Конспект лекций и ответы на экзаменационные вопросы по предмету Термическая Обработка

твердостью, прочностью, сопротивлением ударным нагрузкам, износостойкостью. Они предназначены для длительной работы с постоянным воздействием ударных нагрузок. Основные стали: 40Х6С (800є С), 40Х7С6М (850є С), 40Х9С2 (900є С), 40Х10С2М (950є С), 30Х13Н7СМ (1100є С).

Термообработка: закалка + высокий отпуск.

Жаростойкие стали аустенитного класса.

Основные стали: 08Х18Н10Т (700є С), 08Х22Н20С2 (1100є С), 08Х28Н20 (1100-1150є С). Если требуется достичь температур 1100-1200є С, то используют нихромы (Ni-Cr): ХН80, ХН78Т.


Жаропрочность сталей и сплавов.

Под жаропрочностью понимают способность металла сопротивляться нагрузкам при повышенных температурах. Жаропрочность оценивается двумя показателями:

1. Предел длительной прочности, т.е. способность металла без разрушения выдерживать нагрузки при заданной температуре.

такая запись показывает, что данный сплав гарантированно без разрушения в течение 100 часов при температуре 700є С выдерживает нагрузку 50 мПа.

2. Предел ползучести.

Предел ползучести показывает, что данный металл или сплав при температуре 750є С под нагрузкой 100 мПа в течение 1000 часов изменит свои размеры не более, чем 0,1%. Основной механизм пластической деформации при высоких температурах – это диффузионная пластичность, т.е. последовательное перемещение атомов кристаллической решетки в направлении прикладываемой нагрузки. Наиболее энергично диффузия развивается при наличии дефектов кристаллической решетки (точечных, линейных и поверхностных). Наибольший вклад в этот процесс вносят поверхностные дефекты, особенно границы зерен. При повышении температуры силы связи между атомами ослабевают, поэтому наблюдается проскальзывание отдельных зерен друг относительно друга, т.к. именно на границах зерен наблюдается большое количество разорванных связей. То есть прочность границ при высоких температурах меньше, чем самих зерен. Поэтому в жаропрочных материалах всегда добиваются разнозернистой структуры или даже монокристаллической. Затруднить процесс ползучести можно так же блокируя перемещения дислокаций. Для этого необходимо вводить в сплав специальные легирующие элементы, которые образуют на плоскостях скольжения карбидные и интерметаллидные фазы. Дислокации, натыкаясь на эти фазы, тормозятся. Чем мельче эти фазы и чем их больше, тем интенсивнее процесс торможения и тем выше сопротивление ползучести. Наиболее сильно проявляется ползучесть при увеличении температуры выше температуры рекристаллизации металла – основы сплава. Для повышения температуры начала рекристаллизации вводят легирующие элементы, которые повышают порог рекристаллизации.

1. Для получения жаропрочного металла необходимо выбирать в качестве металла – основы сплава такие, у которых силы связи между атомами максимальны, т.е. металлы, обладающие наиболее высокой температурой плавления (Mg-651є С, Al-660є С, Ni-1442є С, Fe-1533є С, Ti-1668є С, Co-1830є С, Mo-2100є С, W-3430є С). При выборе металла – основы для жаропрочных сплавов необходимо учитывать наличие в данном металле полиморфных превращений. Т.к. смена кристаллической решетки при полиморфном превращении приводит к разупрочнению металла и к потере всех механических свойств. Полиморфное превращение затрудняет создание высокожаропрочных сплавов на базе Fe или Ti.

2. Легирующие элементы. Для создания жаропрочных сплавов необходимо вводить легирующие элементы, которые увеличивают силы связи в кристаллической решетке. А во-вторых, образуют в сплаве интерметаллиды и карбиды, препятствующие перемещению дислокаций. Одновременно с введением легирующих элементов необходимо обеспечивать чистоту сплава от вредных примесей. Вредными считаются легкоплавкие примеси, а так же любые другие элементы, вызывающие хрупкость.

3. Структура. Чтобы получить необходимую рабочую структуру для жаропрочных материалов, разработаны соответствующие режимы термообработки. Для получения крупнозернистой структуры, применяют высокотемпературный нагрев и длительную выдержку. При этом в раствор переходит большая часть легирующих элементов. Охлаждение проводится очень быстро (на воздухе или в воде) для фиксации пересыщенного твердого раствора. После закалки делается высокотемпературное старение.


