Обзор источников образования тяжелых металлов
При 300° обезвоживается с разложением и потерей кислорода. Растворимость. в воде за 30 суток 0,084 мг/100 г (37°).2.7.4 CoSO4, CoSO4·7H2O (Сульфат кобальта) – применяется для получения кобальта; в стекольной и керамической промышленности в качестве пигмента. Получается: CoSО4 — окислением сульфида кобальта на воздухе или окиси кобальта в токе SO2; CoSO4 ·7Н2O – при взаимодействии окиси, гидроокиси или карбоната кобальта с H2SO4.
Физические свойства. CoSО4 — розовые гигроскопичные кристаллы. При 735є распадается на СоО и SО2. Плотность. 3,71 (25°); растворимость в воде 39,3 г/100 г (25°).
CoSO4·7H2O – карминно-красные кристаллы. Тплавл. 96,8є; плотность 1,948 (25°). При нагревании переходит в CoSO4·6H2O и CoSO4·H2O.
2.7.5 CoCl2, CoCl2·6H2O (хлорид кобальта) – применяется как протрава при крашении тканей, как катализатор, индикаторы влажности. Получается: CoCl2 — прокаливанием порошкообразного Со в атмосфере хлора или обезвоживанием гидратов; CoCl2·6H2O – растворением окислов, или карбоната кобальта в НС1.
Физические свойства. CoCl2—гигроскопичные блестящие голубые кристаллы. Тплавл.724°; Ткип. 1049°; плотность 3,356; растворимость в воде 52,9 г/100 г (20°). CoCl2·6H2O – розовые кристаллы. Плотность. 1,924.
2.7.6 СоСО3 (карбонат кобальта) – применяется для получения СоО и катализаторов. Физические свойства. Розовые кристаллы. При 400° начинает разлагаться. Плотность 4,13; растворимость в воде (под давлением СО2) 0,011 г/100 г (15°).
2.8 ОЛОВО
Содержание олова в земной коре 8·10-3% масс., самородного не встречается, известно 16 минералов, одним из самых распространенных является касситерит (оловянный камень). Встречается олово в природе главным образом в виде минерала касситерита. Применяется для изготовления белой жести, припоев, бронзы, латуни, баббитов, типографских и легкоплавких сплавов, сплавов с титаном и другими металлами, фольги; для лужения; для приготовления зубных амальгам; как сырье для химикатов, для очистки металлургических газов от паров ртути. Получается восстановлением из соединений, образующихся при химической обработке концентратов касситерита.
Физические и химические свойства. Серебристо-белый металл. Один из естественных изотопов 124Sn слаборадиоактивен. Тплавл. 231,9°, Ткип. 2620°. Нижний предел взрывоопасной концентрации оловянной пыли в воздухе 190 г/м3. Устойчиво к кислороду воздуха. Реагирует с галогенами, S, SO3, H2S. Растворимо в минеральных кислотах и в щелочах.
2.8.1 SnO(окись олова (II)) - применяется для изготовления эмали для посуды и получения SnO2, как черный пигмент восстановитель в металлургии. Получается обработкой SnCl раствором щелочи и обезвоживанием выпавшего гидрата окиси при 110°. Разложением SnO2, гидроксида, оксолата,
Физические и химические свойства. Кристаллы. Тплавл. 1040°; Ткип. 1425°; плотность 6,45. Нагревание на воздухе ведет к окислению до SnO2, в вакууме происходит диспропорционирование до SnO2 и Sn.
ПДК – 0,05мг/м3.
2.8.2 SnO2(окись олова (IV)) – применяется для производства силикатных эмалей; глазурей; некоторых видов стекла (например, молочного); керамических изделий; как абразив для полировки мягких материалов. Получается окислением металлического олова при высокой температуре, реже – прокаливанием SnO2 ·nH2O или SnS; окислением SnO кислородом воздуха.
Физические и химические свойства. Белый порошок. Возгоняется при 1850°; плотность 7,04. Стойка к действию водных растворов кислот и щелочей.
ПДК – 0,05мг/м3.
2.8.3 SnCl2 (хлорид олова (II)) – применяется при синтезе органических красителей; в текстильной промышленности, как флюс при электросварке. Получается нагреванием Sn в токе газообразного НС1.
Физические и химические свойства. Белые кристаллы. Тплавл 247є, Ткип 652°; плотность 3,95 (25°). Растворимость в воде 83,9 г/100 г (0°), 269.8 г/100 г (15°). В водных растворах гидролизуется (дымит).
