Математические модели в естествознании
Частоты гаметA
a;
;Таким образом, частоты гамет не меняются от поколения к поколению. Дальнейшее скрещивание не меняет и частоту зигот.
Второе поколение
Генотипы Частоты генотипов
AA
Aa ;
aa
Частоты зигот устанавливаются в первом поколении и больше не меняются.
Закон Харди-Вайнберга состоит из следующих двух утверждений.
1. Частоты гамет (аллелей) не меняются от поколения к поколению.
2. Равновесные частоты генотипов достигаются за одно поколение. В популяции поддерживается соотношение между гомозиготными и гетерозиготными организмами:
.
Закон Харди-Вайнберга распространяется на любое число аллелей . Очевидно, что число гомозигот суть m, а гетерозигот . Общее число зигот будет . Рассуждения для многоаллельного случая полностью аналогичны предыдущему.
Нулевое поколение
Генотипы Частоты генотипов
Гаметы Частоты гамет
Первое поколение
Генотипы Частоты генотипов
Гаметы Частоты гамет
;Таким образом, частоты гамет не меняются от поколения к поколению. Дальнейшее скрещивание не меняет и частоту зигот.
Второе поколение
Генотипы Частоты генотипов
Для всех последующих поколений частоты генотипов остаются такими же: , . Это и есть закон Харди -Вайнберга для полиаллельного локуса.
Обсудим некоторые аспекты закона Харди -Вайнберга. В случае доминирования аллеля A над a наблюдаются лишь фенотипы {AA, Aa}, {a,a}. В силу закона Харди -Вайнберга их вероятности равны
где -частота рецессивного аллеля a.
Если рецессивный аллель -редкий (), то соответствующий фенотип наблюдается еще реже. Частота наблюдения альбиносов (генотип aa, он же - фенотип) . Это - экспериментальный факт. В силу закона Харди -Вайнберга, скрытые носители рецессивного аллеля (генотип Aa) встречаются гораздо чаще:
.
Если доминантный аллель является редким: , то частота его проявления примерно вдвое больше:
.
;Интересная ситуация складывается сейчас в человеческой популяции. Существуют рецессивные летальные аллели (генотип aa нежизнеспособен). Примером может служить наследственная болезнь фенилкотонурия (ФКУ). Сейчас найдены способы ее лечения. Выздоровевшие люди могут давать потомство и передавать ему аллель ФКУ. Тем самым частота летальных генов будет возрастать.
Сделаем некоторые замечания о математических аспектах закона Харди -Вайнберга. Обозначим частоты генотипов AA, Aa, aa через . Здесь и
.
Эти соотношения выделяют в трехмерном пространстве треугольник. В следующем поколении частоты выражаются через частоты по формулам:
(1)
Формулы задают отображение треугольника в себя, которое назовем оператором эволюции и обозначим через V. Закон Харди -Вайнберга означает, что
. (2)
Эта формула отражает принцип стационарности, который С.Н. Бернштейн возвел в ранг закона.
Основная проблема, которой занимался С.Н. Бернштейн, - выявление всех законов наследования, подчиненных закону стационарности. Он дал ее полное решение для популяций, состоящих из трех генотипов, а также изучил некоторые случаи большего числа генотипов. Среди них пример популяции с m -аллельным геном. Пусть его аллели . Генотипы популяции: , при этом . Обозначим частоты генотипов в текущем поколении через . Неотрицательные числа очевидно удовлетворяют соотношению:
.
Пусть частоты генотипов в следующем поколении. Оператор эволюции имеет следующий вид:
.
Из закона Харди -Вайнберга для полиаллельных популяций следует, что для данного эволюционного оператора также выполнен принцип стационарности (2).
В одной из работ С.Н. Бернштейна рассматривался так называемый кадрильный закон наследования, генетическая интерпретация которого принадлежит Ю.И. Любичу. Введем два вида "женских " X, x и два вида "мужских" ген Y, y. Будем считать, что могут существовать лишь четыре генотипа: XY, xy, Xy, xY, которым присвоим номера 1, 2, 3, 4. Остальные мыслимые комбинации генов запретим. Частоты генотипов в нулевом поколении обозначим через , а в следующем -через . Поскольку при образовании зиготы объединяется одна женская и одна мужская гаметы, то следует говорить о частотах гамет X и x среди женских и о частотах гамет Y и y среди мужских. Частоты женских гамет в нулевом поколении:
, .
Частоты мужских гамет:
.
Частоты генотипов в первом поколении:
.
Отсюда получаем:
Данное отображение и изучал С.Н. Бернштейн. Частоты генов в первом поколении
(аналогично для других частот), т.е. сохраняются.
С.Н. Бернштейн показал неизбежность концепции гена в условиях Менделя. Сформулируем этот результат. Обозначим через вероятность появления потомка у родителей и . Генотип называется исчезающим, если появление потомка у любой пары родителей равно нулю.
Теорема. Если в трехмерной популяции
все генотипы не исчезающие и , (при скрещивании первого со вторым получается только третий), то популяция менделевская.
Вернемся еще раз к вопросу о группах крови. В 1925 г. Ф. Бернштейн выдвинул гипотезу, что группа крови определяется тремя аллелями A, B, O одного локуса с доминированием A и B над O (в случае присутствия A и B доминантность отсутствует). Фенотипы: {AB}, {AO, AA}, {BO, BB}, {OO}. Согласно закону Харди -Вайнберга для одного трехаллельного локуса имеем:
откуда вытекает соотношение:
Для населения Японии известны следующие статистические данные: . Экспериментальное значение величины , что хорошо согласуется со статистическим прогнозом. Данное обстоятельство можно интерпретировать в пользу гипотезы.
ИнбридингЗакон Харди -Вайнберга действует только тогда, когда скрещивание случайно, т.е. вероятность скрещивания между двумя генотипами равна произведению их частот. В тех случаях, когда скрещивание неслучайно, имеет место ассортивное, или предпочтительное скрещивание. Особи с