Классификация жаропрочных сплавов.

Основные требования:

1. Максимально высокий предел длительной прочности.

2. Минимальная ползучесть в рабочем интервале температур.

3. Высокое сопротивление усталости, нечувствительность к концентраторам напряжений.

4. Максимально возможное сопротивление газовой коррозии.

5. Удовлетворительные технологические свойства (обрабатываемость давлением, литейные свойства, свариваемость).

1). 150-250є С – сплавы на основе Mg.

2). 250-350є С – сплавы на основе Al.

3). 350-450є С – сплавы на основе Ti.

4). 450-600є С – теплоустойчивые стали.

а) до 500є С – котельные стали (15К, 18К, 20К).

б) до 550є С – 12ХМ, 12Х1МФ, 25Х1МФ.

в) до 600є С – 15Х5, 15Х5ВФ, 14Х12В2Ф.

Основное требование для теплоустойчивых сталей – длительная безаварийная работа (100000 – 300000 часов).

Термообработка: закалка + высокий отпуск (tотп > tраб).

5). 600-700є С – аустенитные стали на основе γ-Fe.

а) 10Х18Н14Т – гомогенные стали (не упрочняемые термообработкой). Применяется закалка (для получения однородной аустенитной структуры). Иначе такая термообработка называется аустенизацией.

б) 40ХН14В2М – тяжело нагруженные детали. Применяется закалка + отпуск. В процессе отпуска выделяются карбиды по границам зерен, что позволяет упрочнять сплавы.

в) 10Х11Н20Т3Р – карбидно – интерметаллидное упрочнение. Применяется закалка + старение. Закалка позволяет получить насыщенный твердый раствор. Старение позволяет получить выделение карбидов и интерметаллидов.

6). 700-800є С – сплавы на обнове Fe-Ni. ХН32Т, ХН35ВТЮ.

7). 800-900є С – сплавы на основе Ni. ХН77ТЮР, ХН72МБТЮ.

Термообработка: высокотемпературная закалка 1130-1170є С + старение 700-750є С. После выделения карбидной фазы проводят несколько низкотемпературных старений 500-550є С.

8). до 1000є С – литейные сплавы. ЖС3, ЖС6, ВЖЛ14, ВЖЛ32.


Цветные сплавы.


Al и его сплавы.

Сплавы делят на две группы. Алюминиевые сплавы принято классифицировать по технологическому признаку, базируясь на диаграмме состояния. Алюминий со всеми легирующими элементами образует диаграммы состояния с эвтектикой. Если в сплаве образуется эвтектика, то она располагается по границам зерен, препятствуя пластической деформации. Чем больше эвтектики, тем выше литейные свойства. Все сплавы, содержащие в составе эвтектику, называют литейными сплавами. Сплавы, в которых эвтектика не образуется, хорошо поддаются пластической деформации, поэтому называются деформируемыми сплавами. По отношению к термообработке все алюминиевые сплавы принято разделять на упрочняемые и не упрочняемые. Упрочнять алюминиевые сплавы можно только за счет закалки без полиморфного превращения, т.е. за счет ограниченной растворимости легирующих элементов в твердом растворе. Поэтому все сплавы, лежащие левее линии сольвус, считаются не упрочняемыми термообработкой, т.к. при нагреве и охлаждении никаких фазовых превращений не происходит. Сплавы, лежащие правее линии сольвус, имеют ограниченную растворимость легирующих элементов. В процессе нагрева вторичные фазы растворяются, а при охлаждении снова выделяются. Используя это фазовое превращение, можно упрочнять такие сплавы за счет закалки и старения, поэтому такие сплавы называют упрочняемыми. Упрочнять термообработкой можно как деформируемые, так и литейные стали. В некоторых сплавах количество легирующих элементов невелико, поэтому эффект упрочнения от выделения вторичных фаз так же невелик. Такие сплавы так же считаются не упрочняемыми термообработкой (АМц, АМг).


Термообработка алюминиевых сплавов.

Алюминиевые сплавы подвергаются отжигу для получения равновесной структуры, а так же закалке и старению с целью упрочнения.

Отжиг алюминиевых сплавов. Для алюминиевых сплавов проводят отжиг на рекристаллизацию, гомогенизацию и для снятия внутренних напряжений.

Гомогенизация алюминиевых сплавов.

