Иррациональные уравнения

частей уравнения. После решения обязательно выполняется проверка. Не обращается внимание на то, что иррациональные уравнения могут решаться и с использованием понятия равносильности. В данном параграфе представлены различные виды иррациональных уравнений, которые можно отнести к стандартным и решать одним из следующих методов, а именно:

1) метод перехода к уравнению - следствию с последующей проверкой полученных корней;

2) метод равносильного перехода к уравнению или к смешанной системе;

3) метод введения новой переменной.


2.1 Уравнения вида


Пример 1. Решить уравнение .

Решение. Возведем обе части исходного уравнения в квадрат..

О т в е т: {6}.

Пример 2. Решить уравнение .

Решение. В левой части исходного уравнения стоит арифметический квадратный корень – он по определению неотрицателен, а в правой части – отрицательное число.

Следовательно, уравнение не имеет корней.

О т в е т:.

Запишем равносильность, с помощью которой решаются уравнения данного вида.

, если и не имеет решения, если .

Пример 3. Решить уравнение .

Решение. Возведем обе части исходного уравнения в куб.

; .

О т в е т: {-5}.

Запишем равносильность, с помощью которой решаются уравнения данного вида: .


2.2 Уравнения вида


Довольно часто при решении уравнений данного вида учащиеся используют следующую формулировку свойства произведения «Произведение двух сомножителей равно нулю, когда хотя бы один из них равен нулю». Заметим, что формулировку свойства произведения должна выглядеть следующим образом: « произведение двух сомножителей равно нулю, когда хотя бы один из них равен нулю, а другой при этом имеет смысл».

Запишем равносильность, с помощью которой решаются уравнения данного вида:



Пример 1. Решить уравнение .

Решение.


.

О т в е т: {-2;6}.

Пример 2. Решить уравнение .

Решение. В данном случае уравнение не имеет вида, указанного в заголовке. Следовательно, его необходимо преобразовать. Но сначала найдем ОДЗ переменной .


ОДЗ:


Преобразуем уравнение к виду



При решении уравнения учащиеся часто необоснованно делят обе части уравнения на выражение, содержащее неизвестное (в данном случае, на ), что приводит к потере корня и приобретению «постороннего». Подобные уравнения, содержащие в обеих частях общий множитель, следует решать переносом всех членов в одну часть и разложением полученного выражения на множители.


Решим каждое уравнение из совокупности.


; .

(1).


Учитывая, что ОДЗ: получаем, что уравнение (1) равносильно совокупности:

. Тогда , не удовлетворяет условию

, данное уравнение не имеет корней.

Следовательно, совокупность примет следующий вид:

Вернемся к системе:

О т в е т: {-3;6}.


2.3 Иррациональные уравнения, которые решаются введением новой переменной


При решении различных видов уравнений: рациональных, тригонометрических, показательных часто используется метод введения новой переменной. Новая переменная в уравнениях иногда действительно очевидна, но иногда ее трудно увидеть, а можно выявить только лишь в процессе каких либо преобразований. Бывает полезно ввести не одну, а две переменные. Видим типичные случаи введения новых переменных в иррациональных уравнениях.

Пример 1. Решить уравнение

Решение. Введем новую переменную. Пусть , , где . Получаем, что .Тогда - не удовлетворяет условию

Выполним обратную замену.

О т в е т:{34}.

Пример 2. Решить уравнение

Решение. Уединение радикала и возведение в степень обеих частей уравнения привело бы к громоздкому уравнению. В то же время, если проявить некоторую наблюдательность, то можно заметить, что данное уравнение сводиться к квадратному. Действительно, умножим обе части заданного уравнения на 2, получим, что

Введем новую переменную. Пусть Получаем, что . Тогда - не удовлетворяет условию ,

Выполним обратную замену. Тогда ,

Т.к. исходное уравнение равносильно уравнению то проверка полученных корней не нужна.

О т в е т: {-2;3,5}.

Пример 3. Решить уравнение

Решение. Преобразуем данное уравнение.

Введем новую переменную. Пусть, а Получаем, что . Тогда - не удовлетворяет условию .

Выполним обратную замену. .

О т в е т:{1}.


2.4 Уравнения вида , ,


Данные уравнения можно решить при помощи основного метода решения иррациональных уравнений (возведение в квадрат обеих частей уравнения), но иногда их можно решить и другими методами.

Рассмотрим уравнение (1). Пусть - корень уравнения (1). Тогда справедливо числовое равенство . Найдем разность чисел и , обозначив ее , и запишем данное равенство в виде (2).

Используя, что , запишем равенство (2) в виде . Данное равенство означает, что число есть корень уравнения (3).

