Блок обмена сообщениями коммутационной станции

по сети, со схемой аварийного контроля за работой внутренней микро-ЭВМ.

в) интерфейсную схему обмена с центральным процессором своего модуля АТС; в состав этой интерфейсной схемы входят: дешифратор выбора БОС со стороны центрального процессора данного модуля АТС; триггер запроса прерываний к центральному процессору; схема формирования сигнала "СБРОС" внутренней микро-ЭВМ по запросу со стороны центрального процессора.

Внутренняя Микро-ЭВМ блока БОС выполнена на базе 16-ти разрядного универсального микропроцессора типа SAB-8086-2-P с тактовой частотой 8 МГц. Этот микропроцессор позволяет использовать мощные инструментальные средства для программиста, при пропускной способности шины на 16 разрядов, что в сочетании с дешевизной и доступностью подобных микропроцессоров и является критерием выбора.

Объем ОЗУ Микро-ЭВМ блока БОС составляет 16 Кбайт. Выполнено ОЗУ на микросхемах статического типа КР537РУ17 (2 шт), ( DD12,DD13).

Объем ПЗУ Микро-ЭВМ блока БОС составляет 16 Кбайт, Выполнено ПЗУ на микросхемах с ультрафиолетовым стиранием программ типа КР573РФ6А (2 шт), (элементы DD17, DD18).

В состав внутренней Микро-ЭВМ входит программируемый контроллер прерываний (Р1С) типа КР181ОВН59А (элемент DD32), обеспечивающий обслуживание запросов на прерывания от таких источников как программируемый интервальный таймер (РТТ), схема ИКМ - тракта, контроллер стыка RS/232 с технологической ПЭВМ.

Программируемый интервальный таймер (PIT) типа КР580ВИ53 (элемент DD24) выполняет несколько функций: генерация таймерных прерываний и синхронизация схемы контроля наличия сверхцикловой синхронизации (частота 500 Гц) - канал 0, при этом необходимо на канале 0 иметь период генерируемых сигналов более 2 мсек.; синхронизация контроллера стыка RS/232 происходит по каналу 1 таймера; контроль наличия несущей ИКМ тракта внутренней сети АТС осуществляется каналом 2 таймера. При этом несущая частота ИКМ - тракта (2048 КГц) поступает на управляющий вход канала 2 таймера, в то же время на счетный вход канала 2 поступает внутренняя контрольная частота 2 МГц. Канал 2 запрограммирован на режим ждущего одновибратора (режим 1) и при наличии несущей ИКМ на его выходе всегда "О", этот выход подключает внешнюю синхронизацию схемы сопряжения с ИКМ - трактом, состояние этого выхода программно доступно для контроля внутренней микро-ЭВМ. Если имеет место пропадание несущей ИКМ, на выходе канала 2 таймера появляется " 1" - сигнал аварии; синхронизация схемы сопряжения с ИКМ аппаратно переключается на внутренний источник с частотой 2 МГц (для возможности тестирования).

Контроллер стыка RS/232 с технологической ПЭВМ выполнен на микросхеме КР580ВВ51А (элемент DD28). Этот контроллер синхронизируется отдельного генератора (элементы ZQ1, С6О, R2, R3, DD16), обеспечивающего формирование стандартного ряда скоростей обмена с ПЭВМ (на вход микросхемы КР580ВВ51А поступает 1.8432 Мгц). Имеются элементы согласования по уровням сигналов со стыком RS/232 (DA2, DA3). Подключение блока БОС к технологической ПЭВМ необходимо при отладке программного обеспечения микро-ЭВМ блока БОС.

При обращении к любому устройству ввода-вывода в цикл внутренней микро-ЭВМ вводится четыре такта ожидания, что необходимо для согласования по быстродействию относительно быстрого процессора микро-ЭВМ с медленными микросхемами ввода-вывода серий 580 и 1810.

Схема сопряжения с ИКМ трактом имеет в своем составе мультиплексоры адресов (MUX-ADR), обеспечивающие переключение адресов буферного ОЗУ ИКМ - тракта (элементы DD53, DD54) поочередно к счетчику синхронизации (активный буфер), или к внутренней микро-ЭВМ (пассивный буфер). Информация из буфера схемы сопряжения с ИКМ трактом побайтно записывается в регистр передачи (RG-T) и обновляется там (аппаратно) каждые 3.9 мкс, из регистра передачи байт переписывается в сдвиговый регистр-формирователь последовательного кода и далее в последовательном коде передается в ИКМ тракт. Передаваемая во внутренний ИКМ тракт информация доступна всем блокам БОС внутристанционной сети (в том числе и тому блоку БОС, который ее передает в ИКМ тракт внутренней сети АТС).