Алюминиевые сплавы отливают в виде слитков с применением специальных кристаллизаторов, охлаждаемых водой. Ускоренное охлаждение слитка ведет к появлению неравновесной структуры, т.е. по сечению слитка наблюдается дендритная ликвация, обратная зональная ликвация, наличие неравновесной эвтектики по границам зерен, выделение крупных интерметаллидов, микропоры. Такая неравновесная структура не обеспечивает высокой пластичности, и поэтому все слитки после кристаллизации подвергают высокотемпературному отжигу – гомогенизации. Температура отжига может быть либо выше, либо ниже температуры неравновесного солидуса. При таком отжиге высокая температура нагрева активизирует процессы диффузии, что позволяет выровнять химический состав по сечению слитка, т.е. устранить дендритную ликвацию. Одновременно с этим происходит растворение крупных частиц интерметаллидных фаз. Исчезают также выделения неравновесной эвтектики по границам зерен. Если гомогенизацию проводится по режиму, когда температура нагрева выше неравновесного солидуса, то нагрев сопровождается местным расплавлением, т.е. образуется жидкость между зернами в местах появления неравновесной эвтектики. Диффузия в присутствии жидкой фазы идет очень быстро, поэтому гомогенизация при такой температуре проходит быстрее. После выравнивания химического состава неравновесные фазы исчезают, устраняется и жидкая фаза. Слиток охлаждается.

Отжиг на рекристаллизацию.

Применяется для алюминиевых полуфабрикатов после холодной деформации для снятия наклепа. Алюминиевые сплавы легко поддаются всем видам ОМД. Как правило, слиток первоначально подвергают горячей деформации (происходит уплотнение металла: заварка всех пор, разбиваются и измельчаются интерметаллидные фазы). Горячая деформация, как правило, не позволяет получить точных размеров, не обеспечивается высокое качество поверхности. Поэтому после горячей деформации проводится холодная деформация, которая обеспечивает высокую точность и качество поверхности. Однако возникающий наклеп увеличивает прочность и жесткость металла. Для устранения наклепа применяют рекристаллизационный отжиг. В процессе рекристаллизационного отжига за счет процессов первичной и собирательной рекристаллизации происходит замена старых деформированных зерен на новые. Наклеп исчезает и металл снова можно подвергать пластической деформации. Разновидностью отжига на рекристаллизацию является отжиг на полигонизацию. Он проходит при температуре, которая ниже температуры отжига на рекристаллизацию. Во время этого отжига не происходит замены структуры, и снятие наклепа осуществляется частично за счет перераспределения дислокаций. После такого отжига металл сохраняет часть наклепа и имеет полутвердое состояние. Такой вид отжига применяют для сплавов, которые не упрочняются закалкой, т.е. увеличить прочность можно за счет частичного или полного сохранения наклепа.

Отжиг для снятия внутренних напряжений.

Применяется для готовых изделий, полученных с применением сварки или неоднородной пластической деформации. Внутренние напряжения в деталях, как правило, нежелательны, т.к. могут привести к короблению или преждевременному разрушению. Поэтому такие детали отжигают. Снятие внутренних напряжений происходит за счет процессов возврата, т.е. перераспределения точечных и линейных дефектов. Отжиг для снятия внутренних напряжений не следует путать с отжигом на возврат. Этот термин применяется на заводах для отжига, который используется для устранения в деталях закаленного состояния.

Упрочняющая термообработка алюминиевых сплавов.

Упрочнение алюминиевых сплавов возможно за счет закалки без полиморфного превращения при наличии в сплаве ограниченной растворимости легирующих элементов. Для получения эффекта закалки алюминиевые сплавы нагревают до температуры выше линии солидус. Выдержка должна быть такой, чтобы обеспечить полное растворение всех вторичных фаз. После закалки получается пересыщенный твердый раствор. Охлаждение должно вестись интенсивно. Пересыщенный твердый раствор является нестойким и в течение времени начинает распадаться. Процесс распада называется старением. Процесс распада твердого раствора можно разбить на 4 стадии:

1. В кристаллической решетке твердого раствора появляются зоны, обогащенные легирующими элементами. Они представляют области дискообразной формы.

2. Зоны увеличиваются в 10 раз, а концентрация легирующих элементов становится такой же, как и в интерметаллидах. Эти зоны называются зонами Гинье-Престона (ГП).

