Метрология и стандартизация

Министерство образования

Российской федерации.

Тюменский государственный нефтегазовый университет

Институт транспорта


Кафедра: Метрологии, стандартизации

и сертификации


Реферат


На тему: «Метрология и стандартизация».


Выполнил:

студент гр. ___________

Relax

Проверил:


Тюмень 2001


Содержание

Стр.


I. Метрология и технические измерения. 3


1.1. Метрология 3

1.2. Средства измерений 4

1.3. Методы измерений 5

1.4. Основные параметры средств измерений 6

1.5. Погрешности измерения 8


II. Основные понятия о стандартизации. Государственная

система стандартизации. 10

2.1. Стандартизация и стандарт. 10

2.2. Категории стандартов 14

2.3. Виды стандартов 16

2.4 Планирование работ по стандартизации 17

2.5. Патентная чистота стандартов 18

2.6. Внедрение и пересмотр стандартов 19


III. Краткие сведения о международной стандартизации. 20

3.1. Стандартизация, проводимая в рамках СЭВ 22


Список использованной литературы 24


I. МЕТРОЛОГИЯ И ТЕХНИЧЕСКИЕ ИЗМЕРЕНИЯ.

1.1. Метрология

Метрология — наука об измерениях физических вели­чин, методах и средствах обеспечения их единства и способах дости­жения требуемой точности.

Основные задачи метрологии, (ГОСТ 16263—70) — установление единиц физических величин, государственных эталонов и образцовых средств измерений, разработка теории, методов и средств измерений и контроля, обеспечение единства измерений и единообразных средств измерений, разработка методов оценки погрешностей, со­стояния средств измерения и контроля, а также передачи размеров единиц от эталонов или образцовых средств измерений рабочим сред­ствам измерений.

Измерение физической величины выполняют опытным путем с помощью технических средств. В результате измерения получают значение физической величины

Q = q*U,

где q числовое значение физической величины в принятых еди­ницах; U — единица физической величины.

Значение физической величины Q, найденное при измерении, на­зывают действительным. В ряде случаев нет необходимости опреде­лять действительное значение физической величины, например при оценке соответствия физической величины установленному допуску. При этом достаточно определить принадлежность физической вели­чины некоторой области Т:

Q Т или Q Т.

Следовательно, при контроле определяют соответствие действительного значения физической величины установленным значениям. Примером контрольных средств являются калибры, шаблоны, уст­ройства с электроконтактными преобразователями.

Нормативно-правовой основой метрологического обеспечения точности измерений является государственная система обеспечения единство измерений (ГСИ). Основные нормативно-технические до­кументы ГСИ — государственные стандарты, В соответствии с реко­мендациями XI Генеральной конференции по мерам и весам в 1960 г. принята Международная система единиц (СИ), на основе которой для обязательного применения разработан ГОСТ 8.417—81 (СТ СЭВ 1052—78) (введен в действие с 01.01.1980 г.).

Основными единицами физических величин в СИ являются: длины — метр (м), массы — килограмм (кг), времени — секунда (с), силы электрического тока — ампер (А), термодинамической темпе­ратуры — Кельвин (К), силы света — Кандела (кд), количества ве­щества — моль (моль). Дополнительные единицы СИ: радиан (рад) и стерадиан (ср) — для измерения плоского и телесного углов соот­ветственно.

Производные единицы СИ получены из основных с помощью уравнений связи между физическими величинами. Так, единицей силы является ньютон: 1Н == 1 кг*м-1-2, единицей давления — Паскаль 1 Па = 1 кг*м-1-2 и т. д. В СИ для обозначения десятичных кратных (умноженных на 10 в положительной степени) и дельных (умноженных на 10 в отрицательной степени) приняты следующие приставки: экса (Э) — Ю18, пета (П) — 1015, тера (Т) — 1012, гига (Г) – 109, мега (М) — 106, кило (к) — 103, гекто (г) — 102, дека (да) — 101, децн (д) — 10-1, санти (с) — 10-2, милли (м) — 10-3, мнкро (мк) — 10-6, нано (н) — 10-9, пико (п) — 10-12, фемто (ф) — 10-15, атто (а) — 10-18. Так, в соответствии с СИ тысячная доля мил­лиметра (микрометр) 0,001 мм == 1 мкм.


1.2.Средства измерений.


Технические средства, используемые при измерениях и имеющие нормированные метрологические свойства, называют средствами измерения.

