Лекции по Математическому анализу

ф-ях.

Теорема Ферма: Пусть дифф. на и наибольшее или наименьшее ее значение в т. х0 , тогда производная в этой точке равна нулю.

**************************


Доказательство:

Пусть - наибольшее на

Но из дифф в т. х0


Zm: Из доказательства т. Ферма следует: Пусть непрерывна на промежутке и внутренних точках этого промежутка принимает наибольшее и наименьшее значение, тогда если в этой точке ф-ия дифф., то .


Теорема Ролля: Пусть ф-ия :

  1. непрерывна на

  2. дифф. на

  3. Принимает на концах этого отрезка одинаковые значения.

Тогда на существует т. х0 , в которой

*************

Доказательство:

Из непрерывности ф-ии на отрезке следует, что имеет на этом отрезке свои наименьшее(m) и наибольшее(M) значения.

Возьмем два случая:

  1. m=M ; наименьшее значение совпадает с х0 следовательно:

  2. ; из (3) следует: ***********


Dh: Между двумя корнями ф-ии есть точка производной.


Теорема Лагранжа: Пусть ф-ия непрерывна на промежутке , дифф. на, тогда на существует такая х0 такая, что верна формула:

Если ее переписать в виде

**************************

Доказательство:

Рассмотрим вспомогательную ф-ию .

  1. Она непрерывна на как сумма непрерывных ф-ий.

  2. F(x) – дифф. на как сумма дифф. на интервале ф-ий.

  3. F(а) = 0; F(b) = 0

Sl: Пусть ф-ия дифф. на , тогда для любой внутренней точки интервала справедлива формула Лагранжа:


х0 между


Действительно ***************


Из дифф. ф-ии на следует ее непрерывность на


Теорема Коши: Пусть и :

  1. Непрерывны на .

  2. Дифф. на

Тогда на существует т. х0 , для которой справедлива формула Коши:

Доказывается как теорема Лагранжа.


Приложение производной к исследованию ф-ий.

1. Исследование на монотонность.

Пусть дифф. на , тогда справедливо:

  • Ф-ия возрастает на на .

  • Ф-ия не убывает на на .

  • Ф-ия постоянна на на .

  • Ф-ия не возрастает на на .

  • Ф-ия убывает на на .

2. Исследование на экстремум.

Df: т. х0 называется точкой локального минимума, если ф-ия непрерывна в этой точке и существует такая окрестность х0 , что для любого х

**************************


Исследование ф-ии на выпуклость графика.


**************************

Df: График ф-ии на направлен выпуклостью вниз (вогнутый), если он расположен выше касательной, проведенной в любой точке , а график ф-ии - выпуклый, если он расположен ниже касательной, проведенной в любой точке .

Df2: Точка х0 , в которой непрерывна, называется точкой перегиба, если она отделяет интервал выпуклости от интервала вогнутости.

Достаточные условия выпуклости ф-ии на интервале.

Пусть ф-ия дважды дифф. на и сохраняет на нем свой знак, то:

  1. , то график на- вогнутый.

  2. , то график на- выпуклый.

Асимптоты графика ф-ии.

В некоторых случаях, когда график ф-ии имеет бесконечные ветви, оказывается, что при удалении точки вдоль ветви к бесконечности, она неограниченно стремится к некоторой прямой. Такие прямые называют асимптотами.

.Вертикальные асимптоты – прямая называется вертикальной асимптотой графика ф-ии в точке b , если хотя бы один из разносторонних пределов равен бесконечности.

Если ф-ия задана дробно-рациональным выражением, то вертикальная асимптота появляется в тех точках, когда знаменатель равен нулю, а числитель не равен нулю.

********************

Наклонная асимптота – прямая наклонная асимптота ф-ии , если эта ф-ия представлена в виде

Необходимый и достаточный признак существования наклонной асимптоты:

Для существования наклонной асимптоты к графику ф-ии необходимо и достаточно существование конечных пределов:

Доказательство: Пусть:

Пусть:

Следовательно существует асимптота.