3. На месте этих зон образуются θ’ – фазы. В зонах, обогащенных медью, образуется кристаллическая решетка промежуточная между твердым раствором и упрочняющей фазой.

4. Образуется θ – фаза.

Механические свойства в процессе старения на разных стадиях меняются по-разному. 1, 2 и 3 стадия сопровождается увеличением прочности, твердости и одновременным снижением пластичности. Это объясняется тем, что в процессе распада твердого раствора происходит искажение кристаллической решетки, т.е. сопротивление перемещению дислокаций увеличивается. На 4 стадии происходит отделение вторичной фазы от твердого раствора, появляется граница раздела. Искажение кристаллической решетки становится меньше, прочность и твердость падает. Поэтому 4 фазу называют перестариванием. Если требуются высокие прочность и твердость, то старение оканчивают на 3 стадии. Увеличение температуры старения не вызывает повышения твердости, а лишь ускоряет процесс распада твердого раствора.

Следует учитывать, что некоторые сплавы, особенно сложнолегированные, не достигают максимального упрочнения при естественном старении. Поэтому для получения оптимальных свойств требуется подбор оптимальных температур. Чрезмерное увеличение температуры старения вызывает коагуляцию вторичной фазы, т.е. увеличение ее размеров и одновременно уменьшение количества ее выделений. Чем выше температура, тем меньше твердость и прочность, тем ближе свойства к исходному отожженному состоянию. Чтобы снять эффект упрочнения от закалки необходимо применить отжиг с нагревом до температур, близких к температуре закалки, но с последующим медленным охлаждением. Такой отжиг называют отжигом на возврат.


Термомеханическая обработка алюминиевых сплавов.

Для алюминиевых сплавов можно применять практически все виды т.м.о. Однако чаще всего применяют высокотемпературную т.м.о. и низкотемпературную т.м.о.


ВТМО.

Представляет собой сочетание упрочняющей термообработки и горячей пластической деформации. Горячая деформация проводится после нагрева под закалку, а резкое охлаждение проводится сразу после деформации. Деформация позволяет повысить прочность за счет увеличения плотности дефектов кристаллической решетки, т.е. за счет создания наклепа. Степень деформации должна быть такой, чтобы не вызвать начало рекристаллизации, т.е. при температуре деформации проходит только динамическая рекристаллизация. В результате в металле образуется сетка дислокаций, создающая ячеистую субзеренную структуру. Это позволяет не только повысить прочность, но и сохранить высокую пластичность и вязкость. Резкое охлаждение фиксирует эту структуру. Последующее старение ведет к распаду пересыщенного твердого раствора, а выделяющиеся частицы вторичных фаз располагаются вдоль сетки дислокаций, препятствуя их перемещению и способствуя увеличению прочности. Условием для успешного проведения нтмо является условие: Трек > Тзак. Если это условие не выполняется, то наклеп, образующийся при деформации, будет снят за счет рекристаллизации. В этом случае необходимо изменить схему процесса. Деформация проводится не сразу после нагрева, а после выдержки и небольшого подстуживания до температуры ниже температуры рекристаллизации. Технологически втмо проводят при горячей прокатке или горячем прессовании. В этом случае оборудование позволяет за небольшой промежуток времени продеформировать металл с достаточно большой величиной деформации. И сразу после этого есть возможность быстрого охлаждения. Впервые втмо была обнаружена случайно при горячем прессовании сплавов системы Al – Mg – Si. В настоящее время применяют структурное упрочнение. Способствует появлению пресс – эффекта гомогенизация сплавов, а так же введение труднорастворимых легирующих элементов (Ti, Zr, Sc).


НТМО.

При нтмо холодная деформация проводится сразу после закалки до начала старения. Закаленный сплав имеет структуру пересыщенного твердого раствора. И несмотря на увеличение прочности сохраняет высокую пластичность, поэтому после закалки его можно подвергать холодному деформированию со степенью 15-20%. Возникающий наклеп позволяет увеличить прочность за счет увеличения дефектов кристаллического строения. При последующем старении выделение вторичных фаз блокирует дефекты , увеличивая сопротивление деформации, повышая тем самым прочность. Холодная деформация проводится как на прокатном стане, так и растяжением. Растяжение позволяет одновременно выправить искажение формы полуфабрикатов, полученную при закалке.


Сплавы алюминия.

Алюминий производится как химически чистый, так и технически чистый.