Принимаемая со стороны ИКМ тракта информация заносится в последовательном коде в сдвиговый регистр приема и далее - в регистр приема (RG-R), из которого каждые 3.9 мкс происходит аппаратурное переписывание информации в буфер схемы сопряжения с ИКМ трактом.

Особенностью схемы сопряжения с ИКМ трактом является наличие двух буферов обмена с линией ИКМ. Эти буфера условно обозначаются 0 и 1. При этом, когда буфер-0 активен ( ведет обмен с ИКМ трактом ), буфер-1 пассивен ( доступен для внутренней микро-ЭВМ ). Каждый двух-миллисекундный сверхцикл активный и пассивный буфера меняются местами. Так, например, если в данном сверхцикле буфер-0 активен, а буфер-1 пассивен, то в следующем сверхцикле буфер-0 пассивен, а буфер-1 активен. При смене сверхцикла - каждые 2 мс, в сторону процессора внутренней микро-ЭВМ поступает очередной сигнал прерывания, сигнализирующий о том, что информация, полученная в предшествующем сверхцикле, доступна (в течение 2-х мс) для чтения, а информация предназначенная для передачи по сети и записываемая в текущем сверхцикле, будет передана по сети в следующем сверхцикле (при условии что в текущем сверхцикле будет установлен триггер разрешения передачи во время следующего сверхцикла).

Таким образом, схема сопряжения с ИКМ трактом имеет два идентичных узла в состав каждого из них входят: буферное ОЗУ, мультиплексоры адресов, регистры передачи и приема. Передающий и приемный сдвиговые регистры, как и счетчики синхронизации, являются общими для обоих вышеуказанных узлов.

Буферное ОЗУ внутристанционного ИКМ тракта доступно для внутренней микро-ЭВМ блока БОС как память, при этом в цикле обращения к буферному ОЗУ отсутствуют такты ожидания, что повышает пропускную способность блока БОС.

В буферной области имеется 512 байт - область передачи и такого же объема - область приема. Общий объем буфера, доступный для обращения от микро-ЭВМ блока БОС, составляет 1024 байта.

В составе блока БОС имеется схема аварийного контроля (элементы DD27, DD34). Принцип аварийного контроля заключен в периодическом (каждые 2 мс) сбросе счетчика аварийного контроля при чтении в процессор внутренней микро-ЭВМ информации из приемной области пассивного буфера. Если по каким либо причинам (сбой; отказ оборудования) в течении 15-ти сверхциклов нет чтения, то счетчик аварийного контроля, досчитав до состояния 1111 (OFH), заблокируется и зафиксирует состояние "АВАРИЯ". Сигнал "АВАРИЯ", генерируемый на БОС, программно доступен для центрального процессора. Время формирования состояния "АВАРИЯ" составляет 30 мсек.

В случае поступления сигнала "АВАРИЯ" от БОС, или при отсутствии этого сигнала, если центральный процессор зафиксировал нарушения в принимаемых сообщениях, имеется возможность сброса процессора внутренней микро-ЭВМ по команде от центрального процессора.

Интерфейс с центральным процессором содержит: два информационных регистра (ввод и вывод информации микро-ЭВМ блока БОС) - элементы DD68, DD70; регистр состояния блока БОС (элементы DD61, DD63, DD29,DD39) для центрального процессора и регистр управления от центрального процессора (элемент +DD66); дешифратор адресов, поступающих от центрального процессора, обеспечивающий выбор конкретного блока БОС в циклах обращения со стороны центрального процессора (элементы DD62,DD65); триггер запроса прерываний в сторону центрального процессора (элемент DD29).

При работе блока БОС от центрального процессора поступает сообщение, подлежащее передаче по сети, это сообщение попадает в память микро-ЭВМ блока БОС, и после предварительной подготовки, данное сообщение (целое или по частям) передается в буфер интерфейса внутреннего ИКМ тракта АТС.

Если сообщение, адресованное модулю в котором находится данный БОС, поступило по внутренней сети АТС, тогда микро-ЭВМ блока БОС анализирует правильность принятого сообщения и, если обнаружены ошибки (подсчитанная контрольная сумма не совпадает с переданной), перезапрашивает сообщение. Когда сообщение принято правильно и находится в ОЗУ микро-ЭВМ блока БОС, устанавливается запрос прерываний в сторону центрального процессора. По этому запросу на центральном процессоре запускается процедура приема сообщения от БОС.