ПДК – 0,5мг/м3.
2.8.4 SnCl4 (хлорид олова (IV)) – применяется в текстильном производстве; как катализатор в синтезе красителей, для утяжеления шелка, обесцвечивания нефтяных масел. Получается действием Сl2 на Sn при высокой температуре. Растворением SnO2 в НС1 получают кристаллогидрат.
Физические и химические свойства. Бесцветная дымящая на воздухе жидкость (технический продукт обычно желтоватый). Тплавл. - 33°; Ткип. 114є, плотность 2,23. Хорошо растворяется в органических жидкостях. При растворении в воде гидролизуется до SnO2
2.8.5 SnH4 (гидрид олова (IV)) – получается восстановлением солей олова (II) водородом или магнием в кислой среде.
Физические свойства. Бесцветный газ. Ткип –52є; плотность 4,3.
2.9 РТУТЬ
Содержание в земной коре 7,0·10-6%, встречается в свободном состоянии, основной минерал киноварь. Встречается ртуть в виде киновари и других минералов, в небольших количествах – самородная; в воздухе производственных помещений – пары, аэрозоль с пылью. Обнаруживается в атмосфере в концентрациях (2—3)·10-5 мг/м3. В небольшом количестве Hg содержится в каменном угле, нефти, торфе и дереве, а при сжигании их может поступать в воздух. Обнаружена в светильном газе в концентрации 0,005 мг/м3. Применяется в приборостроении и электротехнике; в составе припоя, красок для морских судов, амальгам; при электролитическом получении хлора и едкого натра; в производстве уксусной кислоты из ацетилена; в процессе синтеза ртутьорганических соединений; в химико-фармацевтической промышленности; в лабораторной практике. Получается в процессе окислительного обжига руд или рудных концентратов при 700 – 800°; полученная ртуть удаляется затем в виде паров с промышленными газами, конденсируется и очищается промывкой щелочами, азотной кислотой и многократной дистилляцией.
Физические и химические свойства. Серебристый жидкий металл. Тплавл. – 38,87°; т. кип. 356,58°; плотность 13,546. Пары ртути в 7 раз тяжелее воздуха. Растворимость в воде очень мала и увеличивается с повышением, содержания в последней О2. Лучше растворяется в растворе NaCl, образуя двойные соли HgCl; и NaCl; хорошо растворяется в горючей концентрированной H2SO4 или НNО3, в царской водке. Растворяет ряд металлов (Аu, Ag, Zn, Рb, Sn и др.), образуя с ними амальгамы. В обычных условиях на воздухе не окисляется, вступает в реакцию с О2 при повышенных температурах.
ПДК (в воздухе рабочей зоны) – 0,01мг/м3, в воде водоемов 0,0005 мг/л.
2.9.1 HgS(Сульфид ртути, киноварь) – встречается в природе в виде руды. Применяется: природный — основное сырье для производства ртути и в качестве краски, синтетический – для светосоставов на основе CdS и как катализатор. Получается при продолжительном растирании Hg и S или осаждением H2S из растворов окисных солей Hg (черный сульфид), а также растиранием Hg, с серой или полисульфидом калия и последующей обработкой щелочами (красный сульфид).
Физические и химические свойства. Черное аморфное вещество или темно-красные кристаллы. Плотность, соответственно, 7.67 или 8,10. Устойчив на воздухе. Возгоняется при 580є. При комнатной, температуре – практически нелетучее вещество. Растворимость в воде ничтожна; не растворяется в HNO3. Растворяется в 2М растворе HCl при кипячении в присутствии H2O2.
2.9.2 HgCl2 (хлорид ртути (II), сулема) – применяется для получения каломели и других соединений Hg; для консервирования древесины; в гальванопластике; при бронзировании и термической металлизации; в производстве аккумуляторов; в составе красок для подводных частей морских судов; при производстве оловянных и цинковых сплавов с тонкой структурой; при дублении кож; в фотографии; литографии; химико-фармацевтическом производстве; как инсектицид; в лабораторной практике. Получается взаимодействием HgSO4 и NaCl при нагревании; растворением HgO в HCl или воздействием избытка С12 непосредственно на Hg, при температуре близкой к температуре кипения.
Физические и химические свойства. Бесцветные кристаллы. Т. плавл. 277°; Ткип304°; плотность 5,44 (25°). Легко возгоняется. Заметно летуч. Растворимость в холодной воде 6,6% (20°); в горячей – 58,3% (100°), в спирте 33% (25°). Растворяется также в кислотах, эфире, пиридине и в растворе NаС1 с образованием комплексных соединений. Слабый электролит. На свету, особенно в присутствии органических соединений, легко восстанавливается до металлической Hg и каломели.