Химически чистый обозначается А. Далее идут цифры, показывающие его чистоту

Технически чистый алюминий маркируется А. Далее идет цифра, показывающая содержание алюминия.

Деформируемый алюминий.

АД

Основными легирующими элементами, которые вводят в состав сплава, являются Si, Cu, Mg, Mn, Zn, Li. Их количество может изменяться от 0,5 до 12%. Кроме этих элементов в качестве микродобавок могут вводить Ti, Cr, Fe, Zr, Sc. В качестве маркировки используют 3 схемы:

1. Деформируемый алюминий.

АМц (N) – Al – Mn.

АМg (N) – Al – Mg.

АВ, АД – Al – Mg – Si.

Д1, Д16 – Al – Cu – Mg.

Литейный алюминий.

АЛ (N).


2. Цифровая схема для деформируемых сплавов.

Всего 4 цифры:

1 цифра – основа (Al – 1)

2 цифра – система легирования (0 – чистый алюминий, 1 – Al – Cu – Mg, 2 – Al – Cu – Mn, 3 – Al – Mg – Si, 4 – Al – Mg, 5 – Al – Mg, 9 – Al – Zn – Mg).

3 и 4 цифра – номер сплава.


3. Литейные сплавы.

Аналогична маркировке стали.

А – Al (основа).

2 место – легирующие элементы:

К – Si, М – Cu, Мг – Mg, Мц – Mn, Н – Ni, Ц – Zn.

После каждой буквы, соответствующей легирующему элементу, стоит цифра, показывающая его содержание в целых процентах. Если цифры нет, то количество легирующего элемента равно 1%.

В зависимости от технологии производства выпускаются полуфабрикаты из алюминиевых сплавов после различных вариантов термообработки. В этом случае к основной маркировке в конце добавляются буквы и цифры, показывающие состояние поставки:

А – плакировка.

Б – технологическая плакировка.

М – отожженный.

П – полунагартованный.

Н – нагартованный.

Т – твердый (закалка + естественное старение).

Т1 – закалка + искусственное старение.

ТН – закаленный, нагартованный и естественно состаренный.

Т1Н – закаленный, нагартованный и искусственно состаренный.

Т1Н1 – закаленный, усиленно нагартован и искусственно состаренный.


Сплавы, не упрочняемые термообработкой.

К этой группе относятся технический алюминий, деформируемый алюминий, сплавы Al с Mn (АМц), Al с Mg (АМг).

Сплавы Al c Mn (АМц).

Mn образует с Al интерметаллидную фазу AlMn6, которая дает эвтектику при температуре 658є С при содержании Mn 1,95%. Количество Mn, которое может перейти в твердый раствор, составляет 0,5% при 500є С. Несмотря на ограниченную растворимость Mn в Al, эффект от упрочняющей термообработки настолько невелик, что эти сплавы считаются не упрочняемыми термообработкой. Mn повышает прочность Al, при этом сохраняется пластичность, высокая коррозионная стойкость, свариваемость. Поэтому из этого сплава делают листы, ленты для холодной штамповки.

Термообработка: рекристаллизационный отжиг 500є С – 1 час. Увеличение температуры или времени выдержки может привести к крупнозернистости. Для измельчения зерна вводят Ti. Повысить прочность можно только наклепом.

Сплавы Al c Mg (АМг).

Mg, растворяясь в Al, сильно увеличивает его прочность. Каждый процент Mg увеличивает прочность на 30 мПа. Однако прочность увеличивается за счет эффекта растворного упрочнения. Выделение вторичной фазы после закалки и старения дает заметный эффект упрочнения только при содержании Mg в сплаве 8%. Сплавы для холодной деформации содержат не более 6% Mg. Эти сплавы также считаются не упрочняемыми.

АМг1 – 1,1% Mg.

АМг2 – 2,5% Mg.

АМг3 – 3,2% Mg.

АМг5 – 5,5% Mg.

АМг6 – 6,5% Mg.

Первые три сплава используются для изготовления листов обшивки.

АМг5 и АМг6 используют в тяжело нагруженных деталях, хорошо свариваются.

Основной вид термообработки: отжиг 450-470є С, продолжительность 0,5-3 часа. Сплавы АМг можно упрочнять деформацией.


Сплавы, деформируемые и упрочняемые термообработкой.

Сплавы Al – Cu – Mg.