Применение внутренней микро-ЭВМ в блоке БОС позволяет организовать гибкое управление обменом по сети, тестирование узлов блока

БОС и многие другие дополнительные функции, серьезно разгружая центральный процессор того модуля АТС, где находится блок БОС, от многих дополнительных действий, связанных с обслуживанием внутренней сети.


3. ВЫБОР И ОБОСНОВАНИЕ ЭЛЕМЕНТНОЙ БАЗЫ, УНИФИЦИРОВАННЫХ УЗЛОВ, УСТАНОВОЧНЫХ ИЗДЕЛИЙ И МАТЕРИАЛОВ КОНСТРУКЦИИ


3.1 Обоснования выбора элементной базы


Все используемые электро-радио компоненты, ИМС и другие покупные изделия, а также материалы должны обеспечивать показатели надежности и экономическую эффективность станции.

Применяемые комплектующие изделия не должны требовать:

- разбраковки и отбора по техническим параметрам после входного контроля;

- разработки специальных средств для входного контроля.

Элементная база для перспективной аппаратуры должна включать следующие изделия:

- аналоговые и цифровые ИС общего применения;

- современные комплектующие компоненты (резисторы, конденсаторы, реле и т.д.) отвечающие требованиям комплексной миниатюризации и имеющие электрические и массогабаритные показатели, совместимые с ИС;

- специализированные полупроводниковые БИС;

- специализированные гибридно-пленочные БИС.

Для разработки современной аппаратуры необходимы комплектующие изделия, отличающиеся при большой сложности высокой надежностью и ограниченным числом внешних выводов. Такими изделиями являются БИС и СБИС. Стоимость аппаратуры на основе БИС ниже стоимости аналогичной аппаратуры на другой элементной базе. Это объясняется использованием перспективной технологии и уменьшением объема монтажно-сборочных работ. При разработке современных технических решений в системах электросвязи решающими критериями выбора элементной базы являются надежность, долговечность и энергопотребление применяемых компонентов. Стоимость применяемых микроэлектронных изделий должна рассматриваться в комплексе с затратами на монтажные узлы, их производство и настройку. Учитывая, что стоимость собственно компонентов имеет тенденцию к постоянному снижению в соответствии с освоением технологии производства и увеличением серийности на заводе-изготовителе, а стоимость производства аппаратуры, как правило, возрастает, целесообразно закладывать в новые разработки перспективную элементную базу в виде специализированных БИС, Единственное ограничение на применение таких изделий - это степень их отработанности на заводе-изготовителе, гарантирующая надежность и функциональное соответствие применяемых компонентов.

Таким образом, можно выделить следующие основные критерии выбора элементной базы:

- надежность;

- долговечность;

- энергопотребление;

- степень интеграции;

- стоимость.

В настоящее время наиболее распространенными интегральными схемами являются схемы транзисторно-транзиторной логики. Компоненты данной группы широко освоены отечественной промышленностью. Наиболее современная технология ТТЛШ с малым энергопотреблением используется в массовой серии 1533, включающей в свой состав широкую номенклатуру ИС. Данная серия применяется при построении логических узлов аппаратуры в пределах ТЭЗ. Допускается применение ИС серий 555, 531 и схем малой интеграции, входящих в состав МГЖ 580, 1810 для узлов интерфейса, требующих повышенной нагрузочной способности и быстродействия. При применении указанных ИС вместе с ИС основной серии 1533 следует применять схемотехнические решения, обеспечивающие помехоустойчивость узлов.

Для применения в разработке используется широко распространенные МПК серий 580, 1810, производимые отечественной промышленностью. Эти комплекты имеют сильно развитые средства поддержки разработки ПО и широкую номенклатуру периферийных и специализированных БИС, Для разработки микропроцессорных узлов также применяются серии 537,


3.2 Анализ элементов на устойчивость к внешним воздействиям


Применяемые в конструкции радиоэлементы должны сохранять работоспособность при воздействии на них внешних дестабилизирующих факторов. Основные справочные данные используемых элементов на устойчивость к внешним воздействиям приведены ниже.

Микросхемы серии 1533 имеют пониженную рабочую температуру среды минус 10 °С, повышенная температура 70 °С. Амплитуда ускорения синусоидальной вибрации - 10g, линейное ускорение - 50g.

