Водоснабжение
контроль расхода хлора.При суточном расходе хлора более или равном 3 баллонов при хлораторной надо предусматривать хранение трёх суточного запаса хлора. Количество баллонов на складе должно быть 3*3 = 9 шт. Склад хлора не должен иметь непосредственного сообщения с хлораторной.
Основной запас хлора хранится вне очистной станции, на расходном складе, рассчитанном на месячную потребность в хлоре.
Определение месячного запаса количества баллонов на расходном складе.
nбал= (162,7*30) / 55 = 92 баллона. Доставка баллонов с расходного склада на очистную станцию производится по мере надобности автомашинами.
Расчёт вертикального (вихревого) смесителя.
Смесители служат для равномерного распределения реагентов в массе обрабатываемой воды, что способствует более благоприятному протеканию последующих реакций происходящих затем в камерах хлопьеобразования. Смешение осуществляется в течении 1-2 мин. В данном проекте т.к. полная производительность станции составляет 27540 м3/сут целесообразно применить вертикальный (вихревой) смеситель.
Qполн= 27540 м3/сут
Qчас= 27540 / 24 = 1148 м3/час. Принимаем два вихревых смесителя с расходом 900 м3/час.
Определяем cекундный расход:
qсек= 1148 / 3600 = 0,31 м3/сек = 310 л/сек.
Определяем площадь горизонтального сечения в верхней части смесителя:
fв= Qчас / Vв = 1148 / 3600 = 0,31 м3/сек = 310 л/с., где:
Vв – скорость восходящего движения воды, равная 90-100 м/ч.
Определение размеров верхней части смесителя.
Принимаем верхнюю часть смесителя квадратной в плане.
В этом случае её сторона будет иметь размер:
Вв = = = 3,5 м. Трубопровод подающий отрабатываемую воду в нижнюю часть смесителя со входной скоростью Vн = 1-1,2 м/с, должен иметь внутренний диаметр 600 мм. Тогда при расходе воды qсек = 310 л/с, входная скорость Vн= 1,05м/с. Так как внешний диаметр подводящего трубопровода (D) равен 625 мм, то р-р в плане нижней части смесителя в месте примыкания этого трубопровода должен быть 0,625 х 0,625 м, а площадь нижней части усечённой пирамиды составит Dн = (0,625)2 = 0,39 м2.
Определяем высоту нижней части смесителя.
Принимаем величину центрального угла a= 40°(это угол между наклонными стенками смесителя), тогда высота нижней части смесителя будет равна:
hн = 0,5*(Вв-Вн)* ctg 40° / 2 = 0.5*(3,46-0,625)*2,747 = 3,89 » 4 м.
Определяем объём пирамидальной части смесителя:
WH = где:
fв – площадь горизонтального сечения верхней части смесителя;
fн – площадь нижней части усечённой пирамиды смесителя;
WH= 1/3*4*(12+0,390+) = 19,4 м3.
Определение полного объёма смесителя.
W = (Qчас*t) / 60 = 1147*1.5 / 60 = 28.68 м3., где t – продолжительность смешения реагента с массой воды, равная 1,5 мин.
Определение объёма верхней части смесителя
Wв= W-Wн = 28,68-19,4 = 9,28 м3.
Определение высоты верхней части
hв = Wв / fв = 9,28 / 12 = 0,77м.
Полная высота смесителя равна:
hc=hн + hв = 4,0+0,77 = 4,77 м.
Сбор воды производится в верхней части смесителя периферийным лотком,
через затопленные отверстия. Скорость движения воды в лотке Vл= 0,6 м/с.
Вода, протекающая по лоткам в направлении бокового кармана, разделяется на два параллельных потока.
Определим расчётный расход каждого потока:
Qл = Qчас / 2 = 1147 / 2 = 573,75м3/час.
Определим площадь живого сечения сборного лотка:
wл = Qл / Vл*3600 = 573,75 / 0,6*3600 = 0,265 м2.
При ширине лотка bл= 0,5 м, расчётная высота слоя воды в лотке:
hл = bл / wл = 0,265 / 0,27 = 0,98 м. Уклон лотка принимаем i = 0.02.
Определяем площадь всех затопленных отверстий в стенках сборного канала.
F0 = Qчас / V0*3600 = 1147 / 1*3600 = 0,31 м2 ,где:
V0 – скорость движения воды через отверстия лотка, равная 1 м/с. Отверстия приняты диаметром равным d0 = 100 мм, т.е. площадью f0 = pR2 = 0.00785 м2.