Дюралями называют сплавы Al с Cu, к которым дополнительно добавляют Mg и Mn. Упрочняются эти сплавы за счет закалки без полиморфного превращения и последующего старения. Выделение упрочняющих вторичных фаз позволяет блокировать дислокации и увеличивать сопротивление деформации. Особенностью термообработки дюрали является очень узкий интервал закалочных температур. Если сплав недогреть, то не происходит растворения вторичных фаз и эффекта закалки не будет. Если сплав перегреть, то по границам зерен появляется жидкая фаза, происходит усадка, образуется микропористость и резко снижаются прочность и пластичность. После нагрева и выдержки перенос деталей из печи в закалочный бак должен проводиться очень быстро (не более 30 сек). Поэтому для закалки алюминиевых сплавов строят специальную печь. После закалки проводят старение. Для жаропрочных дюралей применяют искусственное старение (120-160є С) от 4 до 12 часов.

1. Дюрали средней прочности Д1, Д6.

2. Дюрали повышенной прочности Д16.

3. Дюрали жаропрочные Д19, ВАД1.

4. Дюрали повышенной пластичности Д18.

Крупным недостатком являются плохая коррозионная стойкость. Для повышения коррозионной стойкости проводят плакировку. Стали групп 2 и 3 подлежат закалке и искусственному старению.


Сплавы Al – Si – Mn.

Основные стали группы: АВ, АД31, АД33, АД35. Данные сплавы используют для изготовления обшивки самолетов.

Термообработка: закалка 540-560є С (охлаждение на воздухе или в масле) + искусственное старение 160-180є С. Сплавы относятся к среднепрочным.


Сплавы Al – Zn – Mg – Cu.

Основные стали группы: В93, В95, В96, В96ц.

Химический состав: 6-8,5% Zn, 2-2,5% Mg, 1-2% Cu.

Сплавы данной группы обладают повышенной прочностью.

Термообработка: закалка 450-470є С (охлаждение в кипящей воде) + искусственное старение 175є С. Если требуется максимальная вязкость, то сплав подвергают перестариванию (Т2). Высокопрочные сплавы используют для тяжело нагруженных элементов каркаса самолетов. Недостаток данных сплавов – плохая коррозионная стойкость, хрупкость.


Сплавы Al – Cu – Mn.

Основные стали группы: Д20.

Данные сплавы являются жаропрочными.

Рабочие температуры от –250є С до 250є С.

Упрочняются термообработкой, хорошо свариваются, имеют хорошую коррозионную стойкость.


Сплавы Al – Zn – Mg.

Основные стали группы: 1915, 1925.

Понижено количество Zn. Данные стали разработаны для замены АМг6. Стали хорошо свариваются, имеют хорошую коррозионную стойкость. Упрочняются термообработкой (закалка + старение). Сплавы относятся к среднепрочным.


Сплавы АК.

Основные стали группы: АК4, АК41, АК6, АК8, АК10, АК12.

Эти сплавы для горячей штамповки. Сплавы относятся к группе высокопрочных. Они упрочняются термообработкой (закалка + старение), не поддаются сварке.

Добавки Fe и Ni позволяют получить в сплаве труднорастворимые упрочняющие фазы.

Поэтому детали не теряют прочности при температуре 300є С. Вместе с тем при нормальной температуре прочность и пластичность меньше, чем у дюралей.


Сплавы Al – Li – Cu, Al – Li – Mg.

Li имеет хорошую растворимость и упрочняет сплав. Введение Li повышает упругость и жесткость конструкции. Сплавы имеют плохую технологичность и сильно окисляются.


Специальные алюминиевые сплавы.


Основные стали группы: САП1, САП2, САП3.

После прокатки получают либо листы, либо профили. При этом основа сплава – чистый алюминий. А в качестве упрочняющей фазы выступает окись алюминия, в которую покрыты частицы порошка. При горячей деформации окисная пленка дробится, измельчается и равномерно распределяется по всему объему полуфабриката. В процессе нагревания такая окисная пленка не растворяется вплоть до расплавления, что позволяет сохранить прочность при рабочих температурах до 350є С. Эти сплавы являются самыми жаропрочными. При нормальной температуре прочность и пластичность хуже, чем у дюралей. А максимальная жаропрочность зависит только от количества окислов внутри металла. Если в качестве исходных материалов брать более мелкий порошок, то объемная доля окислов увеличивается, соответственно увеличивается сопротивление деформации. Поэтому, изменяя размер порошка, изменяют количество окислов.