Микросхемы типа КР580 сохраняют свою работоспособность при температуре окружающей среды в пределах от минус 10 °С до 70 °С. Относительная влажность среды до 98 %. Воздействие синусоидальной вибрации в пределах 1 - 600 Гц с амплитудой ускорения 10 g. Удар - 75g. Линейное ускорение 25g.

Микросхемы типа КР1810 выдерживают воздействие пониженной температуры среды минус 10 °С, повышенной температуры 70 °С. Амплитуда ускорения синусоидальной вибрации 10g. Линейное ускорение 50g,

Микросхемы типа К170 имеют пониженную температуру окружающей среды минус 10 °С, повышенную температуру 70 °С. Амплитуда ускорения синусоидальной вибрации 10g. Линейное ускорение 500g,

Микросхемы серии КР537 также выдерживают воздействие температуры окружающей среды в пределах от минус 10 °С до 70 °С. Амплитуда ускорения синусоидальной вибрации 10g, Линейное ускорении 50g.

Конденсаторы типа К10-17 сохраняют свою работоспособность при воздействии на них пониженной температуры среды минус 60 °С, повышенной температуры среды 125 °С. Влажность окружающего воздуха не более 98 % при 35 °С. Воздействие синусоидальной вибрации в пределах от 1 до 5000 Гц с амплитудой ускорения 40g. Многократный удар 40g, однократный 150g. Линейное ускорение 500g,

Конденсаторы типа К53-4А имеют диапазон рабочих температур в пределах от минус 60 до 85 °С. Влажность 85 % при 35 °С. Вибрация в диапазоне частот 1...3000 Гц с амплитудой ускорения до 20g. Ударные перегрузки 150g. Линейное ускорение 200g.

Резисторы типа С2-ЗЗН имеют повышенную рабочую температуру 85 °С. Работоспособны при воздействии синусоидальной вибрации в пределах от 1 до 5000 Гц с амплитудой ускорения 30g. Однократный удар l000g, многократный удар 150g. Линейное ускорение 500g.

Набор резисторов HP 1-4-9 имеет пониженную рабочую температуру среды минус 60 °С, повышенную температуру 155 °С. Относительная влажность воздуха при 20 °С не превышает 98 %. Воздействие синусоидальной вибрации с частотой 1 - 2000 Гц с амплитудой ускорения 10g. Воздействие многократного удара 40g., однократного 150g. Линейное ускорение 50g.

Резонатор РК169МА имеет диапазон рабочих температур в пределах от минус 60 °С до 85 °С. Воздействие синусоидальной вибрации 1 - 2000 Гц с амплитудой ускорения 20g. Ударное воздействие 500g. Линейное ускорение 50g.

Пониженная температура окружающей среды для индикатора АЛ3076 составляет минус 60 °С, повышенная 75 °С. Частота вибрации 1 - 2000 Гц с амплитудой ускорения 20g. Линейное ускорение составляет 200g.

Диод типа 2Д522Б сохраняет свою работоспособность в диапазонах температур от минус 60 до плюс 125 °С. Относительная влажность воздуха составляет 98 % при 35 °С. Синусоидальной вибрация частотой от 1 до 600 Гц с амплитудой ускорения 10g. Однократный удар 15g. Линейное ускорение 20g.

Таким образом, проанализировав характеристики элементов на устойчивость к внешним воздействиям и сравнив их с требованиями предъявляемыми к АТС можно сделать вывод о том, что выбранная элементная база удовлетворяет требованиям работоспособности в части воздействия внешних дестабилизирующих факторов.


3.3 Описание материалов конструкции


Для изготовления слоев МПП в качестве основания используется стеклотекстолит, для получения которого применяют стеклянную безщелочную ткань и эпоксифенолоформальдегидный лак. Пропитку стеклоткани лаком производят на вертикальных пропиточных машинах, снабженных сушилкой. Пропитанная и просушенная стеклоткань наматывается на барабан. Затем эта стеклоткань, находящаяся в стадии неполного отвердения, и фольга нарезаются на листы необходимого размера. Склеивание фольги и стеклотекстолита производится на гидравлических прессах. Установлено, что оптимальным режимом термообработки является выдержка заготовок МПП после прессования в камере тепла при 140 °С в течение 2ч. Термообработка заготовок MПП в указанном режиме делает более стабильными характеристики твердости материала и расширяет диапазон его рабочих температур [10].