Определяем общее потребное количество отверстий
n0 = F0 / f0 = 0.31 / 0.00785 = 41 шт.
Эти отверстия размещают по боковой поверхности лотка, на глубине h0=110 мм от верхней кромки лотка до оси отверстия.
Определение внутреннего периметра лотка
Рл = 4*(3,5-2*(0,5+0,06)) = 9,52 м = 9520 мм.
Шаг оси отверстий l0 = Pл / n0 = 9520 / 41 = 232 мм.
Расстояние между отверстиями l0-d0 = 232-100 = 132 мм.
Из сборного лотка вода поступает в боковой карман, размеры которого принимаем из конструктивных соображений с таким расчётом что бы в нижней части разместить трубу для отвода воды, прошедшей смеситель.
Расход воды протекающей по отводящей трубе, для подачи в камеру хлопьеобразования qсек = 310 л/с. Скорость в этом трубопроводе 0,8-1,0 м/с, время пребывания – не более 2 минут. Принимаем стальной трубопровод наружным диаметром = 620 мм, при скорости движения в нём воды V = 1,05 м/с; 1000i = 2.25;
V*t = 0.87 м/с * 120 с = 126 м. 1000i = 0.126*2.25 = 0.28 м. – потери по длине.
Расчёт осветлителей со слоем взвешенного осадка
Осветлители со взвешенным осадком, применяемые как сооружения первой ступени водоподготовки, могут успешно работать только при условии предварительной обработки примесей воды коагулянтом или флокулянтом.
Осветлители обеспечивают более высокий процент осветления воды, и имеют более высокую производительность, чем отстойники.
Принцип работы:
обрабатываемая вода, смешенная с реагентами, вводится в осветлитель снизу и равномерно распределяется по площади рабочих коридоров. Далее, вода движется снизу вверх, и проходит через слой ранее сформированного взвешенного осадка, сост. из массы взвешенных в восходящем потоке хлопьев, которые непрерывно хаотически движутся, но весь слой в целом неподвижен. Он находится в состоянии динамического равновесия, обусловленного равенством скорости восходящего потока воды, и средней скорости осаждения хлопьев. Проходя через слой взвешенного осадка, вода осветляется в результате контактной коагуляции, и все примеси содержащиеся в воде остаются в слое. Осветлённая вода прошедшая через слой взвешенного осадка собирается с помощью сборных желобов, и отводится для дальнейшей обработки на фильтры.
Расчётный расход воды с учётом на собственные нужды станции
Qчас = 1147,5 м3/ час = 27540 м3/сут.
Наибольшая мутность исходной воды – 313 мг/л.
Наименьшая мутность – 27 мг/л
Цветность – 55 мг/л
Доза коагулянта = 30 мг/л.
Определение максимальной концентрации взвешенных веществ
С = М+(К*ДК)+0,25*Ц, где:
М – количество взвешенных веществ в исходной воде = 313 мг/ л;
К – коэффициент = 1;
ДК – доза коагулянта = 30 мг/л;
Ц – цветность исходной воды = 55 град.
С = 313+(1*30)+0,25*55 = 356,7 мг/л.
Принимаем время уплотнения осадка Т = 3 часа, тогда средняя концентрация осадка d = 24000 г/м3 = 24 кг/м3 (табл.29)1.
Определение количества воды теряемой при сбросе осадка из осадкоуплотнителя т.е. при продувке осветлителя.
qос = *100% , где:
С – максимальная концентрация взв. веществ, = 356,7 мг/л;
М – количество взвеси на выходе из осветлителя = 8-12 мг/л;
dср – средняя концентрация веществ в осадкоуплотнителе = 24000 г/м3;
Кср – коэфф. разбавления осадка = 1,2-1,5.
qос = = 1.73%
Потеря воды при продувке (т.е при сбросе осадка):
(1147*1,73) / 100 = 19,85 м3/час.
Определение площади осветлителя.
Максимальное содержание взвеси поступающей в осветлитель составляет
356,7 мг/л, следовательно, скорость восходящего потока воды в зоне осветления, Vз.о. = 1 мм/с, а коэфф. распределения потока К = 0,75 (табл.30, стр.110)2
Fосв = Fз.о+Fз.от.= ,где:
Fз.о – площадь зоны осветления, м2;
Fз.от – площадь зоны отделения осадка, м2;
Qрасч – расчётный расход воды
Vз.о. – скорость восходящего потока в зоне осветления, мм/сек;
K – коэфф. распределения воды между зоной осветления и осадкоуплотнителем, = 0,75
a = 0,9;
Fосв.= = 357,11 м.
