Історична роль інженерної діяльності у створенні техніки генерації і використовування електроенергії
років в деяких країнах починає встановлюватися своя основна система струму для електротяги, причому особливе значення має система однофазного струму зниженої частоти, постійного струму і частково трифазного струму. В 1920 р. в США залізниці були електрифіковані з вживанням в основному постійного струму напругою 1500 в (і частково до 3000 в). У Франції була прийнята система постійного струму, в Італії - трифазного струму напругою в 3000-4000 в. В Німеччині, Швеції, Швейцарії, Норвегії в 20-х роках на електрифікованих залізницях використовувався також однофазний струм зниженої частоти напругою до 15 кв.У перші роки після упровадження електричної тяги система постійного струму, повністю себе виправдавши, набула найбільше поширення. В даний час більше 67% електрифікованих магістральних залізниць миру працюють на постійному струмі. Але зростання вантажообігу залізниць, необхідність підвищення швидкості руху потягів зажадали розробки більш ефективної системи тяги, перш за все на основі використовування переваг змінного струму промислової частоти і підвищеної напруги. Вживання змінного струму значно скорочує витрати на споруду тягових підстанцій завдяки зменшення їх числа і спрощення устаткування, а також зменшує експлуатаційні витрати залізниць і приводить до економії кольорових металів за рахунок зменшення перетину дротів контактної мережі.
Хоча вперше електрифікація залізничних ліній на однофазному струмі промислової частоти була здійснена в Угорщині ще в 1934 р., лише останніми роками намітився перехід на надзвичайно прогресивну систему тяги на однофазному струмі промислової частоти напругою в 20000-25000 в. В цьому випадку тягові двигуни електровоза можуть працювати на постійному струмі зниженої напруги, причому трансформація і перетворення струму проводяться не на підстанціях, а на установках, включених в електричну схему самого електровоза.
Успіхи електровозобудування в значній мірі пов'язані з прогресом в області створення електродвигунів і перетворювачів струму. В 50-х роках всі починають застосовуватися напівпровідникові силові випрямлячі. В кінці 1955 р. вперше в Англії був створений перший силовий (германієвий) випрямляч, розрахований на 1 тис. кВт, і запроектований випрямляч до 18 тис. кВт.
Останніми роками все більше застосовуються могутні напівпровідникові випрямлячі на основі кремнію. Ці випрямлячі відрізняються високим ККД (99,6%). Вони дозволяють випрямляти змінний струм значної потужності напругою більше 500 в. Велика кількість різних кремнієвих випрямлячів в даний час випускається, наприклад, фірмою "Сименс-Шукерт" (ФРН).
9. Вдосконалення електроприводу і упровадження електроенергії в технологічні процеси виробництва
З початку XX ст. в силовому апараті виробництва відбувається розширення сфери вживання електроприводу, що є основою комплексної механізації і автоматизації виробничих процесів в промисловості.
У області електрифікації робочих машин украй важливим є розвиток електроприводу, упровадження найдосконаліших типів електроприводів: перехід до одиночного (індивідуального) і – головне – багаторуховому електроприводу з широко розвиненою системою регулювання і автоматики. У тому випадку, коли кожний робочий орган єдиної машини приводиться в рух окремим електродвигуном, основою розвитку електроприводу є розвиток автоматичного управління його роботою. Багаторуховий електропривод, що забезпечує автоматичне виконання виробничих операцій і узгодження окремих рухів, тобто автоматизований електропривод, набув величезне поширення, бо за рахунок більш точного і плавного регулювання швидкості підвищується продуктивність верстата і полегшується праця робітників.
Саме у зв'язку з розвитком автоматики, як регуляторів струму, широке поширення набули генератори постійного струму. Велике значення при цьому мало розповсюдження регульованого електроприводу постійного струму, живленого від окремого генератора (система "генератор-двигун" або від іонного перетворювача, наприклад ртутного випрямляча (система "іонний перетворювач - двигун"). Дослідження в цій області почалися в 90-х роках XIX ст. Надалі вони привели до значного спрощення кінематики виробничих машин і зменшення числа вузлів тертя між електродвигуном і робочим органом.
З широким розвитком систем автоматичного регулювання велике поширення набули так звані електромашинні регулятори, або підсилювачі, – ЕМП, що є одним з найважливіших елементів систем автоматизованого електроприводу. Все ширше стали застосовуватися електронно-іонні (лампові), потім магнітні, а останніми роками напівпровідникові підсилювачі. За допомогою малих потужностей ці підсилювачі дозволяють управляти крупними механізмами. Електромашинні підсилювачі (ЕМП) почали розповсюджуватися в кінці 30-х років і в даний час широко використовуються в промисловості.
Нарешті, треба звернути увагу на швидкий розвиток малих електродвигунів потужністю менше 0,5 л.с. і мікродвигунів потужністю 0,001-0,0005 л.с. За останні роки особливо розвинулася область спеціальних малих двигунів для потреб автоматики, авіації, рахунково-вирішальних пристроїв, а також для побутових електроприладів (наприклад, електробритв).
