Потери электроэнергии в распределительных электрических сетях

распределительных электрических сетях" width="238" height="53" align="BOTTOM" border="0" />, (2.8)


Или


, (2.9)


где kфР и kфQ - коэффициенты формы графиков активной и реактивной мощности;

Uэк - эквивалентное напряжение сети, учитывающее изменение фактического напряжения как во времени, так и вдоль линии.

Если графики Р и Q на головном участке не регистрируются, коэффициент формы графика рекомендуется определять по (2.7).

Эквивалентное напряжение определяют по эмпирической формуле:


, (2.10)


где U1, U2 - напряжения в ЦП в режимах наибольших и наименьших нагрузок; k1 = 0,9 для сетей 0,38-6-10 кВ. В этом случае формула (2.8) приобретает вид:


, (2.11)


где kф2 определяют по (2.7), исходя из данных о коэффициенте заполнения графика активной нагрузки. В связи с несовпадением времени замера токовой нагрузки с неизвестным временем ее действительного максимума формула (2.9) дает заниженные результаты. Устранение систематической погрешности достигается увеличением значения, получаемого по (2.9), в 1,37 раза. Расчетная формула приобретает вид:


. (2.12)


Эквивалентное сопротивление линий 0,38-6-10 кВ при неизвестных нагрузках элементов определяют исходя из допущения одинаковой относительной загрузки трансформаторов. В этом случае расчетная формула имеет вид:


, (2.13)


где Sтi - суммарная номинальная мощность распределительных трансформаторов (РТ), получающих питание по i-му участку линий сопротивлением Rлi,

п - число участков линий;

Sтj - номинальная мощность i-го PТ сопротивлением Rтj;

т - число РТ;

Sт. г - суммарная мощность РТ, присоединенных к рассматриваемой линии.

Расчет Rэк по (2.13) предполагает обработку схемы каждой линии 0,38-6-10 кВ (нумерацию узлов, кодирование марок проводов и мощностей РТ и т.п.). Вследствие большого числа линий такой расчет Rэк может быть затруднительным из-за больших трудозатрат. В этом случае используют регрессионные зависимости, позволяющие определять Rэк, исходя из обобщенных параметров линии: суммарной длины участков линии, сечения провода и длины магистрали, разветвлений и т.п. Для практического использования наиболее целесообразна зависимость:


, (2.14)


где RГ - сопротивление головного участка линии;

lма, lмс - суммарные длины участков магистрали (без головного участка) с алюминиевыми и стальными проводами соответственно;

lоа, lос - то же участков линии, относящихся к ответвлениям от магистрали;

FM - сечение провода магистрали;

а1 - а4 - табличные коэффициенты.

В связи с этим зависимость (2.14) и последующее определение с ее помощью потерь электроэнергии в линии целесообразно использовать для решения двух задач:

определения суммарных потерь в k линиях как суммы значений, рассчитанных по (2.11) или (2.12) для каждой линии (в этом случае погрешности уменьшаются приблизительно в √k раз);

определения линий с повышенными потерями (очаги потерь). К таким линиям относят линии, для которых верхняя граница интервала неопределенности потерь превышает установленную норму (например, 5%).

3. Программы расчета потерь электроэнергии в распределительных электрических сетях


3.1 Необходимость расчета технических потерь электроэнергии


В настоящее время во многих энергосистемах России потери в сетях растут даже при уменьшении энергопотребления. При этом увеличиваются и абсолютные, и относительные потери, которые кое-где уже достигли 25-30%. Для того, чтобы определить, какая доля этих потерь приходится действительно на физически обусловленную техническую составляющую, а какая на коммерческую, связанную с недостоверностью учета, хищениями, недостатками в системе выставления счетов и сбора данных о полезном отпуске, необходимо уметь считать технические потери [6].

Нагрузочные потери активной мощности в элементе сети с сопротивлением R при напряжении U определяют по формуле:


, (3.1)


где P и Q - активная и реактивная мощности, передаваемые по элементу.