Так как площадь одного осветлителя в плане не должна превышать 100 – 150 м2, принимаем 6 осветлителей. Площадь каждого из двух коридоров осветлителя будет равна:fкор = 118,05 / 6 = 19,67 м2.
Ширину коридора принимаем в соответствии с размерами балок, равной:
bкор= 2,6 м, тогда длина, l = 19,92 / 2,6 = 7,66 м.
Ширина осадкоуплотнителя выше окон для приёма осадка,
bо.у. = 19,67 / 7,66 = 2,56 м.
Водораспределительный дырчатый коллектор, размещённый в нижней части коридоров осветлителя рассчитываем на наибольший расход воды.
Определение расхода воды проходящего через водораспределительный дырчатый коллектор.
qкол= 1147,5 / 6 / 2 = 95,62 м3/час = 27 л/с.
Скорость входа воды в коллектор – 0,5-0,6 м/с, принимаем диаметр = 250 мм, тогда скорость будет равна 0,55 м/с.
Т.к. во второй половине дырчатого коллектора скорость становится менее
0,5 м/с, принимаем коллектор телескопической формы, сваренный из трёх труб диаметром 250,200,150 мм равной длины. Скорость выхода воды из отверстий должна быть V0 = 1.5 -- 2.0 м/c. Принимаем V0 = 2,0 м/с, тогда площадь отверстий распределительного коллектора составит:
f0 = qкол / V0 = 0,027 / 2 = 0,0135 м2 = 135 см2.
Принимаем диаметр отверстий = 20 мм, тогда площадь одного отв. = 3,14 см2.
Определяем количество отверстий в каждом коллекторе
n0 = 135 / 3,14 = 43 отверстия.
Водосборные желоба с затопленными отверстиями для сбора воды.
Желоба размещены в зоне осветления, в верхней части осветлителя, вдоль боковых стенок коридоров.
Определение расхода воды на каждый желоб.
qж = , = = 38,85 м3/час = 0,0099 м3/с, где
Qчас – часовой расход воды;
n – количество осветлителей;
Ширина желоба прямоугольного сечения:
bжел= 0,9 * qжел0,4 = 0,9 * (0,0099)0,4 = 0,14 м = 14 см.
Затопленные отверстия размещаются в один ряд по внутренней стенке желоба, на 7 см ниже его верхней кромки, тогда глубина желоба в его начале и конце будет равна:
Глубина желоба:
hначальное = 7+1,5*(bжел/2) = 7+1,5*(14/2) = 17,5 см.
hконечное = 7+2,5*(14/2) = 24,5 см.
Определение площади отверстий в стенке желоба
= = 0,015 м2 = 155 см. где:
qжелоба – расход воды на каждый желоб;
m -- коэфф. расхода = 0,65;
g – ускорение свободного падения;
h – разность уровней воды в осветлителе и в желобе равная 0,05 м.
Определение количества отверстий
nотв= fотв / fодн.отв = 155 / 3,14 = 50 отверстий.
шаг отверстий: е = l / n = 9.4 / 50 = 0.188 м = 19 см.
Осадкоприёмные окна
Площадь осадкоприёмных окон определяем по расходу воды который поступает вместе с избыточным осадком в осадкоуплотнитель.
Qok = (1-K) * Qрасч = (1-0,75)*192 = 48 м3/час.
С каждой стороны в осадкоуплотнитель будет поступать Qok = 48 / 2 = 24 м3/час воды с избыточным осадком.
Площадь осадкоприёмных окон с каждой стороны
fok = Qok/ Vok= 24/36 = 0.66 м2, где Vok – скорость движения воды с осадком в окнах, = 36-54 м/час. Высота окон h= 0,2 м, тогда их общая длина с каждой стороны осадкоуплотнителя равна: lок = 0,66 / 0,2 = 3,33 м.
Устраиваем с каждой стороны осадкоуплотнителя по горизонтали
10 окон 0,2х0,33 м. При длине осадкоуплотнителя равной 7,66 м, и 10 окнах, шаг оси по горизонтали составит: 7,66 / 10 = 0,76 м. Расстояние между двумя соседними окнами при ширине окна = 0,33 м, будет равна: 0,76-0,3 = 0,43 м.
