Дискретный анализ

Содержание


Введение

1.Сколькими способами можно выбрать гласную и согласную буквы из слова «полка»

2.Решить систему уравнений:



3.Решить уравнение:



4.Доказать тождество:


Ш


5.Перечислить элементы множеств AxB и BxA, если , а

6.Упростить выражение


Введение


Основные способы представления информации называются дискретными: это слова и конструкции языков и грамматик – природных и формализованных; табличные массивы реальных данных в технических системах и научно-природных наблюдений; данные хозяйственной, социальной, демографической, исторической статистики и т.п.

Для количественного анализа и вычисления превращений непрерывных процессов приходится их "дискретизировать". Понятно, что математические методы обработки, анализа и превращений дискретной информации необходимы во всех отраслях научной, хозяйственной и социальной сферах. Обычно эти методы изучаются на курсах дискретной математики; иногда применяется определение "конечная математика", или даже "конкретная математика".

Часто для анализа реальных систем с непрерывными конструктивными элементами строятся модели конечной или дискретной математики. Например, классическая транспортная или информационная сеть трактуется как граф с заданными пропускными способностями или массами веток, а геометрическая форма ветки между двумя пунктами-узлами сети не играет роли. Более того, "непрерывное" строение реальной ветки также не работает в сетевой модели: важно, что между двумя узлами а, b сети или нет ветки, или есть ветка с заданными ограничениями c(a, b) объема переноса веществ или информации. В модели хватит задать числа c(a, b) для каждой пары узлов a, b. Если ветки нет, то c(a, b)=0. Такая числовая модель отображения сети идеальна для записи, сохранения и превращений в компьютере.

1.Сколькими способами можно выбрать гласную и согласную буквы из слова «полка»


Решение


Эта задача представляет собой вид классической задачи комбинаторики. Ее разрешение сводится к "правилу произведения". Исходя из которого, если М1, М2, М3, …, Мk – конечные множества и М = М1 х М2 х М3 х … х Мk – их декартовое произведение, то


(1)


Пусть предмет а1 можно выбрать m1 способами, предмет а2 – m2 способами, …, предмет аk – mk способами и пусть выбор предмета а1 не влияет на количество способов выбора предметов а2, …, аk; и т.д. Тогда выбор упорядоченного множества предметов (а1, а2, …, аk) в указанном порядке можно выполнить способами.


(2)


Отсюда – если нам необходимо подсчитать сколькими способами можно выбрать гласную и согласную буквы из слова "полка", то сначала выберем гласную – это можно сделать 2 способами (так как их две), после этого каждой гласной добавим согласную (аналогично 3 способа). По правилу произведения выбор упорядоченного множества гласной и согласной букв составит:


Ответ. n = 6.


2.Решить систему уравнений:



Решение


1.Найдем n из формулы дискретного соединения:


(3)


Из нижеследующего доказательства следует, что:


(4)


Таким образом:



Следовательно .

Подставив значение в формулу дискретной перестановки (5),

(5)


получим:



Сократим m! и (m-2)!:



Решив квадратное уравнение, найдем один подходящий корень .

Проверим правильность решения:



Ответ: , .


3.Решить уравнение:


Решение



Используя формулы дискретной перестановки (5) и соединения (3), получим:



Упростим выражение:



Используя сокращение, получим:




Расписав факториал, получим:



Решим квадратное уравнение:



Ответ:


4.Доказать тождество:


Ш


Решение



Раскроем пары скобок (первое и второе пересечения, третье и четвертое):



Сократим выражение:



Раскроем скобки:


Сократим выражение:



5.Перечислить элементы множеств AxB и BxA, если , а


Решение


Отношения реализуют в математических терминах на абстрактных множествах реальные связи между реальными объектами. Отношения применяют при построении компьютерных баз данных, которые организованы в виде таблиц данных. Связи между группами данных в таблицах описывают языком отношений. Именно данные обрабатываются и превращаются при помощи операций, математически точно определенных для отношений. Такие базы данных называют реляционными и широко используют для сохранения и обработки различной информации: производственной, коммерческой, статической и т.п. Отношения также часто используют в программировании. Такие составляющие структуры данных, как списки, деревья и т.п. обычно используют для описания какого либо множества данных вместе с отношением между элементами этого множества.

Декартовым произведением множеств Х1 х Х2 х … х ХN, называется множество всех возможных упорядоченных наборов (х1, х2, …, хn) с n элементов (которые называют кортежами длины n), в которых первый элемент принадлежит множеству Х1, второй – множеству Х2, n-й – множеству Хn. Декартовое произведение Х х Х х … х Х, в котором одно и то же множество Х умножается n раз само на себя, называют декартовой степенью множества и обозначают Хn. При этом Х1 = Х. Множество Х2 называют декартовым квадратом множества Х, множество Х3 называют декартовым кубом множества Х.

Таким образом, если , а , то:


а)

б) .


Ответ:


, .


6.Упростить выражение



Решение


а) упростим левую часть выражения:



б) упростим правую часть выражения:



в) объединив полученный результат, получим:



Ответ: .

10