В большинстве случаев значения Р и Q на элементах сети изначально неизвестны. Как правило, известны нагрузки в узлах сети (на подстанциях). Целью электрического расчета (расчета установившегося режима - УР) в любой сети является определение значений Р и Q в каждой ветви сети по данным их значений в узлах [1]. После этого определение суммарных потерь мощности в сети представляет собой простую задачу суммирования значений, определенных по формуле (3.1).

Объем и характер исходных данных о схемах и нагрузках существенно различаются для сетей различных классов напряжения [4].

Для сетей 35 кВ и выше обычно известны значения P и Q в узлах нагрузки. В результате расчета УР выявляются потоки Р и Q в каждом элементе.

Для сетей 6-10 кВ известен, как правило, лишь отпуск электроэнергии через головной участок фидера, т.е. фактически суммарная нагрузка всех ТП 6-10/0,38 кВ, включая потери в фидере. По отпуску энергии могут быть определены средние значения Р и Q на головном участке фидера. Для расчета значений Р и Q в каждом элементе необходимо принять какое-либо допущение о распределении суммарной нагрузки между ТП. Обычно принимают единственно возможное в этом случае допущение о распределении нагрузки пропорционально установленным мощностям ТП. Затем с помощью итерационного расчета снизу вверх и сверху вниз корректируют эти нагрузки так, чтобы добиться равенства суммы узловых нагрузок и потерь в сети заданной нагрузке головного участка. Таким образом, искусственно восстанавливаются отсутствующие данные об узловых нагрузках, и задача сводится к первому случаю.

В описанных задачах схема и параметры элементов сети предположительно известны. Отличием расчетов является то, что в первой задаче узловые нагрузки считаются исходными, а суммарная нагрузка получается в результате расчета, во второй - известна суммарная нагрузка, а узловые нагрузки получают в результате расчета.

При расчете потерь в сетях 0,38 кВ при известных схемах этих сетей теоретически можно использовать тот же алгоритм, что и для сетей 6 - 10 кВ. Однако большое количество линий 0,4 кВ, сложности введения в программы информации по поопорным (постолбовым) схемам, отсутствие достоверных данных об узловых нагрузках (нагрузках зданий) делает такой расчет исключительно трудным, и, главное, неясно, достигается ли при этом желаемое уточнение результатов. Вместе с тем, минимальный объем данных об обобщенных параметрах этих сетей (суммарная длина, количество линий и сечения головных участков) позволяет оценить потери в них с не меньшей точностью, чем при скрупулезном поэлементном расчете на основе сомнительных данных об узловых нагрузках.


3.2 Применение программного обеспечения для расчета потерь электроэнергии в распределительных сетях 0,38 - 6 - 10 кВ


Одним из наиболее трудоемких является расчет потерь электроэнергии в распределительных сетях 0,38 - 6 - 10 кВ, поэтому для упрощения проведения подобных расчетов было разработано множество программ, основанных на различных методах. В своей работе я рассмотрю некоторые из них.

Для расчета всех составляющих детальной структуры технологических потерь мощности и электроэнергии в электрических сетях, нормативного расхода электроэнергии на собственные нужды подстанций, фактических и допустимых небалансов электроэнергии на энергообъектах, а также нормативных характеристик потерь мощности и электроэнергии был разработан комплекс программ РАП - 95 [1], состоящий из семи программ:

РАП - ОС, предназначенной для расчета технических потерь в замкнутых сетях 110 кВ и выше;

НП - 1, предназначенной для расчета коэффициентов нормативных характеристик технических потерь в замкнутых сетях 110 кВ и выше на основе результатов РАП - ОС;

РАП - 110, предназначенной для расчета технических потерь и их нормативных характеристик в радиальных сетях 35 - 110 кВ;

РАП - 10, предназначенной для расчета технических потерь и их нормативных характеристик в распределительных сетях 0,38-6-10 кВ;

РОСП, предназначенной для расчета технических потерь в оборудовании сетей и подстанций;

РАПУ, предназначенной для расчета потерь, обусловленных погрешностями приборов учета электроэнергии, а также фактических и допустимых небалансов электроэнергии на объектах;

СП, предназначенной для расчета показателей отчетных форм на основе данных об отпуске электроэнергии в сети разных напряжений и результатов расчета по программам 1-6.