Упровадження електрики йде по лінії обробки деталей і виробів (вживання індукційного нагріву в поєднанні з механічною обробкою за допомогою струмів високої частоти, анодно-механічна обробка металів, електрохімічний і електроіскровий способи обробки металів і ін.).
Для нагріву металу в рідкому середовищі при хімічній або хіміко-термічній обробці (гарті, відпустці і ін.) застосовуються ванні печі, в яких нагрівання середовища і підтримку заданої температури можна здійснювати за допомогою електрики (внутрішній обігрів ванної печі). Переваги електронагріву – хороше використовування тепла, можливість досягнення щонайвищих температур, зручності регулювання температури ванни, можливість отримання чистого металу. Нагрів металу за допомогою електрики знайшов широке вживання в техніці як при механічній (в основному тиск), так і при термічній обробці. Великий інтерес представляють електричні печі (феросплавні, сталеплавильні, термічні і ін.), які зараз широко використовуються в металургії. Місткість електроплавильних печей досягає 180 т, а потужність - до 34000 кВт в одному агрегаті.
Ідея використовування електричного струму для плавки металу виникла давно – на самому початку XIX ст. Але умови для упровадження електрики в металургію склалися лише в XX ст., коли будівництво економічних теплових електростанцій і особливо гідроелектростанцій сприяло різкому зниженню вартості електроенергії. З другого боку, в XX ст. різко зріс попит на леговану сталь.
Вперше електрична енергія починає застосовуватися в печах як джерело тепла у Франції в 90-х роках XIX ст. В 1898-1899 рр. винахідники Э. Стассно в Італії і П. Еру у Франції створили цілком працездатні дугові печі для плавки сталі, а також для рудовідновлювальної плавки, які одержали потім широке практичне вживання.
Особливий інтерес заслуговують індукційні електропечі, в яких тепло виділяється в матеріалі, що нагрівається, в результаті збудження в ньому вихрових струмів (якщо матеріал – електричний провідник) або за рахунок діелектричних втрат (якщо матеріал – діелектрик).
Виділення тепла в матеріалі, викликане змінними магнітними і електричними полями, було відоме ще в XIX ст. Довгий час з цим явищем боролися. Проте в нашому столітті ці, здавалося, цілком не бажані, явища вдалося не тільки використовувати в техніці для певної мети, але при цьому і значно усилити. В результаті був одержаний новий метод технологічного нагріву, значною мірою обумовлений розвитком техніки високих частот – в основному радіотехніки.
Потребу в нових, високоміцних і спеціальних сталях стимулював розвиток нових методів термообробки, зокрема поверхневого гарту, а також плавки металів. Широке вживання у ряді галузей народного господарства одержав індукційний нагрів різних неметалічних виробів і матеріалів (наприклад, сушка деревини і кераміки струмами високої частоти).
За роки після другої світової війни в промисловій електротермії з'явився новий напрям, пов'язаний зі все більш широким вживанням нагріву діелектриків (а також напівпровідників) в електричному полі – діелектричний нагрів. В цьому випадку матеріал, що нагрівається, знаходиться в електричному полі конденсатора, до якого підведена напруга високої частоти; струми в матеріалі викликають виділення в ньому тепла і його нагрів. Такий нагрів використовується при швидкісній сушці деревини, паперу, пряжи, зерна, для склеювання деревини, зварювання і пресування пластмас, вулканізації каучуку і т.д.
Нарешті, в області вживання струмів високої частоти слід зазначити перспективи переходу транспорту на систему безконтактного наземного високочастотного електротранспорту.
Одним з найважливіших вживань електрики в XX ст. є електрозварювання. В 1927 р. Д. Дульчевским був розроблений спосіб дугового електрозварювання міді під шаром порошкоподібного пальної речовини (флюсу), що лягло в основу розробленого пізніше в СРСР способу автоматичної зварки. В 1932 р. К.К. Хреновым був розроблений спосіб підводної зварки електродугою і різання металів. Перед другою світовою війною в результаті робіт академіка Е.О. Патона була освоєна і упроваджена в промисловість автоматична швидкісна зварка під шаром флюсу, що нині одержала широке вживання в промисловості.
Висновок
За останні 40-50 років електроенергетична техніка зазнала великі якісні і кількісні зміни. Невимірно збільшилися потужності електростанцій. Найважливіше значення придбали найбільші ГЕС. Широкий розвиток одержали електричні мережі і енергетичні системи. В десятки разів збільшилися одиничні потужності турбогенераторів теплових електростанцій. Одержали повний розвиток установки теплофікацій. Автоматика проникла як в область виробництва електроенергії (наприклад, централізоване управління гідростанціями), так і в область її використовування (удосконалення електроприводу). Швидко росте вживання електрики безпосередньо в технологічних процесах виробництва. Наприклад, створені перші могутні атомні електростанції. Разом з тим електрична енергія стала широко використовуватися і в побуті.
Література
Аптекарь М.Д., Рамазанов С.К., Фрезер Г.Е. История инженерной деятельности. – Киев: изд-во «Аристей», 2003.
Электрик – журнал – 2008, №4, с.52-69
Размещено на