Теория термообработки.

Термообработкой называется тепловое воздействие на металл с целью направленного изменения его структуры и свойств.

Классификация видов термообработки:


Отжиг.

Отжигом называют термообработку, направленную на получение в металлах равновесной структуры. Любой отжиг включает в себя нагрев до определенной температуры, выдержку при этой температуре и последующее медленное охлаждение. Цель отжига – уменьшить внутренние напряжения в металле, уменьшить прочностные свойства и увеличить пластичность. Отжиг делят на отжиг 1 рода и 2 рода.

Отжиг 1 рода – это такой вид отжига, при котором не происходит структурных изменений, связанных с фазовыми превращениями.

Отжиг 1 рода в свою очередь разделяют на 4 группы:

1. Гомогенизация – отжиг, направленный на уменьшение химической неоднородности металлов, образующейся в результате рекристаллизации. В отличие от чистых металлов, все сплавы после кристаллизации характеризуются неравновесной структурой, т.е. их химический состав является переменным как в пределах одного зерна, так и в пределах всего слитка.

Химическая неоднородность обусловлена различной температурой плавления исходных компонентов. Чем меньше это различие, тем более заметна химическая неоднородность, получающаяся в слитке. Избавится от нее невозможно, можно только уменьшить. Для этого применяют высокотемпературный отжиг с длительными выдержками (от 2 до 48 часов). При высокой температуре подвижность атомов в кристаллической решетке высокая и с течением времени за счет процессов диффузии происходит постепенное выравнивание химического состава. Однако усреднение химического состава происходит в пределах одного зерна, т.е. устраняется в основном дендритная ликвация. Чтобы устранить зональную ликвацию (химическую неоднородность в пределах части слитка), необходимо выдерживать слитки при данной температуре в течение нескольких лет. А это практически невозможно.

В процессе отжига на гомогенизацию происходит постепенное растворение неравновесных интерметаллидных фаз, которые могут образоваться в результате кристаллизации с большой скоростью. При последующем медленном охлаждении после отжига такие неравновесные фазы больше не выделяются. Поэтому после гомогенизации металл обладает повышенной пластичностью и легко поддается пластической деформации.

2. Рекристаллизационный отжиг. Холодная пластическая деформация вызывает изменение структуры металла и его свойств. Сдвиговая деформация вызывает увеличение плотности дефектов кристаллической решетки, таких как вакансии, дислокации. Образование ячеистой структуры происходит с изменением формы зерен, они сплющиваются, вытягиваются в направлении главной деформации. Все эти процессы ведут к тому, что прочность металла постепенно увеличивается, пластичность падает, т.е. возникает наклеп или нагартовка. Дальнейшая деформация такого металла невозможна, т.к. происходит его разрушение. Для снятия эффекта упрочнения применяют рекристаллизационный отжиг, т.е. нагрев металла до температур выше начала кристаллизации, выдержку с последующим медленным охлаждением. Температура нагрева зависит от состава сплава. Для чистых металлов температура начала рекристаллизации tp=0,4Тпл, єК, для обычных сплавов порядка 0,6Тпл, для сложных термопрочных сплавов 0,8Тпл. Продолжительность такого отжига зависит от размеров детали и в среднем составляет от 0,5 до 2 часов. В процессе рекристаллизационного отжига происходит образование зародышей новых зерен и последующий рост этих зародышей. Постепенно старые деформированные зерна исчезают. Количество дефектов в кристаллической решетке уменьшается, наклеп устраняется, и металл возвращается в исходное состояние.

Степень деформации определяет размер зерна после отжига. Если она близка к критической (кр=5-15%), то в результате после отжига в металле возникают крупные зерна, что обычно нежелательно. Поэтому перед рекристаллизационным отжигом деформацию металлов производят со степенью 30-60%. В результате получается мелкозернистая однофазная структура, обеспечивающая хорошее сочетание прочности и пластичности. Увеличение степени деформации до 80-90% вызывает появление в металле текстуры деформации. После рекристаллизационного отжига текстура деформации меняется на текстуру рекристаллизации. Как правило, это сопровождается резким направленным ростом зерна. Увеличение размеров зерна, т.е. снижение механических свойств, может вызвать также слишком большая температура отжига или большая выдержка. Поэтому при назначении режимов отжига необходимо использовать диаграмму рекристаллизации.