Остановимся подробнее на описании программы РАП - 10, которая осуществляет следующие расчеты:

определяет структуру потерь по напряжениям, группам элементов;

рассчитывает напряжения в узлах фидера, потоки активной и реактивной мощности в ветвях с указанием их доли в суммарных потерях мощности;

выделяет фидеры, являющиеся очагами потерь, и рассчитывает кратности повышения норм нагрузочных потерь и потерь холостого хода;

рассчитывает коэффициенты характеристик технических потерь по ЦП, РЭС и ПЭС.

Программа позволяет рассчитывать потери электроэнергии в фидерах 6-10 кВ двумя методами:

средних нагрузок, когда коэффициент формы графика определяется на основе заданного коэффициента заполнения графика нагрузки головного участка kз или принимается равным измеренному по графику нагрузки головного участка. В этом случае значение kз должно соответствовать расчетному периоду (месяцу или году);

расчетных суток (типовых графиков), где заданное значение kф2 должно соответствовать графику рабочих суток.

Также в программе реализованы два оценочных метода расчета потерь электроэнергии в сетях 0,38 кВ:

по суммарной длине и количеству линий с различными сечениями головных участков;

по максимальной потере напряжения в линии или ее среднем значении в группе линий.

В обоих методах задается энергия, отпущенная в линию или группу линий, сечение головного участка, а также значение коэффициента разветвленности линии, доля распределенных нагрузок, коэффициент заполнения графика и коэффициент реактивной мощности.

Расчет потерь может проводиться на уровне ЦП, РЭС или ПЭС. На каждом уровне выходная печать содержит структуру потерь во входящих в этот уровень составляющих (на уровне ЦП - по фидерам, на уровне РЭС - по ЦП, на уровне ПЭС - по РЭС), а также суммарные потери и их структуру.

Для более легкого, быстрого и наглядного формирования расчетной схемы, удобного вида предоставления результатов расчета и всех необходимых данных для анализа этих результатов была разработана программа "Расчет технических потерь (РТП)" 3.1 [5].

Оглавление базы данных по электрическим сетям представлено таким образом, чтобы пользователь всегда быстро мог найти нужный фидер по принадлежности к району электрических сетей, номинальному напряжению, подстанции.

Ввод схемы в данной программе существенно облегчается и ускоряется набором редактируемых справочников. При возникновении каких-либо вопросов во время работы с программой всегда можно обратиться за помощью к справке или к инструкции пользователя. Интерфейс программы удобен и прост, что позволяет сократить затраты труда на подготовку и расчет электрической сети.

На рис.1 представлена расчетная схема, ввод которой осуществляется на основе нормальной оперативной схемы фидера. Элементами фидера являются узлы и линии. Первый узел фидера - это всегда центр питания, отпайка - точка соединения двух или более линий, трансформаторная подстанция - узел с ТП, а также переходные трансформаторы 6/10 кВ (блок - трансформаторы). Линии бывают двух типов: провода - воздушная или кабельная линия с длиной и маркой провода и соединительные линии - фиктивная линия с нулевой длиной и без марки провода. Изображение фидера можно увеличивать или уменьшать с помощью функции изменения масштаба, а также передвигать по экрану полосами прокрутки или мышкой.

Параметры расчетной схемы или свойства любого ее элемента доступны для просмотра в любом режиме. После расчета фидера дополнительно к исходной информации об элементе в окно с его характеристиками добавляются результаты расчета.


рис.1. Расчетная схема сети.