Таким образом, при выборе материала для изготовления МПП было отдано предпочтение стеклотекстолиту типа СТФ-2-35-0,3. Это теплостойкий стеклотекстолит фольгированный с двух сторон гальваностойкой фольгой толщиной 35 мкм, толщина стеклотекстолита - 0,3 мм. В качестве связующего материала используется ЭД-8.

В конструкцию кассеты входит направляющая изготовленная из полиамида (ПА), который относится к термопластичным материалам. Материалы этой группы обладают легкостью, стойкостью в агрессивных средах, отличными антифрикционными и демпфирующими свойствами, высоким электросопротивлением и малой теплопроводностью, но характеризуются пониженной прочностью, значительной текучестью под нагрузкой и низкой теплостойкостью. Термопласты имеют хорошие литейные свойства, хорошо деформируются в нагретом состоянии, свариваются и хорошо обрабатываются резанием.

Полиамид стеклонаполненный ПА 610-ДС, сорт 1 ГОСТ 17648-83 представляет собой композицию полиамида с отрезками стекловолокна. Данный материал характеризуется повышенными механическими свойствами и теплостойкостью.

Предел прочности на растяжение ав = 120...152 МПА, 5= 2,0...2,8 %, КС = 29...60 кДж/м2, 137 НВ, температура размягчения 180...200 °С, плотность 1270...1410 кг/м3.

Фиксатор изготовлен из стального листа



Это лист холоднокатаный, нормальная точность (Б), нормальная плоскостность (ПН), с обрезной кромкой (О), толщина 0,8 мм., из стали категории 5 по контролируемым свойствам, качество поверхности по группе II, для нормальной вытяжки (Н), марка стали 10, свойства материала и качество поверхности по ГОСТ 16523-89.

Швеллер изготовлен из стального листа



Лист холоднокатаный, нормальная точность (Б), нормальная плоскостность (ПН), толщина 2,0 мм., из стали категории 5 по контролируемым свойствам, качество поверхности по группе 11, для нормальной вытяжки (Н), марка стали 10, свойства материала и качество поверхности по ГОСТ 16523-89.

Планка также изготовлена из листовой стали



Лист холоднокатаный, нормальная точность (Б), нормальная плоскостность (ПН), толщина 5,0 мм., из стали категории 10 по контролируемым свойствам, качество поверхности по группе II, свойства материала и качество поверхности по ГОСТ 1577-81.

В конструкции применен оловянно-свинцовый припой ПОС-61. Этот припой является легкоплавким, мягким и технологичным. Прочность паянных соединений на сдвиг до 30...40 Мпа.

Клей ВК-9 - многокомпонентная эпоксидная композиция с полиамидами. Клей горячего твердения, предназначен для соединения металлов и неметаллов. Рабочие температуры от минус 60 до 200˚С. Прочность на срез до 14 МПа, при 125˚С-4,5 МПа.[22]


4. ВЫБОР И ОБОСНОВАНИЕ КОМПОНОВОЧНОЙ СХЕМЫ, МЕТОДОВ И ПРИНЦИПОВ КОНСТРУИРОВАНИЯ


4.1 Анализ существующих принципов конструирования


В настоящее время получили широкое распространение такие принципы конструирования, как моносхемный, схемно-узловой, каскадно-узловой, функционально-узловой и модульный [11].

Моносхемньтй принцип конструирования заключается в том, что полная принципиальная схема радиоэлектронного аппарата располагается на одной печатной плате и поэтому выход из строя одного элемента приводит к сбою всей системы. Оперативная замена вышедшего из строя элемента затруднена из-за сложности его обнаружения.

При схемно-узловом принципе конструирования на каждой из печатных плат располагают часть полной принципиальной схемы радиоаппарата, имеющую четко выраженные входные и выходные характеристики,

Каскадно-узловой принцип конструирования заключается в том, что принципиальную схему радиоаппарата делят на отдельные каскады, которые не могут выполнять самостоятельных функций.

Функционально-узловой принцип конструирования нашел широкое распространение при разработке больших РЭА. Базовым элементом конструкции здесь является ТЭЗ. Имея необходимый набор ТЭЗ, можно построить целый ряд РЭС с различными техническими характеристиками.