Таким образом, уравнение (3) является следствием уравнения (1). Складывая эти два уравнения и умножая полученное уравнение на а, получим уравнение (4), также являющееся следствием уравнения (1). Возведя уравнение (4) в квадрат и решив полученное уравнение, надо выполнить проверку найденных корней, т.е. проверить, являются ли его корни корнями уравнения (1).

Замечание. Отметим, что точно также доказывается, что уравнение (4) есть следствие уравнения .

Пример 1. Решить уравнение (5).

Решение. Разность подкоренных выражений и есть


. ,


то уравнение (6) является следствием исходного уравнения. Тогда, складывая уравнения (5) и (6), получим уравнение (7), также являющееся следствием исходного уравнения (5). Возведем обе части уравнения (6) в квадрат, получим уравнение (8), также являющееся следствием исходного уравнения. Решая уравнение (8), получаем, что ,

Проверкой убеждаемся, что оба этих числа являются корнями исходного уравнения.

О т в е т:.

Замечание. Уравнение вида можно решать умножением обеих частей уравнения на некоторое выражение, не принимающее значение ноль (на сопряженное левой части уравнения т.е.

Пример 2. Решить уравнение (8).

Решение. Т.к. , то умножим обе части уравнения на выражение , являющееся сопряженным левой части уравнения (8). . После приведения подобных слагаемых получаем уравнение (9), равносильное исходному, т.к. уравнение действительных корней не имеет. Складывая уравнения (8) и (9) получаем, что . Тогда

О т в е т:.

Замечание. Также уравнения вида можно решать с помощью ОДЗ уравнения и равносильных переходов от одних уравнений к другим.

Пример 3. Решить уравнение

Решение. Найдем ОДЗ переменной х.

ОДЗ:Следовательно,

На ОДЗ обе части уравнения положительны, поэтому после возведения в квадрат получим уравнение: , равносильное для уравнению



Иногда решения уравнения можно найти, решая его на разных числовых промежутках.

Для любого имеем , а . Следовательно, среди нет решений уравнения .

Для имеем . Следовательно, для . . Тогда . Т.к. , то является корнем уравнения , равносильному уравнению для этих х.

О т в е т: .

Пример 4. Решить уравнение

Решение. Преобразуем исходное уравнение.


Возведем обе части данного уравнения в квадрат.



Проверка показывает, что 5 является корнем исходного уравнения.

Замечание. Иногда значительно проще можно решать уравнения вида , если воспользоваться свойствами монотонности функций, а именно тем, что сумма двух возрастающих функций является возрастающей функцией, и всякая монотонная функция каждое свое значение принимает, лишь при одном значении аргумента. Действительно, функции и - возрастающие. Следовательно, их сумма - возрастающая функция.

Значит, исходное уравнение, если имеет корень, то только один. В этом случае, учитывая, что , подбором легко найти, что 5 является корнем исходного уравнения.

О т в е т:{5}.

Пример 5. Решить уравнение

Решение. Если обе части исходного уравнения возвести в квадрат, то получится довольно сложное уравнение. Поступим по-другому: преобразуем уравнение к виду:



Решим неравенство системы.



Решением системы является множество:


.


Решим уравнение системы.


Убеждаемся, что 2 принадлежит множеству решений неравенства (рис.1).

Замечание. Если решать данное уравнение возведением обеих частей в квадрат, то необходимо выполнить проверку. 2 - целое число, поэтому при выполнении проверки трудностей не возникает. А что касается значения , то подстановка его в исходное уравнение приводит к весьма сложным вычислениям. Однако такой подстановки можно избежать, если заметить, что при этом значении правая часть уравнения принимает отрицательное значение: . Тогда как левая часть уравнения отрицательной быть не может. Таким образом, не является корнем уравнения - следствия данного уравнения. Тем более, это значение не может быть корнем исходного уравнения. Итак, корень уравнения - число 2.

О т в е т:{2}.

Пример 6. Решить уравнение

Решение. Найдем ОДЗ переменной х.


ОДЗ:


Следовательно,

Для любых значений из ОДЗ, удовлетворяющих условию , т.е. для из промежутка левая часть уравнения отрицательна, а первая – неотрицательна, значит, ни одно из этих решением уравнения быть не может.

Пусть . Для таких обе части уравнения неотрицательны, и поэтому оно равносильно на этом множестве уравнению: .

Введем новую переменную. . Получаем, что . Тогда - не удовлетворяет условию , .

Выполним обратную замену.


; ;

.


Тогда - не удовлетворяет условию ,



О т в е т: .

Пример 7. Решить уравнение

Решение. Найдем ОДЗ переменной х.


ОДЗ:


Следовательно, что

Легко видеть, что , т.к. .

Разделим обе части уравнения на . Получаем, что


Преобразуем . Введем