Расчет установившегося режима включает в себя определение токов и потоков мощностей по ветвям, уровней напряжения в узлах, нагрузочных потерь мощности и электроэнергии в линиях и трансформаторах, а также потерь холостого хода по справочным данным, коэффициентов загрузки линий и трансформаторов. Исходными данными для расчета являются измеренные ток на головном участке фидера и напряжение на шинах 0,38 - 6 - 10 кВ в режимные дни, а также нагрузка на всех или части трансформаторных подстанций [6]. Кроме указанных исходных данных для расчета предусмотрен режим задания электроэнергии на головном участке. Возможна фиксация даты расчета.

Одновременно с расчетом потерь мощности ведется расчет потерь электроэнергии. Результаты расчета по каждому фидеру сохраняются в файле, в котором они суммируются по центрам питания, районам электрических сетей и всем электрическим сетям в целом, что позволяет проводить подробный анализ результатов.

Детальные результаты расчета состоят из двух таблиц с подробной информацией о параметрах режима и результатах расчета по ветвям и узлам фидера. Подробные результаты расчета, можно сохранять в текстовом формате или формате Excel. Это позволяет использовать широкие возможности этого Windows - приложения при составлении отчета или анализе результатов.

В программе предусмотрен гибкий режим редактирования, который позволяет вводить любые необходимые изменения исходных данных, схем электрических сетей: добавить или отредактировать фидер, название электрических сетей, районов, центров питания, отредактировать справочники. При редактировании фидера можно изменить расположение и свойства любого элемента на экране, вставить линию, заменить элемент, удалить линию, трансформатор, узел и др.

Программа РТП 3.1 позволяет работать с несколькими базами данных, для этого необходимо только указать к ним путь. Она выполняет различные проверки исходных данных и результатов расчета (замкнутость сети, коэффициенты загрузки трансформаторов, ток головного участка должен быть больше суммарного тока холостого хода установленных трансформаторов и др.)

В результате коммутационных переключений в ремонтных и послеаварийных режимах и соответствующего изменения конфигурации схемы электрической сети могут возникнуть недопустимые перегрузки линий и трансформаторов, уровни напряжения в узлах, завышенные потери мощности и электроэнергии в сети. Для этого в программе предусмотрена оценка режимных последствий оперативных переключений в сети, а также проверка допустимости режимов по потере напряжения, потерям мощности, току нагрузки, токам защиты. Для оценки таких режимов в программе предусмотрена возможность переключении отдельных участков распределительных линий с одного центра питания на другой, если имеются резервные перемычки. Для реализации возможности коммутационных переключений между фидерами различных ЦП необходимо установить связи между ними.

Все перечисленные возможности существенно сокращают время на подготовку исходной информации. В частности, с помощью программы за один рабочий день один оператор может ввести информацию для расчета технических потерь по 30 распределительным линиям 6 - 10 кВ средней сложности.

Программа РТП 3.1 является одним из модулей многоуровневой интегрированной системы расчета и анализа потерь электроэнергии в электрических сетях АО - энерго, в которой результаты расчета по данному ПЭС суммируются с результатами расчета по другим ПЭС и по энергосистеме в целом [6].

Более подробно рассмотрим расчет потерь электроэнергии программой РТП 3.1 в пятой главе.

4. Нормирование потерь электроэнергии


Прежде чем давать понятие норматива потерь электроэнергии, следует уточнить сам термин "норматив", даваемый энциклопедическими словарями.

Под нормативами понимаются расчетные величины затрат материальных ресурсов, применяемые в планировании и управлении хозяйственной деятельностью предприятий. Нормативы должны быть научно обоснованными, прогрессивными и динамичными, т.е. систематически пересматриваться по мере организационно-технических сдвигов в производстве.

Хотя изложенное приведено в словарях для материальных ресурсов в широком плане, оно целиком отражает требования, предъявляемые к нормированию потерь электроэнергии.


4.1 Понятие норматива потерь. Методы установления нормативов на практике


Нормирование - это процедура установления для рассматриваемого периода времени приемлемого (нормального) по экономическим критериям уровня потерь (норматива потерь), значение которого определяют на основе расчетов потерь, анализируя возможности снижения в планируемом периоде каждой составляющей их фактической структуры [1].