Общая схема исследования ф-ий

  1. По ф-ии

    1. D(f)

    2. E(f)

    3. Непрерывность в области определения

    4. Четность, нечетность.

    5. Переодичность

    6. Асимптоты

  2. По первой производной

    1. Экстремумы

    2. Интервалы монотонности

  3. По второй производной

    1. Интервалы выпуклостей

    2. Точки перегиба

  4. Построение графика ф-ии.


Приложение производной к вычислению пределов.

(Правило Лопиталя).

Пусть:

  1. Ф-ии и дифф. в проколотой окрестности точки х0

то справедливо:


Доказательство:

1. Доопределим ф-ии и в точке х0 так, чтобы они стали непрерывными, т.е. ф-ия непрерывна на всей окрестности

2.применим т.Коши на интервале или

, где ζ лежит между х и х0 следовательно

Zm:Если производная ф-ии удовлетворяет правилу Лопиталя, то можно вычислять последнюю несколько раз (2,3,4…), пока она удовлетворяет условию.Правило Лопиталя применимо, когда x0 – бесконечно удаленная точка.


Дифференциал ф-ии.

Из Df дифференцируемости следует, что приращение дифф. ф-ии можно представить в виде

Из равенства нулю предела следует, что - б.м. более высшего порядка малости, чем , и

Поскольку - б.м. одного порядка малости.

- б.м. одного порядка малости - б.м. эквивылентные, т.е.

Пусть


**************


Zm1: и х – независимые переменные, т.е.

Zm1: для независимых переменных.


Свойства дифференциала:


Дифференцирование сложных ф-ий. Инвариантность в форме дифференциала


Интегрирование с помощью подстановки.

Пусть подынтегральная ф-ия в интеграле непрерывна на Х и ф-ия дифф. на промежутке Т и имеет на нем обратную ф-ию с на промежутке Х , тогда справедливо:


Алгоритм интегрирования подстановкой.

  1. Для интеграла подынтегральная ф-ия такая, что является табличным или сводится к нему так, что легко находится .

  2. Нах. обратную ф-ию и подставляем в , которая и будет первообразной для исходного интеграла.


Алгоритм:

  1. Часть подынтегрального выражения вводится под знак дифференциала и полученное выражение под знаком дифференциала обозначается как новая переменная.

  2. В подынтегральной ф-ии делается замена переменной на новую, находится от новой переменной.

  3. В возвращ. к старой переменной.


Интегрирование по частям.

Интегрирую выражение любого дифференциала произведения, получим:


Пример:

Рекомендации:

В интегралах с подынтегральным выражением вида:

(Pn –многочлен степени n )

Pn принимается за u


В интегралах с подынтегральным выражением вида:

за u

Интегрирование с подстановкой выражений вида после двукратного интегрирования по частям приводится к линейному уравнению относительно вычисляемого интеграла.


Интегрирование дробно-рациональных выражений

Df Дробно-рациональная ф-ия - отношение 2х многочленов - многочлены степени n и m соответственно.

Рациональная дробь правильная, если степень числителя строго меньше степени знаменателя, обратно - неправильная.


Zm Неправильная рациональная дробь путем выделения целой части приводится к сумме многочлена и правильной рациональной дроби; многочлен называется целой частью неправильной дроби.


Простейшие (элементарные) рациональные дроби и их применение.

К простым рациональным дробям относятся рациональные дроби типов:

- вещественные постоянные

2.- вещественные постоянные,

3.

4.


Интегрирование 1го типа:


Интегрирование 2го типа:


Интегрирование 3го типа:

проводится в два этапа:

1. В числителе выделяется дифференциал знаменателя:

2. Выделение полного квадрата в знаменателе второго интеграла.


Интегрирование 4го типа:

1. Выделяем в числителе *** знаменателя:

Выделяем в знаменателе 2го интеграла ф-лы квадрата:

Рекуррентная формула для вычисления Jm (вычисление происходит путем подстановки в известную форму)




Метод неопределенных коэффициентов.