2.9.3 Hg2Cl2(хлорид ртути (I), каломель) – применяется в медицинской практике; в пиротехнике; при расписывании фарфора. Получается при нагревании смеси Hg и HgCI2; действием НС1 на растворимые соли закисной ртути; сублимацией из смеси Hg2SO4 и NаС1.
Физические и химические свойства. Белый кристаллический порошок. Тплавл. 302є; Ткип. 383,7°; Т сублимации 400°; плотность 7,15; растворимость в воде 0,00014% (0°). Не растворяется в спирте, эфире и разбавленных кислотах. При кипячении растворяется в НС1, и H2SО4. Разлагается при действии щелочей или кипячении водой, при долгом стоянии в присутствии влаги и на свету.
2.9.4 Hg(NO3)2·0,5H2O (нитрат ртути (II), гидрат) - применяется в органическом синтезе; при золочении и бронзировании; в медицине при расписывании фарфора. Получается обработкой Hg или HgO горячей концентрированной HNO3.
Физические и химические свойства. Бесцветные кристаллы. Тплавл.=79°; плотность 4,3 (безв.). В воде гидролизуется, образуя основные соли.
2.9.5 Hg(CN)2 (цианид ртути (II) – применяется при получении дициана; в фотографии; при производстве антисептического мыла; как ядохимикат. Получается растворением HgO в HCN.
Физические и химические свойства. Бесцветный кристаллический порошок, темнеющий на свету. Разлагается при 320°; плотность 4,0. Растворяется в воде и в спирте. В воде почти не диссоциирует.
2.9.6 Hg(SCN)2 (роданид ртути (II)) – применяется в фотографии. Получается осаждением из разбавленных горячих водных растворов Hg(NO3)2 и NH4SCN.
Физические свойства. Бесцветные кристаллы. Разлагаются при нагревании выше 165єС. Слабо растворяется в воде, лучше – в спирте.
2.9.7 Hg(ONC)2 (изоцианат ртути (II), гремучая ртуть) – применяется для изготовления капсюлей-детонаторов. Получается нагреванием ртути в смеси концентрированной HNO3 со спиртом.
Физические свойства. Желтовато-белые кристаллы. Плотность 4,42. Легко взрывается от удара или электрических искр, при нагревании, действии концентрированных кислот. Растворяется в спирте, нашатырном спирте, горячей воде; слабо – в холодной.
2.10 СВИНЕЦ
Содержание в земной коре 1,6·10-3%мас, известно около 80 минералов. Основные источники загрязнений металлургические предприятия не менее 89 тыс.т сточных вод. Встречается свинец в воздухе производственных помещений при нагревании. Применяется в производстве аккумуляторов, кабелей, сплавов; в химическом машиностроении; для защиты от γ-излучения; для получения тетраэтилсвинца и свинцовых пигментов. Получается обжигом PbS последующим восстановлением образовавшейся РbО коксом при 1500°; особо чистый Pb (99,99%)—электролитическим рафинированием.
Физические и химические свойства. Мягкий серый металл. Т.пл327,4є, Ткип. 1740є; плотность 11,3. В разбавленных кислотах практически нерастворим. Растворяется в HNO3, в мягкой воде, особенно хорошо в присутствии О2 воздуха и СО2. При нагревании непосредственно соединяется с О2 воздуха, галогенами, S, Te.
ПДК в воздухе рабочей зоны 0,01мг/м3, в атмосфере 0,003мг/л, в воде 0,03мг/л.
2.10.1 PbО (окись свинца (II), свинцовый глет) – применяется в производстве аккумуляторов, стекла, глазури, эмали олифы; в резиновой промышленности; для получения других соединений Pb. Получается окислением Pb на воздухе при 600°; при очистке Pb от примесей в металлургии; термическим разложением нитрата или карбоната свинца; кипячением Pb(ОН)2 с раствором NaOH.
Физические и химические свойства. Низкотемпературная α-модификация красного цвета (глет) и высокотемпературная β-модификация желтого цвета (массикот). Тплавл. 890°; Ткип. 1473°; плотность 9,53 (α); 8,0 (β); растворимость в воде глета 0,0017 г/100 г (20°), массикота 0,0023 г/100 г(22°). При нагреве на воздухе до 400—500° окисляется до сурика Pb3О4 и нестехиометрических окислов. Выше 200° восстанавливается Н2 и СО до металла.