При модульном принципе конструирования основные функциональные узлы взаимосвязаны с помощью одного канала. Чтобы установить связь с модулем-приемником, модуль передатчик посылает нужный сигнал вместе с адресом по шине. Сигналы поступают на входы всех подключенных к каналу модулей, но отвечает только запрашиваемый. Применяя этот принцип, можно построить РЭЛ с практически неограниченной сложностью, сохраняя при этом гибкость в ее организации, так как разработчик использует ровно столько модулей, сколько ему требуется. Разработчик может также легко модернизировать конструкцию, меняя или добавляя отдельные модули и получая при этом различные параметры. Именно по этому принципу построена проектируемая ЛТС.


4.2 Общие требования к конструкции АТС


Конструкция обеспечивает размещение оборудования станции в обычных помещениях с высотой потолка не менее 3 м.

Конструкция обеспечивает установку без фальшпола.

Разработанная аппаратура обеспечивает прочность при транспортировании. Аппаратура в упакованном виде обеспечивает устойчивость к перевозке автотранспортом, в закрытых дорожных вагонах, негерметизированных кабинах самолетов и вертолетов, трюмах речного транспорта.

Аппаратура защищена от внешних электромагнитных излучений.

Конструкция типовых элементов замены предусматривает размещение в ней печатной платы, соответствующей международному стандарту с размерами 233,35 х 280 мм и возможностью установки на ней двух соединителей. При этом типовые элементы замены могут заменяться без какого-либо регулирования. ТЭЗы выполнены быстросъемными и их масса не превышает 2,5 кг.

Конструкция исключает наличие жгутового монтажа. Ввод внешних кабелей возможен как сверху стойки, так и снизу без изменения конструктива.

Конструкция оборудования станции, его размеры, композиция, технические формы и выбор окраски удовлетворяют общим требованиям технической эстетики и эргономики. Конструкция оборудования отвечает антропометрическим требованиям.

Для того, чтобы оборудование выдерживало воздействие климатических факторов, соответствующее группе условий эксплуатации, материалы, металлические, неметаллические и неорганические покрытия выбраны но ГОСТ 15150-69 для климатического исполнения УХЛ.


4.3 Описание конструкции шкафа


Шкаф предназначен для размещения в нем блоков электроники и питания, рисунок 2.

Габаритные размеры шкафа:

- высота - 2200 мм;

- ширина - 986 мм;

глубина - 520 мм.

Шкаф конструктивно состоит из каркаса, боковых обшивок, передней и задней дверей. Каркас выполнен в виде верхней и нижней рам, боковых стоек, верхней и нижней обшивок. Рамы выполнены из одного типа трубы прямоугольного сечения.

Крепления стоек в каркасе к верхней и нижней рамам осуществляется 16-ю болтами М8.

Передняя и задняя стороны шкафа закрываются дверьми, которые крепятся в шкафу при помощи двух торцовых осей и замка с тягами.

Боковые обшивки к стойкам каркаса крепятся при помощи 4-х винтов М8.

Двери представляют собой глухую по высоте листовую сталь с приваренными угольниками, на которых располагаются контактирующие пружины. При помощи этих пружин осуществляется контакт между боковыми обшивками, передней и задней дверьми.

В шкафу обеспечивается электрический контакт между каркасом, боковыми обшивками, передней и задней дверьми.

Для осуществления естественной конвекции воздуха в верхней и нижней обшивках каркаса и дверях предусмотрены вентиляционные отверстия,

В шкафу предусматривается возможность установки дефлекторных пластин для перераспределения воздушных потоков.

Максимальный вес оборудованного шкафа не более 250 кг.


4.4 Описание конструкции кассеты


Корпус кассеты предназначен для размещения в них блоков электроники и питания.

Габаритные размеры корпуса кассеты:

- ширина - 874,18 мм;

- высота - 265,9 мм;

- глубина - 322 мм.

Корпус кассеты представляет собой сборную конструкцию, состоящую из 2-х стенок и 4-х держателей (2-х передних и 2-х задних) одного типоразмера.

Держатели крепятся к стенкам самонарезающими винтами М4. Внутри корпуса кассеты устанавливаются легкосъемные направляющие на 4 блока, которые крепятся с одной стороны при помощи замковой конструкции, с другой стороны (со стороны панели) - входят в паз изолятора соединителей.

Панель крепится к держателям с внешней стороны при помощи планки, которая вставляется в держатель, и винтов МЗ.

На панели запрессовываются вилки соединителей, на хвосты которых устанавливаются изоляторы для подключения, установки и крепления кабельной перемычки.

Для разводки питания на монтажной стороне панели установлены силовые контакты, на которые одеваются наконечники с проводами питания. По панели питание может быть разведено печатью и отдельными проводами.