Дырчатые трубы для сбора и отвода воды
Дырчатые трубы из зоны отделения осадка в вертикальном осадкоуплотнителе размещаются так, чтобы их верхняя образующая была ниже уровня воды в осветлителе не менее 0,3 м, и выше верха осадкоприёмных окон не менее 1,5 м.
Определение расхода воды через каждую сборную трубу
Qсб = = = 23,58 м3/час = 6,55 л/с = 0,0065м3/сек.
где Qoc – потеря воды при продувке = 1,73%.
Таким образом, Qос = (192*1,73) / 100 = 3,32 м3/час.
Т.к скорость в устье сборной трубы должна быть не более 0,5 м/сек, принимаем диаметр трубы равным 150 мм, V = 0,49 м/с. Диаметр отверстий равен 15-20 мм, площадь отверстий при скорости входа воды в них равной 1,5 м/с, должна быть:
= 0,0043 см2 при отверстиях диаметром 18 мм, площадь каждого будет f0 = 2,54 см.
Потребное количество отверстий:
n0 = 43 / 2,54 = 17 шт.
Принимаем 17 отверстий с шагом 7,66 / 17 = 0,45 м.
Фактическая скорость входа воды в отверстия равна:
Vўотв = Qсб / f0 * n = 0,0065 / 0,000254*17 = 1,5 м/сек.
Определение высоты осветлителя
Высота осветлителя считая от центра водораспределительного коллектора до верхней кромки водосборных желобов равна:
Носв= где:
bкор – ширина коридора осветлителя = 2,6 м;
bжелоба -- ширина одного желоба = 14 см = 0,14 м.;
a -- центральный угол, образуемый прямыми проведёнными от оси водораспределительного коллектора к верхним точкам кромок водосборных желобов, равный 30 градусам.
Носв = = 4,83м.
Высота пирамидальной части:
hпир = = = 1,55м. где:
а – ширина коридора по низу = 0,4 м.
a1 – центральный угол наклона стенок = 70°.
Высоту защитной зоны над слоем взвешенного осадка принимаем hзащ = 1,5 м.
Высота слоя взвешенного осадка выше перехода наклонных стенок осветлителя в вертикальные будет равна:
hверт = Hосв-hзащ-hпир = 4.83-1.5-1.55 = 1.78 м.
Общая высота зоны взвешенного осадка равна:
hверт + hпир / 2 = 1,78 + 1,55 / 2 = 2,55 м.
Верхнюю кромку водоприёмных окон располагаем на 1,5 м. ниже поверхности воды в осветлителе, тогда верхняя кромка этих окон высотой 0,2 м будет размещаться на уровне: 4,83-1,5-0,2 = 3,13 м. от дна осветлителя или на уровне равном: 3,13-0,2 = 2,93 м. выше оси водораспределительного коллектора (здесь 0,2 м – это расст. от дна осветлителя до оси коллектора.)
Низ осадкоприёмных окон должен быть на 1,5 – 1,75 м. выше перехода наклонных стенок зоны взвешенного осадка в вертикальные.
В рассматриваемом случае высота равна: 4,83-(1,55+1,5+0,2) = 1,58 м, что удовлетворяет требуемым условиям.
Продолжительность пребывания осадка в осадкоуплотнителе.
Объём осадкоуплотнителя составляет:
W = lkop* где:
lop -- длина осадкоуплотнителя, = 7,66 м.
boy -- ширина осадкоуплотнителя выше окон для приёма осадка = 2,56 м.
hверт – высота слоя взвешенного осадка выше перехода наклонных стенок
осветлителя в вертикальные.
hпир – высота пирамидальной части осветлителя
W = 7.66*(2.56*1.78+2*()) = 50.10 м3
Определение количества осадка поступающее в осадкоуплотнитель:
Qос= С*Qрасч = 0,356*192 = 68,35 кг. где :
С – максимальная концентрация взв. в-в. равная 356 мг/л.
Qрасч – расчётная производительность одного осветлителя = 192 м3/час.
Средняя концентрация осадка (по сухому веществу) dср= 24 кг/м3 (по табл. 29)1
Продолжительность пребывания осадка в осадкоуплотнителе
Т = W*dcp / Qoc = 50,10*24 / 68,35 = 17,59 час. т.е. более 3 часов которые приняты при определении концентрации осадка в воде продуваемой из осадкоуплотнителя.
Дырчатые трубы для удаления осадка
При объёме осадкоуплотнителя Woc = 50,10 м3, и его опорожнении за 15 минут (0,25 часа), через каждую осадкосбросную трубу, должен проходить расход:
Qос = Wос / 2*t = 50.10 / 2*0.25 = 100.2 м3/час = 27,83л/с = 0,02783 м3/сек.