2.10.2 Pb3О4 (ортоплюмбат свинца, сурик) – применяется для производства аккумуляторов, красок, эмалей, замазок; в цинкографии; книгопечатании; для получения PbО2. Получается нагреванием PbО в присутствии воздуха при 400—500є.
Физические и химические свойства. Красные кристаллы. При нагревании на воздухе выше 550° переходит в PbО. Плотность 8,79. В воде практически не растворяется. В разбавленной HNO3 разлагается с образованием PbО2 и солей Pb(II)
2.10.3 PbО2 (окись свинца (IV)) – применяется в производстве аккумуляторов; спичек; в качестве окислителя. Получается разложением сурика в HNO3; электролитическим окислением солей Pb(II) или действием на их растворы сильных окислителей.
Физические и химические свойства. Известны α и β-модификаций, обе черно-коричневого цвета. При нагревании на воздухе β-форма разлагается выше 280—300є до Pb3О4 и PbО, α-форма – выше 220—230°; плотность 9,67 (α); 9,33 (β). Нерастворима в воде. Сильный окислитель.
2.10.4 PbCl2 (хлорид свинца) – применяется для получения свинцовых пигментов. Получается растворением PbО или 2PbСО3·Pb(ОН)2 в НС1 или растворением гранулированного свинца в HNO3 и осаждением НС1.
Физические и химические свойства. Бесцветные кристаллы. Тплавл. 501°;Ткип. 956°; плотность 5,85, Растворимость в воде 0,673 г/100 г (0°); 3,25 г/100 г (100°). С С1- легко образует комплексные соединения типа MePbС13 и Me2PbCl4. При нагревании во влажном воздухе гидролизуется, а в присутствии Н2 или угля и паров Н2О восстанавливается до металла.
2.10.5 PbJ2 (йодид свинца) – применяется как пигмент для красок (желтая кассельская). Получается осаждением из растворов солей Pb(П) иодидами.
Физические свойства. Желтые кристаллы. Тплавл. 393°; Ткип. 868°; плотность 6,16. Растворимость в воде 0,07 г/100 г (20°), 0,436 г/100 г (100°).
2.10.6 PbСО3 (карбонат свинца) – встречается в виде минерала церуссита. Применяется для получения свинцовых белил. Получается пропусканием СО2 в водный раствор ацетата свинца.
Физические и химические свойства. Бесцветные прозрачные кристаллы. Разлагается при 315°; плотность 6,56. Растворимость в воде 1,1·10-5 г/100 г (20°). В присутствии СО2 растворимость возрастает вследствие образования Pb(НСО3)2. При кипячении в присутствии СО2 и воздуха образуется 2PbСО3·Pb(ОН)2. Взаимодействует с кислотами и щелочами.
2.10.7 2PbСО3·Pb(ОН)2(основной карбонат свинца, свинцовые белила) – применяется как пигмент для красок (в основном – в кораблестроении). Получается кипячением водного раствора PbСО3 при продувании СО2 и воздуха.
Физические и химические свойства. Бесцветные кристаллы или аморфный порошок. Разлагается при 400°; плотность 6,14. Растворяется в воде в присутствии СО2.
2.10.8 Pb(NO2)3 (нитрат свинца) – применяется в пиротехнике и для получения других соединений свинца. Получается растворением Pb, PbО или свинцовых белил в горячей разбавленной HNO3.
Физические и химические свойства. Бесцветные прозрачные кристаллы. Разлагается при 470°; плотность 4,53; n = 1,7815. Растворимость в воде 52,2 г/100 г (20°),. 127г/100г(100є). При 205—223є действует как сильный окислитель, распадаясь на PbО, NO2 и О2.
2.10.9 PbSO4 (сульфат свинца) – встречается в виде минерала англезита. Применяется как добавка к некоторым лакам и краскам (для повышения атмосферостойкости); для получения металлического Pb и других соединений Pb. Получается осаждением H2SO4 из растворов ацетата или нитрата свинца окислением металлического Pb или PbS дымящей H2SO4.
Физические и химические свойства. Бесцветные кристаллы. Разлагается при 1000єС, плотность 6,2. Растворимость в воде 0,0045 г/100 г (25°); 0,0057 г/100 г (50°), растворим НС1, HNO3, H2SO4. В растворе соды переходит в карбонат свинца. Уголь и водород при температуре красного каления восстанавливают PbSO4 до сульфида.