Шаг установки блоков, размещенных в корпусе кассеты кратен 20,32 мм.

Панель выполнена толщиной не менее 3 мм,


4.5 Описание конструкции блока


Блок состоит из платы печатного монтажа размером 233,35 х 280 мм, на которую устанавливается пластмассовая лицевая панель и два или один электрический соединитель.

На лицевой панели установлены две защелки, которые служат для закрепления блока в каркасе кассеты.

На панели имеются два уступа, служащие для извлечения блока из каркасов или шкафов с помощью съемника.

Если на лицевой панели устанавливаются органы управления и сигнализации, между держателями устанавливается планка, на которой крепятся элементы сигнализации. Соединители устанавливаются вдоль стороны 233,35 мм и крепятся заклепками. Электрическое соединение с ПП осуществляется пайкой в печать.


4.6 Компоновка шкафа


Оборудование в виде блоков размещено в кассетах в шкафу. Каждая кассета образует функционально и конструктивно законченное устройство. Сочетание блоков и их количество в устройствах может изменятся в зависимости от емкости конкретной станции и ее конфигурации. При этом монтажных и конструктивных изменений не требуется. При необходимости в

шкафу при наличии места могут быть размещены дополнительно устройства без каких-либо конструктивных доработок.

В верхней части шкафа установлен швеллер. На нем размещена панель ввода питания, блоки предохранителей с устройствами сигнализации их перегорания и 2 распределительные колодки. На панели ввода расположены клеммы для подключения питания 60 В. С распределительных колодок напряжение - 60 В подается непосредственно на источник вторичного электропитания, а + 60 в на блоки предохранителей. Блоки предохранителей содержат предохранители и схему сигнализации перегорания предохранителей. Блок состоит из лицевой панели, на которой расположен предохранитель, выключатель, при помощи которого можно отключить подаваемое напряжение + 60 В, и светодиод, сигнализирующий перегорание предохранителя, а также печатной платы, на которой размещены схема сигнализации и клеммы, при помощи которых осуществляется подключение блока к плате ввода и вторичному источнику питания.

На каркасе шкафа вдоль вертикальных стоек расположены корпусные шины. Связи их с устройствами осуществляются при помощи кабельных перемычек с наконечниками на концах.

Каркас также имеет клемму с резьбой М6 для подключения защитного заземления.

Все токопроводящие части с напряжением выше 42 В защищены от случайного прикосновения к ним обслуживающего персонала.


5. ВЫБОР СПОСОБОВ И СРЕДСТВ ТЕПЛОЗАЩИТЫ, ГЕРМЕТИЗАЦИИ, ВИБРОЗАЩИТЫ И ЭКРАНИРОВАНИЯ


5.1 Выбор элементов, для которых необходимо проведение подробного расчета теплового режима


Расчет температуры всех входящих в аппарат элементов представляет собой чрезвычайно трудоемкий, а зачастую и практически трудновыполнимый процесс. В связи с этим встает вопрос: для каких элементов необходимо

рассчитывать температуру, чтобы с заданной достоверностью можно было судить о соответствии теплового режима всего аппарата требованиям технического задания [12].

Проанализировав пункт 3.1 данного курсового проекта сведем данные по максимальной рабочей температуре всех радиоэлементов в таблицу 3.


Таблица 5.1 – Максимальные рабочие температуры элементов.

№ п/ п Наименование элемента Количество Максимальная рабочая температура, °С
1 Диод 2Д522Б 1 120
2 Индикатор единичный АЛ3076 1 75
3 Конденсатор К-1 0-1 7, К53-4А 69 85
4 Микросхема серии К170 2 70
5 Микросхема серии КР537 4 70
6 Микросхема серии КР580 2 70
7 Микросхема серии 1810 2 70
8 Микросхема серии 1533 61 70
9 Набор резисторов HP 1-4-9 1 155
10 Резистор С2-ЗЗН 5 85
11 Резонатор РК169МА 1 85

Таким образом, наименее теплостойким элементом являются микросхемы.

5.2 Выбор способа охлаждения на ранней стадии проектирования


Одним из основных вопросов, определяющих эксплуатационную надежность РЭА, является вопрос создания в приборе таких температур, при которых, длительная работа используемых в нем элементов осуществлялась бы в пределах, предусмотренных для них ТУ.

Основная задача обеспечения необходимого теплового режима заключается в создании таких условий, при которых количество тепла, рассеянного в окружающую среду, будет равным мощности тепловыделения аппаратуры. Тогда температура нагретой зоны в приборе перестает нарастать и тепловые параметры при всех прочих равных условиях стабилизируются [12].