Под нормативом отчетных потерь необходимо понимать сумму нормативов четырех составляющих структуры потерь, каждая из которых имеет самостоятельную природу и, как следствие, требует индивидуального подхода к определению ее приемлемого (нормального) уровня на рассматриваемый период. Норматив каждой составляющей должен определяться на основе расчета ее фактического уровня и анализа возможностей реализации выявленных резервов ее снижения.

Если вычесть из сегодняшних фактических потерь все имеющиеся резервы их снижения в полном объеме, результат можно назвать оптимальными потерями при существующих нагрузках сети и существующих ценах на оборудование. Уровень оптимальных потерь меняется из года в год, так как меняются нагрузки сети и цены на оборудование. Если же норматив потерь определен по перспективным нагрузкам сети (на расчетный год) с учетом эффекта от реализации всех экономически обоснованных мероприятий, его можно назвать перспективным нормативом. В связи с постепенным уточнением данных перспективный норматив также необходимо периодически уточнять.

Очевидно, что для внедрения всех экономически обоснованных мероприятий требуется определенный срок. Поэтому при определении норматива потерь на предстоящий год следует учитывать эффект лишь от тех мероприятий, которые реально могут быть проведены за этот период. Такой норматив называют текущим нормативом.

Норматив потерь определяют при конкретных значениях нагрузок сети. Перед планируемым периодом эти нагрузки определяют из прогнозных расчетов. Поэтому для рассматриваемого года можно выделить два значения такого норматива:

прогнозируемое (определенное по прогнозируемым нагрузкам);

фактическое (определенное в конце периода по состоявшимся нагрузкам).

Что касается норматива потерь, включаемых в тариф, то здесь всегда используется его прогнозируемое значение. Фактическое же значение норматива целесообразно использовать при рассмотрении вопросов премирования персонала. При существенном изменении схем и режимов работы сетей в отчетном периоде потери могут как существенно снизиться (в чем нет никакой заслуги персонала), так и увеличиться. Отказ от корректировки норматива несправедлив в обоих случаях.

Для установления нормативов на практике используются три метода [2]: аналитико-расчетный, опытно-производственный и отчетно-статистический.

Аналитико-расчетный метод наиболее прогрессивен и научно обоснован. Он базируется на сочетании строгих технико-экономических расчетов с анализом производственных условий и резервов экономии материальных затрат.

Опытно-производственный метод применяется, когда проведение строгих технико-экономических расчетов по каким-либо причинам невозможно (отсутствие или сложность методик таких расчетов, трудности получения объективных исходных данных и т.п.). Нормативы получают на основе испытаний.

Отчетно-статистический метод наименее обоснован. Нормы на очередной плановый период устанавливают по отчетно-статистическим данным о расходе материалов за истекший период.

Нормирование расхода электроэнергии на собственные нужды подстанций осуществляется с целью его контроля и планирования, а также выявления мест нерационального расхода. Нормы расхода выражены в тысячах киловатт-часов в год на единицу оборудования или на одну подстанцию. Численные значения норм зависят от климатических условий.

В силу существенных различий в структуре сетей и в их протяженности норматив потерь для каждой энергоснабжающей организации представляет собой индивидуальное значение, определяемое на основе схем и режимов работы электрических сетей и особенностей учета поступления и отпуска электроэнергии.

В связи с тем, что тарифы устанавливают дифференцированно для трех категорий потребителей, получающих энергию от сетей напряжением 110 кВ и выше, 35-6 кВ и 0,38 кВ, общий норматив потерь должен быть разделен на три составляющие. Это деление должно производиться с учетом степени использования каждой категорией потребителей сетей различных классов напряжения [3].

Временно допустимые коммерческие потери, включаемые в тариф, распределяют равномерно между всеми категориями потребителей, так как коммерческие потери, представляющие собой в значительной степени хищения энергии, не могут рассматриваться как проблема, оплата которой должна возлагаться только на потребителей, питающихся от сетей 0,38 кВ.