2.10.10 PbS (сульфид свинца) – встречается в виде минерала галенита («свинцовый блеск») главного компонента свинцовых руд. Применяется для выплавки металлического Pb; для изготовления. фторосопротивлений. Получается сплавлением Pb с S; осаждением H2S из солей Pb(II).
Физические и химические свойства. Сине-серые кристаллы. Тплавл. 1114є, Ткип. 1281°; плотность 7,5. В воде, щелочах, разбавленных НС1 и H2SО4 практически нерастворим; растворяется разбавленной HNO3; конц. НС1 и H2SO3 разлагают PbS с выделением H2S; конц.HNO3 окисляет PbS до сульфата.
2.10.11 PbCrO4 (хромат свинца) – встречается в виде минерала крокоита («красная свинцовая руда»). Применяется в составе минеральных красок (кроны) и в качестве окислителя. Получается обменным взаимодействием нитрата свинца и хромата калия.
Физические и химические свойства. Желтые, оранжево-красные или темно-коричневые кристаллы. Разлагается при нагреве. Тплавл. 844°; плотность 6.12 (15є). Растворимость в воде 5,8·10-6 г/100 г (25°). Растворяется в минеральных кислотах. При нагревании выше температуры плавления обладает окислительными свойствами.
2.10.12 PbSiO3 (cиликат свинца) – применяется вместе с полисиликатами для приготовления глазурной фритты; в качестве стабилизатора в производстве пластмасс.
Физические и химические свойства. Бесцветные кристаллы. Тплав. 766є, плотность 6,49; п = 1,961, Нерастворим в воде, Реагирует с кислотами.
2.10.13 PbHAsO4 (гидроортоарсенат свинца, кислый джипсин) – применяется в качестве инсектицида. Получается взаимодействием нитрата свинца и гидроортоарсената натрия (обычно джипсив содержит еще основной арсенат свинца).
Физические свойства. Белые кристаллы. Разлагается при 200°С, плотность 5,79. В холодной воде нерастворим, в горячей слаборастворим.
2.10.14 Pb3(AsO4)2 (ортоарсенат свинца) – применяется для борьбы с вредителями сельского хозяйства. Получается взаимодействием ацетата свинца с арсенатом натрия или электролизом арсената натрия на свинцовом аноде.
Физические и химические свойства. Белые кристаллы. Т. плавл. 1042°(с разл.); плотность 7,30. Весьма слабо растворим в воде. Реагирует с HNO3.
2.10.15 Pb(C2H3O2)2, Pb(C2H3O2)2·3H2O (ацетат свинца, свинцовый сахар) – применяется при ситцепечатании и крашении тканей; для получения других соединений Pb, свинцовых белил и некоторых минеральных красок. Получается растворением РЬО в уксусной кислоте.
Физические и химические свойства. Бесцветные кристаллы. Безводный: Тплавл. 280°; плотность 3,25; растворимость в воде 19.7 г/100 г (0°). Трехводный: Тплавл. 75°; плотность 2,55. В горячей воде обе соли растворяются хорошо. Водная соль при плавлении переходит в безводную, на воздухе выветривается, переходя в карбонат.
2.11 СУРЬМА
Содержание сурьмы в земной коре 5·10-5% масс. Применяется в сплавах для типографских шрифтов и стереотипов, подшипников, дроби, пуль; при горячем цинковании кровельного железа, посуды; при изготовлении пластин свинцовых аккумуляторов. Получается сплавлением сурьмянистых руд, в основном сульфида сурьмы (Ш) с железной стружкой; образовавшиеся окислы сурьмы восстанавливают плавкой с углем; обогащенный концентрат выщелачивают щелочью и осаждают металлическую сурьму электролизом.
Физические и химические свойства. Серебристо-белый хрупкий металл. Тплавл. 627°; Т.кип. 1625°; плотность 6,684 (25°); нерастворима в воде.
ПДК в воздухе рабочей зоны 0,5мг/м3, в атмосфере воздуха 0,01мг/м3, в воде 0,05мг/м3.
2.11.1 Sb2O3 (Окись сурьмы (III)Сурьмянистый ангидрид) – применяется для красок, эмалей; как протрава в текстильной промышленности; для изготовления оптического стекла и получения металлической сурьмы. Получается обжигом сурьмянистых руд при 1000°. Чистую Sb2O3 получают гидролизом хлорида сурьмы (III) или окислением металлической сурьмы с последующей очисткой.