При скорости движения воды в конце трубы V = 1,1 м/с, диаметр составит175 мм. Скорость входа воды в отверстия = 3 м/с, при этом площадь отверстий составляет:
S fo = Qoc / V0 = 0.0278 / 3 = 0.0092 м2 = 92 см.
Принимаем отверстия диаметром 20 мм, и площадью fотв = 3,14 см.
Потребное количество отверстий: n = Sfотв / fo = 92 / 3,14 = 30 шт.
Принимаем 30 отверстий с шагом оси: 7,66 / 30 = 0,25 м.
Расчёт скорых безнапорных фильтров с кварцевой загрузкой.
Вода поступающая для окончательного осветления на фильтры, после выхода из осветлителей должна содержать не более 8 – 12 мг/л взвешенных веществ. После фильтрования, мутность воды предназначенной для хозяйственно -питьевых целей не должна превышать 1,5 мг/л. (СНиП 2.04-02.84)
Помимо взв. веществ фильтры должны задерживать большую часть микроорганизмов и микрофлоры и понижать цветность воды до 20 °
Скорый безнапорный фильтр представляет собой резервуар загруженный слоями пека и гравия, крупность которых возрастает сверху вниз. Верхний слой толщиной 0,7 м. называется фильтрующим и состоит из чистого кварцевого песка с диаметром зёрен 0,5-1,2 мм. Высота слоя воды над поверхностью загрузки фильтра должна быть не менее 2 м.
Фильтрующий слой песка лежит на поддерживающих слоях песка и гравия, назначение которых предотвратить вымывание мелкого песка и способствовать
более равномерному распределению воды по площади фильтра. Поддерживающие гравийные слои соприкасаются с распределительной трубчатой системой собирающей профильтрованную воду которая затем отводится в резервуар чистой воды.
В процессе фильтрования засоряется зернистая загрузка и увеличиваются потери напора в фильтре. Когда потери достигают предельно допустимой величины (2,5-3 м), фильтр отключается и производится восстановление фильтрующей способности загрузки путём промывки фильтра обратным током воды.
Во время промывки, промывная вода подаётся в распределительную систему, и далее снизу вверх в фильтрующий слой, который она расширяет (взвешивает).
Дойдя до верхней кромки промывных желобов, промывная вода вместе с вымытыми ею загрязнениями переливается в желоба, а из них в боковой карман и отводится на сооружения оборота промывной воды.
Интенсивность промывки – 12-18 л/(с*м2)
Расчётная скорость фильтрования - 6 – 10 м3/час
Полезная производительность станции = 27540 м3/сут = 1168 м3/час = 324,4 л/с
Определение суммарной площади скорых фильтров
F = , где:
Т – продолжительность работы станции в течении суток = 24 часа.
Vрн -- расчётная скорость фильтрования = 6 м/час. (при нормальном режиме эксплуатации).
n – количество промывок фильтра в сутки = 2
w -- интенсивность промывки
t1 – продолжительность промывки = 0,1 часа.
t2 – время простоя фильтра в связи с промывкой = 0,33 часа.
F = = 210 м2.
Определение количества фильтров
N = = 0.5* = 7 шт.
Площадь одного фильтра составит:
210 / 7 = 30 м2; размеры в плане 5х6 м.
Скорость фильтрования при форсированном режиме составит:
Vр.ф = Vр.н.*(N / N-N1) = 6*(7 / 7-1) = 7 м/ч; где:
N – количество фильтров
N1 -- количество фильтров находящихся в ремонте = 1, следовательно скорость фильтрования при форсированном режиме отвечает требованиям.
Подбор состава загрузки фильтра
Высота фильтрующего слоя hф = 700мм.
Диаметр зёрен – dмин = 0,5 мм; dмакс = 12,5 мм.
Эквивалентный диаметр зёрен dэ = 0,7 мм.
Коэффициент неоднородности Кн = 2,0
Поддерживающие слой имеют общую высоту 500 мм. и крупность зёрен 2-32 мм.
Расчет распределительной системы фильтра
В проектируемом фильтре распределительная система служит как для равномерного распределения промывной воды по площади фильтра, так и для сбора промывной воды.
Интенсивность промывки принята w = 12 л/с*м2.
Определение количества промывной воды необходимой для одного фильтра.
qпр = F*w = 30*12 = 360