1. Разложим знаменатель на множители:

2. Правильная дробь разлагается в сумму простейших и каждому множителю вида соотв. сумма из n простейших дробей вида:

с неопределенным коэф. A1n

Каждому множителю вида соот. сумма из m простейших дробей вида:

с неопределенным коэф.B1 C1


3. Неизвестный коэф. находится методом неопределенных коэф., основанном на: определении, что 2 многочлена тождественно совпадают, если у них равные коэффициенты при одинаковых степенях.

4. Приравнивая коэф. при одинаковых степенях в левой и правой частях, получим систему линейных уравнений относительно неизвестного уравнения.


Определенный интеграл


Задача, приводящая к понятию определенного интеграла.

Вычисление площади криволинейной трапеции:

Df. Криволинейная трапеция – фигура на площади, ограниченной линиями с уравнениями

1. Отрезок разобьем на n частей:

*********

Длина каждого отрезка

2. Т.к. - непрерывна на , то она непрерывна на каждом частичном отрезке, принад. ****

3. Впишем в трапецию мн-к, состоящий из пр-в с основаниями, совпадающими с частичными отрезками и высотой mi

Суммируем площади пр-в – получаем площадь трапеции.

Меняя n , получаем числовую последовательность площадей, вписанных в многоугольник.

**********


4. Опишем около трапеции многоугольник


**********************************


Необходимое условие существование определенного интеграла.

Df. Пусть существует интеграл подынтегральная ф-ия ограничена на

Доказательство:

Пусть - неограниченна на , то при любом разбиении этого отрезка она неограниченна на каком-то из частичных отрезков ***на частичном отрезке, мы можем сделать значение ф-ии в т. сколь угодно большим по модулю интегральная сумма, соотв. этому прозв. разб. будет неограниченна не имеет предела противоречит условию ф-ия ограничена на


Некоторые классы интегральных ф-ий.

Df. Любая ф-ия, для которой существует определенный интеграл на , интегрируема на этом промежутке.

Множество таких ф-ий обозначают

К интегрируемым на ф-иям относятся:

  1. Ф-ии, непрерывные на

  2. Монотонные на

  3. Имеющие на отрезке конечное или счетное мн-во точек разрыва 1-го рода.

Свойства определенного интеграла.

Df. Промежуток с гранич. т. A и B ориентированным, если указано направление перехода от т. A к т. B.

1. Пусть сущ. определенный интеграл сущ. определенный интеграл и справедливо равенство


2.

Док-во:


3. Свойство линейности определенного интеграла:

1. Пустьф-ииинтегрируемы на ***

2. Пусть , то для любой произвольной постоянной - справедлива формула

4. Аддитивность определенного интеграла:

Пусть ф-ия интегрируема на большем их трех помежутков , тогда она интегрируема на обоих меньших промежутках и справедлива формула:


Свойство монотонности.

1. Пусть ф-ия неотрицательна на и интегрируема на нем,

Док-во: В силу н-ва для ф-ий любая интегрируема ф-ия неотрицательна любая последовательность интегрируемых сумм будет иметь неотрицательный предел интеграл будет неотрицательным.

2. Пусть ф-ия на , искл. конечн. точек, и интегрируема на , тогда

Док-во: Из интегрируемости следует, что предел не зависит от выбора разбиения на . Достаточно строить инт. разбиения так, чтобы точки, в которых ф-ия равна нулю, являлись точками разбиения. А следовательно в силу аддитивности интеграл по всему прмежутку равен сумме интегралов по частичным промежуткам, т.к ****

Df Две ф-ии , заданные на , значения которых различны на лишь в конечном ч. точек называются эквивалентными на этом отрезке.


3. Инт. от эквивалентных ф-ий совп.

Пусть эквивалентны и интегрируемы на , тогда (они не совпадают а интегралы совпадают).

Д-во:

на лишь в конеч. ч. точек отр. , следовательно по 2му

4. Пусть на , кроме конечного ч. точек, инт. на , , то