Физические и химические свойства. Устойчивая ниже 570° кубическая модификация – бесцветные кристаллы. Тплавл. 656°; Ткип. 1425°; плотность 5,19; легко возгоняется; растворимость в воде 0,0016г/100г(15°); 0,001 г/100 г (100°). Амфотерный окисел взаимодействует с кислотами и щелочами. Туман, образуемый парами Sb2O3, и ее взвешенная пыль устойчиво держатся в воздухе.
ПДК в воздухе рабочей зоны – 1,0мг/м3.
2.11.2 Sb2O5(Окись сурьмы (V), Сурьмяный ангидрид) – применяется в производстве стекла, керамики, красок и лаков; в текстильной, резиновой, фармацевтической промышленности, как компонент люминесцентных покрытий ламп дневного света. Получается окислением металлической сурьмы конц. HNO3 и прокаливанием образовавшегося гидрата окиси сурьмы.
Физические и химические свойства. Светло-желтые кристаллы. При нагреве выше 357° разлагается (образуя Sb2O4), не доходя до плавления. Плотность 3,78; растворимость в воде 0,3 г/100 г. Взаимодействует с НСl, HI; не вступает в реакцию с концентрированной HNO3; с расплавленными и водными щелочами образует антимонаты.
ПДК в воздухе рабочей зоны 2,0 мг/м3.
2.11.3 SbOKC4H4O6Ч0,5H2O (Антимонилтартрат калия, рвотный камень) – применяется в качестве протравы в ситцепечатании. Получается при действии Sb2O3 на водный раствор гидротартрата калия.
Физические свойства. Бесцветные кристаллы. При нагреве до 100° обезвоживается. Плотность 2,60; растворимость в воде 5,26 г/100 г (8,7°), 3,57 г/100 г (100°).
2.11.4 SbF3(Фторид сурьмы (III)) – применяется при электролитическом рафинировании металлической сурьмы в текстильной промышленности (протрава); при производстве тефлона, как фторирующнй агент в органическом синтезе. Получается растворением Sb2(SО4)3 или SbCl3 в плавиковой кислоте.
Физические свойства. Бесцветные кристаллы. Т. плавл. 292°, Т. кип. 319°, плотность 4,385; растворимость в воде 444,7 г/100 г (20°).
2.11.5 SbCl3 (Хлорид сурьмы (III) – применяется для получения чистой Sb2O3; в текстильной промышленности (протрава); в медицине. Получается хлорированием металлической сурьмы; растворением металлической сурьмы или ее окислов в НСl и Sb2S3 в горячей концентрированной НС1.
Физические и химические свойства. Бесцветные расплывающиеся на воздухе кристаллы. Т.плавл. 73,4°; т. кип. 218,6°; плотность 3,14. Взаимодействует с НС1 и H2SO4; с водой образует НС1 и SbOCl.
2.11.6 SbCl5 (хлорид сурьмы (V)) – применяется в органическом синтезе. Получается при нагревании металлической сурьмы с хлором или хлорированием SbCl3.
Физические и химические свойства. Жидкость лимонно-желтого цвета с неприятным запахом, дымящая на воздухе. Тплавл. 2,8°; Ткип. 140° (разд.); 102є (68 мм рт. ст.); плотность 2,336. Растворяется в НС1 и органических растворителях; с водой образует H3SbO4.
2.11.7 Sb2S3 (Сульфид сурьмы (III)) – встречается в виде минерала антимонита (стибнита, сурьмяного блеска). Применяется для получения металлической сурьмы и ее соединений; в пиротехнике; в спичечном, керамическом и стекольном производствах; в ветеринарии. Получается выплавкой из сурьмяных руд в восстановительной атмосфере при 650—800°; действием H2S на водные растворы галогенидов сурьмы.
Физические и химические свойства. Кристаллическая модификация: Тплавл. 548°; Ткип. 990°; плотность 4,64; растворимость в воде 0,00017 г/100 г (18°). При нагревании на воздухе до 340° образуется Sb2S3. Пары быстро оседают в воздухе.
2.11.8 Sb2S5 (сульфид сурьмы (V)) – применяется при вулканизации и окраске каучука; в производстве спичек; в пиротехнике, ветеринарии. Получается кипячением Sb2S5 или концентрата сурьмяной руды с гидросульфидом натрия или со взвесью серы в растворе NaOH: полученную кристаллизацией смесь натриевых солей сурьмяной и тиосурьмяной кислот разлагают разбавленной H2SО4.