Рекристаллизационный отжиг может применяться как предварительная, промежуточная, так и как окончательная термообработка. Как предварительная термообработка он применяется перед холодной деформацией, если исходное состояние металла неравновесное и имеет какую-то степень упрочнения. Как промежуточная операция рекристаллизационный отжиг применяется между операциями холодной деформации, если суммарная степень деформации слишком велика и запасов пластичности металла не хватает. Как окончательный вид отжига его применяют в том случае, если потребитель требует поставки полуфабрикатов в максимально пластичном состоянии. В некоторых случаях потребителю требуется полуфабрикат, сочетающий определенный уровень прочности с необходимым запасом пластичности. В этом случае вместо рекристаллизационного отжига используют его разновидность – отжиг на полигонизацию. Отжиг на полигонизацию проводят при температуре, которая ниже температуры начала рекристаллизации. Соответственно при такой температуре происходит лишь частичное устранение наклепа за счет процессов возврата второго рода, т.е. происходит уменьшение плотности дефектов кристаллической решетки, образование ячеистой дислокационной структуры без изменения формы зерен. Степень уменьшения наклепа зависит, прежде всего, от температуры. Чем ближе температура к порогу рекристаллизации, тем меньше наклеп, тем больше пластичность и наоборот.

3. Отжиг для снятия внутренних напряжений. Внутренние напряжения в металле могут возникать в результате различных видов обработки. Это могут быть термические напряжения, образовавшиеся в результате неравномерного нагрева, различной скорости охлаждения отдельных частей детали после горячей деформации, литья, сварки, шлифовки и резания. Могут быть структурными, т.е. появившиеся в результате структурных превращений, происходящих внутри детали в различных местах с различной скоростью. Внутренние напряжения в металле могут достигать большой величины и, складываясь с рабочими, т.е. возникающими при работе, могут неожиданно превышать предел прочности и приводить к разрушению. Устранение внутренних напряжений производится с помощью специальных видов отжига. Этот отжиг проводится при температурах ниже температуры рекристаллизации: tотж=0,2-0,3Тпл є К. Повышенная температура облегчает скольжение дислокаций и, под действием внутренних напряжений, происходит их перераспределение, т.е. из мест с повышенным уровнем внутренних напряжений дислокации перемещаются в области с пониженным уровнем. Происходит как бы разрядка внутренних напряжений. При нормальной температуре этот процесс будет длиться в течение нескольких лет. Увеличение температуры резко увеличивает скорость разрядки, и продолжительность такого отжига составляет несколько часов.

4. Патентирование. Смотреть термообработку стали.

Отжиг второго рода – термообработка, направленная на получение равновесной структуры в металлах и сплавах, испытывающих фазовые превращения.

При отжиге второго рода нагрев и последующее охлаждение может вызвать как частичную, так и полную замену исходной структуры. Полная замена () в результате двойной перекристаллизации позволяет кардинально изменить строение сплава, уменьшить размер зерна, снять наклеп, устранить внутренние напряжения, т.е. полностью изменить структуру и свойства детали. Отжиг второго рода может быть полным и неполным.

Полный отжиг сопровождается полной перекристаллизацией. При неполном отжиге структурные превращения происходят не полностью, с частичным сохранением исходной фазы. Неполный отжиг применяется в тех случаях, когда можно изменить строение второй фазы, исчезающей и вновь появляющейся при этом виде отжига.

Закалка – это термообработка, направленная на получение в сплаве максимально неравновесной структуры и соответственно аномального уровня свойств. Любая закалка включает в себя нагрев до заданной температуры, выдержку и последующее быстрое резкое охлаждение. В зависимости от вида фазовых превращений, происходящих в сплаве при закалке, различают закалку с полиморфным превращением и закалку без полиморфного превращения.

Закалка с полиморфным превращением. Этот вид закалки применяется для сплавов, в которых один из компонентов имеет полиморфные превращения.

При закалке с полиморфным превращением нагрев металла производится до температуры, при которой происходит смена типа кристаллической решетки в основном компоненте. Образование высокотемпературной полиморфной структуры сопровождается увеличением растворимости легирующих элементов. Последующее резкое охлаждение ведет к обратному изменению типа кристаллической решетки, однако из-за быстрого охлаждения в