Из четырех составляющих потерь наиболее сложной для представления в форме, ясной для сотрудников контролирующих органов, являются технические потери (особенно их нагрузочная составляющая), так как они представляют собой сумму потерь в сотнях и тысячах элементов, для расчета которых необходимо владеть электротехническими знаниями. Выходом из положения является использование нормативных характеристик технических потерь, представляющих собой зависимости потерь от факторов, отражаемых в официальной отчетности [4].


4.2 Нормативные характеристики потерь


Характеристика потерь электроэнергии - зависимость потерь электроэнергии от факторов, отражаемых в официальной отчетности.

Нормативная характеристика потерь электроэнергии - зависимость приемлемого уровня потерь электроэнергии (учитывающего эффект от МСП, проведение которых согласовано с организацией, утверждающей норматив потерь) от факторов, отражаемых в официальной отчетности.

Параметры нормативной характеристики достаточно стабильны и поэтому, однажды рассчитанные, согласованные и утвержденные, они могут использоваться в течение длительного периода - до тех пор, пока не произойдет существенных изменений схем сетей. При нынешнем, весьма низком уровне сетевого строительства нормативные характеристики, рассчитанные для существующих схем сетей, могут использоваться в течение 5-7 лет. При этом погрешность отражения ими потерь не превышает 6-8%. В случае же ввода в работу или вывода из работы в этот период существенных элементов электрических сетей такие характеристики дают надежные базовые значения потерь, относительно которых может оцениваться влияние проведенных изменений схемы на потери.

Для радиальной сети нагрузочные потери электроэнергии выражаются формулой:


, (4.1)


где W - отпуск электроэнергии в сеть за период Т;

tg φ - коэффициент реактивной мощности;

Rэкв - эквивалентное сопротивление сети;

U - среднее рабочее напряжение.

В силу того, что эквивалентное сопротивление сети, напряжение, а также коэффициенты реактивной мощности и формы графика изменяются в сравнительно узких пределах, они могут быть "собраны" в один коэффициент А, расчет которого для конкретной сети необходимо выполнить один раз:


. (4.2)


B этом случае (4.1) превращается в характеристику нагрузочных потерь электроэнергии:


. (4.3)


При наличии характеристики (4.3) нагрузочные потери для любого периода Т определяют на основе единственного исходного значения - отпуска электроэнергии в сеть.

Характеристика потерь холостого хода имеет вид:


. (4.4)


Значение коэффициента С определяют на основе потерь электроэнергии холостого хода, рассчитанных с учетом фактических напряжений на оборудовании - ΔWх по формуле (4.4) или на основе потерь мощности холостого хода ΔРх.

Коэффициенты А и С характеристики суммарных потерь в п радиальных линиях 35, 6-10 или 0,38 кВ определяют по формулам:


; (4.5)

, (4.6)


где Аi и Сi - значения коэффициентов для входящих в сеть линий;

Wi - отпуск электроэнергии в i-ю линию;

WΣ - то же, во все линии в целом.

Относительный недоучет электроэнергии ΔW зависит от объемов отпускаемой энергии - чем ниже объем, тем ниже токовая загрузка ТТ и тем больше отрицательная погрешность. Определение средних значений недоучета проводят за каждый месяц года и в нормативной характеристике месячных потерь они отражаются индивидуальным слагаемым для каждого месяца, а в характеристике годовых потерь - суммарным значением.

Таким же образом отражаются в нормативной характеристике климатические потери, а также расход электроэнергии на собственные нужды подстанций Wnc, имеющий резкую зависимость от месяца года.