Физические и химические свойства. Аморфный оранжево-красный порошок. При 170° разлагается, переходя в Sb2S3; плотность 4,12. Легко воспламеняется. Нерастворим в воде, растворяется в растворах щелочей и сульфидов щелочных металлов.
2.12 МОЛИБДЕН
Содержание в земной коре около 3·10-4масс., в рудах Мо ассоциируется с шелитом, вольфрамитом, касситеритом, сульфидами Cu и Fe, иногда с бериллом. Встречается в природе в виде минералов, основной из них—молибденит. Применяется в виде чистого Мо и ферромолибдена в производстве сталей и сплавов; как материал для ядерных реакторов; в электро- и радиотехнике; в нагревателях высокотемпературных печей; в реактивных двигателях. Получается при окислительном обжиге молибденовых концентратов (550 – 600°) и восстановлении полученной МоО3.
Физические и химические свойства. Светло-серый металл. Тплавл. 2620є; Ткип. 4800°; плотность 10,2. Компактный Мо устойчив на воздухе. При нагревании до 600° и выше постепенно окисляется до МоО3. Порошкообразный Мо окисляется при более низких температурах, наиболее мелкий самовозгорается на воздухе.
2.12.1 MoO2 (окись молибдена (IV)) – применяется как катализатор в. химической и нефтяной промышленности. Получается при частичном восстановлении МоО3; при умеренном окислении Мо.
Физические и химические свойства. Коричневые (бурые) кристаллы. Плотн.6,44. В вакууме медленно сублимирует при 1100є. В HNO3 окисляется до МоО3.
2.12.2 МоО3 (окись молибдена (VI), молибденовый ангидрид) – встречается в виде высокодисперсного аэрозоля конденсации при плавке легированных сталей и в производстве молибдена. Применяется как катализатор в химической и нефтяной промышленности для получения металлического Мо. Получается при прокаливании молибденовой кислоты или парамолибдата аммония при 450—500° или при окислении металлического Мо.
Физические и химические свойства. Белый порошок с зеленоватым оттенком Ткип. 1155°С; плотность 4,69; выше 650°С сублимируется.
2.12.3 Na2МоО4 (молибдат натрия) – применяется в производстве лаков и красок. Получается сплавлением NaОH с МоО3, .растворением МоО3 в избытке раствора щелочи.
Физические свойства. Бесцветные кристаллы. Тплавл. 687°; плотность 3,28(18є); Растворимость в воде 44,2г/100г (0°);83.7 г/100r (100°).
2.12.4 (NH4)2MoO4 (молибдат аммония) – получается при добавления спирта к сильно аммиачным растворам МоО3.
Физические и химическое свойства. Белые, призмы (под давлением аммиака). Плотность 2,27. Стоек в водных растворах, содержащих избыток NH3. Легко теряет NH3 при 20°.
2.12.5 (NH4)6Mo7O24·4H2O (парамолибдат аммония) – встречается в процессе получения молибдена. Применяется для получения других соединений молибдена; как катализатор в органическом синтезе; в производстве лаков и красок для шерсти и шелка; в производстве микроудобрения и добавок для корма скоту. Получается при выщелачивании NH3 продуктов окислительного обжига концентратов и последующей очистке.
Физические и химические свойства. Бесцветные или слабо-желтые кристаллы. Плотность 2,27. Растворимость в воде 300 г/л (20°), 500 г/л (80—90°). При 110° начинает терять воду.
2.12.6 МоCl5 (хлорид молибдена (V)) – применяется как промежуточный продукт при получении карбонила молибдена. Получается при действии хлора на порошок металлического Мо; при хлорировании МоО3 избытком CCl4.
Физические и химические свойства. Фиолетово-черные кристаллы. Тплавл. 194°; Ткип. 268°; плотность 2,928. Растворим в органических растворителях, Водой гидролизуется.
2.12.7 MoS2 (сульфид молибдена (IV)) – применяется молибденит для получения Мо; чистый MoS2 – как смазка в подшипниках и других истирающихся деталях. Получается сплавлением МоО3 или СаМоО4 с поташом и серой.
Физические и химические свойства. Молибденит — кристаллы серого цвета. Тплавл. 1300° (разл.); плотность 4,8. При 400—600° окисляется до МоО3. Практически нерастворим в воде; растворяется в царской водке и горячих конц. HNO3 и H2SO4.
2.12.8 Мо2С(карбид молибдена (II.) – применяется в производстве сталей; в качестве антикоррозионного, жаропрочного и жаростойкого материала; в качестве восстановителя, раскислителя, катализатора. Получается прокаливанием при высоких температурах смеси Мо или его окисла с углем в атмосфере инертного или восстановительного газа.