При обеспечении необходимого теплового режима РЭА основные трудности связаны с отводом тепла, т.е. охлаждением. Учитывая тип и состояния теплоносителя, а также причину, вызвавшую его движение, способы охлаждения РЭА можно разделить на следующие основные классы: газовое (воздушное), жидкостное, испарительное, а также естественное и принудительное.

Способ охлаждения во многом определяет конструкцию РЭА. Поэтому уже на ранней стадии проектирования, т.е. на стадии технического предложения или эскизного проекта, необходимо выбрать способ охлаждения РЭА, после чего можно приступить к предварительной проработке конструкции. Выбранный способ охлаждения должен обеспечить заданный по ТЗ тепловой режим РЭА, что можно проверить расчетным путем детальной проработки конструкции аппарата либо опытным путем после испытания макета или опытного образца. Следовательно, если на ранней стадии конструирования мы неправильно выберем способ охлаждения, то это обнаружится только на более поздних стадиях конструирования, в результате чего работа будет сведена на нет, а сроки создания РЭА значительно увеличатся. Если к этому добавить, что на ранней стадии конструирования мы располагаем минимальной информацией о конструкции РЭА, то станет очевидным, сколь ответственна и сложна задача выбора способа охлаждения.

Для выбора способа охлаждения прежде всего требуются следующие данные:

- суммарная мощность Р, рассеиваемая в блоке;

- диапазон возможного изменения температуры окружающей

среды Tc max, Tc min;

- пределы изменения давления окружающей среды pmах , pmin;

- время непрерывной работы t;

- допустимые температуры элементов Tj;

- коэффициент заполнения по объему К3

Эти исходные данные недостаточны для детального расчета теплового режима, но их можно использовать для предварительной оценки. Выбор способа охлаждения на ранней стадии конструирования часто имеет вероятностный характер, т.е. дает возможность оценить вероятность обеспечения заданного по ТЗ теплового режима РЭА при выбранном способе охлаждения, а также усилия, которые необходимо затратить при разработке будущей конструкции РЭА с учетом обеспечения теплового режима.

Выбор способа охлаждения можно выполнить с помощью графиков, характеризующих области целесообразного применения различных способов охлаждения [12]. Эти области строятся по результатам обработки статистических данных для реальных конструкций, тепловых расчетов и данных испытания макетов.

Конструкция АТС представляет собой набор шкафов и входящих в них кассет и блоков (см. выше). Таким образом, нам заранее известен применяемый способ охлаждения. Т.к. в конструкции АТС не имеется поверхностей с большими удельными мощностями рассеивания, то применяется естественное воздушное охлаждение с перфорированным кожухом.

5.3 Выбор способов герметизации


Основная цель герметизации - предотвращение воздействия внешних

климатических факторов.

Выбор способа герметизации обуславливается совокупностью требований к конструкции: условиями реализации нормального теплового режима, ремонтопригодностью, элементоемкостью реализуемой схемы, плотностью компоновки, рядом эксплуатационных требований (изменение барометрического давления, механические воздействия, перепады температур) и надежностью [13].

В зависимости от степени чувствительности тех или иных элементов или узлов к воздействию агрессивной среды и от их конструктивных особенностей применяют различные способы герметизации, отличающиеся как методом исполнения, так и сложностью и стоимостью.

Известны способы герметизации с помощью:

- изоляционных материалов;

- непроницаемых для газов оболочек.

Защита изделий изоляционными материалами может производится пропиткой , заливкой, обволакиванием и опрессовкой [11].

Пропитка изделий состоит в заполнении имеющихся в них каналов электроизоляционным материалом. Одновременно с заполнением каналов при пропитке на всех элементах конструкции образуется тонкий изоляционный слой, защищающий их от воздействия агрессивной среды. Одновременно с защитными функциями пропиточный материал повышает электрическую прочность изделия, скрепляет механически его отдельные элементы, во многих случаях улучшает теплопроводность. Пропитку осуществляют погружением изделий в жидкий изоляционный материал. После извлечения изделия материал отвердевает. Процесс отвердения может проходить при нормальной температуре или с внешним подогревом.

При выборе материалов для пропитки необходимо учитывать их нейтральность к элементам пропитываемого изделия, нетоксичность, влаго- и нагревостойкость.

При герметизации заливкой все свободные полости в изделии, в том числе и пространство между элементами и