Нормативная характеристика потерь в радиальной сети имеет вид:


, (4.7)


где ΔWм - сумма описанных выше четырех составляющих:


ΔWм = ΔWу + ΔWкор + ΔWиз + ΔWПС. (4.8)


Нормативная характеристика потерь электроэнергии в сетях объекта, на балансе которого находятся распределительные сети напряжением 6-10 и 0,38 кВ, имеет вид, млн. кВт-ч:


, (4.9)


где W6-10 - отпуск электроэнергии в сети 6-10 кВ, млн. кВт-ч, за вычетом отпуска потребителям непосредственно с шин 6-10 кВ подстанций 35-220/6-10 кВ и электростанций; W0,38 - то же, в сети 0,38 кВ; А6-10 и А0,38 - коэффициенты характеристики. Величина ΔWм для этих предприятий включает в себя, как правило, лишь первое и четвертое слагаемые формулы (4.8). При отсутствии учета электроэнергии на стороне 0,38 кВ распределительных трансформаторов 6-10/0,38 кВ значение W0,38 определяют, вычитая из значения W6-10 отпуск электроэнергии потребителям непосредственно из сети 6-10 кВ и потери в ней, определяемые по формуле (4.8) с исключенным вторым слагаемым.

4.3 Порядок расчета нормативов потерь электроэнергии в распределительных сетях 0,38 - 6 - 10 кВ


В настоящее время для расчета нормативов потерь электроэнергии в распределительных сетях РЭС и ПЭС АО "Смоленскэнерго" применяются схемотехнические методы с использованием различного программного обеспечения. Но в условиях неполноты и малой достоверности исходной информации о режимных параметрах сети применение этих методов приводит к значительным погрешностям расчетов при достаточно больших трудозатратах персонала РЭС и ПЭС на их проведение. Для расчетов и регулирования тарифов на электроэнергию Федеральная Энергетическая комиссия (ФЭК) утвердила нормативы технологического расхода электроэнергии на ее передачу, т.е. нормативы потерь электроэнергии. Потери электроэнергии рекомендуется рассчитывать по укрупненным нормативам для электрических сетей энергосистем при использовании значений обобщенных параметров (суммарной длины линий электропередачи, суммарной мощности силовых трансформаторов) и отпуску электроэнергии в сеть [1]. Подобная оценка потерь электроэнергии, особенно для множества разветвленных сетей 0,38 - 6 - 10 кВ, позволяет с большой вероятностью выявить подразделения энергосистемы (РЭС и ПЭС) с повышенными потерями, скорректировать значения потерь, рассчитываемых схемотехническими методами, снизить трудозатраты на проведение расчетов потерь электроэнергии. Для расчета годовых нормативов потерь электроэнергии для сетей АО-энерго используются следующие выражения:


, (4.10)

, (4.11)


где ΔWпер - технологические переменные потери электроэнергии (норматив потерь) за год в распределительных сетях 0,38 - 6 - 10 кВ, кВт∙ч;

ΔWНН, ΔWСН - переменные потери в сетях низкого (НН) и среднего (СН) напряжения, кВт∙ч;

Δω0НН - удельные потери электроэнергии в сетях низкого напряжения, тыс. кВт∙ч/км;

Δω0СН - удельные потери электроэнергии в сетях среднего напряжения, % к отпуску электроэнергии;

WОТС - отпуск электроэнергии в сети среднего напряжения, кВт∙ч;

VСН - поправочный коэффициент, отн. ед.;

ΔWп - условно-постоянные потери электроэнергии, кВт∙ч;

ΔРп - удельные условно-постоянные потери мощности сети среднего напряжения, кВт/МВА;

SТΣ - суммарная номинальная мощность трансформаторов 6 - 10 кВ, МВА.

Для АО "Смоленскэнерго" ФЭК заданы следующие значения удельных нормативных показателей, входящих в (4.10) и (4.11):


; ;

; .


Далее, в пятой главе, рассмотрим расчет нормативов потерь электроэнергии в распределительной сети 10 кВ.

5. Пример расчета потерь электроэнергии в распределительных сетях 10 кВ


Для примера расчета потерь электроэнергии в распределительной сети 10 кВ выберем реальную линию, отходящую от ПС "Капыревщина" (рис.5.1).