Физические и химические свойства. Кристаллический металлоподобный продукт. Тплавл. 2690°; плотность 8,9. Растворяется в горячей смеси HF и HNO3; в горячих растворах или расплавах щелочей в присутствии окислителя.
2.12.9 MoSi2 (силицид молибдена) – применяется как высокотемпературный припой; как нагреватель в электро печах. Получается взаимодействием Мо с Si при температуре выше 1200°.
Физические и химические свойства. Металлоподобное соединение. Тплавл. 2050°; плотность 6,24. Слабо растворяется в кислотах. Разлагается растворами щелочей.
ЗАКЛЮЧЕНИЕ
Из выше перечисленных соединений наиболее токсичными соединениями являются соединения ртути, сурьмы и кобальта. Переработку соединений ртути осуществляют в зависимости от категории отхода, но в некоторых случаях ее консервируют и отправляют на захоронение. Сурьма и кобальт содержаться в шлаках, аккумуляторов и перерабатываются в комплексе со свинцом, вольфрамом и др.
Соединения хрома 6+ наиболее токсичны среди остальных соединений хрома, а металлический хром мало токсичен. Предложено несколько способов по очистке сточных вод гальванических производств, а также существуют способы по переработке хромовых катализаторов. Также передложены способы по переработке из отработанных никель-хромовых катализаторов, вольфрам содержащих отработанных катализаторов. Разработаны и внедрены гидрометаллургические схемы извлечения вольфрама из пылевидных отходов от заточки твердосплавного инструмента.
Сернокислый цинк, отработанные катализаторы, шламы вискозного производства, нашатырные опады не используются из-за отсутствия специализированных мощностей для их переработки, показали возможность переработки отработанных катализаторов (45—70 % цинка, 10—15 % меди, 30—40 % окиси хрома, 10—12 % окиси железа, 10—12 % сульфидной серы) с высоким извлечением цинка и меди по стандартной гидрометаллургической схеме, применяемой на цинковых заводах.
При переработке цинксодержащих железных руд на ряде предприятий черной металлургии при очистке газов доменного и мартеновского производства образуются шламы, которые складируются на больших земельных площадях. Высокое содержание в них цинка и железа (до 13 и 35 % соответственно) делает их ценным сырьем, использование которого в народном хозяйстве требует разработки экономически целесообразных схем комплексной переработки.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
Вторичные материальные ресурсы цветной металлургии. Справочник. Экономика, М., 1984.
Мазаник В.Н. и др. Получение сухих цинковых белил при перерабоке вторичного медно-цинкового сырья. – Цветные металлы, 1977, №5.
Гудкевич В.М. и др. Способы переработки лома свинцовых аккумуляторов. М.: Цветметинформация, 1970.
Колодин С.М. Вторичное олово и переработка бедного оловянного сырья. М.: Металлургия, 1970.
Основы металлургии. Т. 5. Малые благородные и радиоактивные металлы. Трансурановые элементы. М.: Металлургия, 1979.
Химия и технология соединений хрома. Тр. УНИХИМ, Свердловск, 1985, вып.60.
Химическая энциклопедия. Т.5.
Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей. Том 3. Неорганические и элементорганические соединения. Под. ред. проф. Н.В. Лазарева. Л. «Химия», 1977.
Химическая энциклопедия. Т.2.
Вторичные материальные ресурсы нефтеперерабатывающей и нефтехимической промышленности. Справочник. Экономика, М., 1984.
Вторичные материальные ресурсы номенклатуры Госснаба СССР. Справочник. Экономика, М., 1987
Химия и технология молибдена и вольфрама.Сб тезисов.,1980.
Химия и технология производства молибдена.Сб. статей.,1966.
Химия и технология соединений марганца.Сб статей.,1975.
Химия и технология соединений хрома.Сб статей.,1978.
Химия и технология соединений хрома.Сб статей.,1981.
Роде Т.В. Кислородные соединения хрома и хромовые катализаторы. М., Изд-во Акад. наук СССР, 1962.
Химия и технология хромовых соединений. Сб статей.,1966.
Роде Е.Я. Кислородные соединения марганца. Исходные соединения, минералы и руды. М., 1952.
Пеньков В.В., Центер Б.И. Основы теории и эксплуатации герметичных никель-кадмиевых аккумуляторов, 1985.
Грачев К.Л. Щелочные аккумуляторы, 1951
Железо-никелевые аккумуляторы. Информационный сборник.