                                         ³450

Число циклов программирования NC                                      £100

Время хранения информации, ч:

        при включенном питании tH1                                    £25000

        при выключенном питании tH2                                  £25000

Напряжение питания, В

        UCC1                                                                            5±0,25

        UCC2                                                                            12±0,6

Емкость, Кбит (Кбайт)                                                      16 (2)

Микросхемы серии К573 имеют ряд особенностей:

Информация считывается в том же коде, в каком записывается.

Выводы микросхем могут находиться в трех состояниях: с низким уровнем напряжения, с высоким уровнем напряжения, и высокоимпендансном состоянии.