Эталоны — средства измерений, официально утвержденные и обеспечивающие воспроизведение и (или) хранение единицы физиче­ской величины с целью передачи ее размера нижестоящим по пове­рочной схеме средствам измерений.

Меры — средства измерений, предназначенные для воспроизве­дения заданного размера физическом величины, В технике часто ис­пользуют наборы мер, например, гирь, плоскопараллельных конце­вых мер длины (плиток), конденсаторов и т. п.

Образцовые средства измерений — меры, измерительные приборы или преобразователи, утвержденные в качестве образцовых для поверки по ним других средств измерений. Рабочие средства применяют для измерений, не связанных с передачей размера единиц.

Порядок передачи размера единиц физической величины от эта­лона или исходного образцового средства к средствам более низких разрядов (вплоть до рабочих) устанавливают в соответствии с пове­рочной схемой. Так, по одной из поверочных схем передача единицы длины путем последовательного лабораторного сличения и поверок производится от рабочего эталона к образцовым мерам высшего раз­ряда, от них образцовым мерам низших разрядов, а от последних к рабочим средствам измерения (оптиметрам, измерительным маши­нам, контрольным автоматам и т. п.).


1.3.Методы измерений.


При измерениях используют разнообразные методы (ГОСТ 16263—70), представляющие собой совокупность приемов использования различных физических принципов и средств. При прямых измерениях значения физической величины находят из опытных данных, при косвенных — на основании известной зависимости от величин, подвергаемых прямым измерениям. Так, диа­метр детали можно непосредственно измерить как расстояние между диаметрально противоположными точками (прямое измерение) либо определить из зависимости, связывающей этот диаметр, длину дуги и стягивающую ее хорду, измерив непосредственно последние вели­чины (косвенное измерение),

Абсолютные измерения основаны на прямых измерениях основ­ных величин и использовании значений физических констант (на­пример, измерение длины штангенциркулем). При относительных измерениях величину сравнивают g одноименной, играющей роль еди­ницы или принятой за исходную. Примером относительного изме­рения является измерение диаметра вращающейся детали по числу оборотов соприкасающегося с ней аттестованного ролика.

При методе непосредственной опенки значение физической вели­чины определяют непосредственно по отсчетному устройству при­бора прямого действия (например, измерение давления пружин­ным манометром), при методе сравнения с мерой измеряемую вели­чину сравнивают с мерой. Например, с помощью гирь уравновеши­вают на рычажных весах измеряемую массу детали. Разновидностью метода сравнения с мерой является метод противопоставления, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, позволяющий установить соотношение между этими величинами (например, изме­рение сопротивления по мостовой схеме с включением в диагональ моста показывающего прибора).

При дифференциальном, методе измеряемую величину сравнивают с известной величиной, воспроизводимой мерой. Этим методом, на­пример, определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на ноль по блоку концевых мер длины. Нулевой метод — также разновидность метода сравнения с мерой, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Подобным методом измеряют электрическое сопротивление по схеме моста с полным его уравнове­шиванием. При методе совпадений разность между измеряемой вели­чиной и величиной, воспроизводимой мерой, определяют, используя совпадения отметок шкал или периодических сигналов (например, при измерении штангенциркулем используют совпадение отметок основной и нониусной шкал). Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала). Ком­плексный метод характеризуется измерением суммарного показа­теля качества, на который оказывают влияния отдельные его состав­ляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.; кон­троль положения профиля по предельным контурам и т. п.).


1.4.Основные параметры средств измерений.


Длина деления шкалы (рис. 1) — расстояние между осями (центрами) двух соседних отметок шкалы, измеренное вдоль воображаемой линии, проходя­щей через середины самых коротких отметок шкалы. Цена деления шкалы — разность значений величины, соответствующих двум соседним от­меткам шкалы (1 мкм для оптиметра, длиномера и т. п.).

Градуировочная характеристика — зависимость между значениями величин на выходе и входе средства измерений. Градуировочную характеристику сни­мают для уточнения результатов изме­рений.

Диапазон показаний — область зна­чений шкалы, ограниченная конечным и начальным значениями шкалы, т. е. Наибольшим и наименьшим значениями измеряемой величины. Например, для оптиметра типа ИКВ-3 диапазон пока­заний составляет ±0,1 мм.


Рис.1. Схема, поясняющая основные параметры средств измерений.


Диапазон измерений — область зна­чений измеряемой величины с нормиро­ванными допускаемыми погрешностями средства измерений. Для того же опти­метра типа ИКВ-3 диапазон измерений длин составляет 0—200 мм.

Отсчет показаний измерительного средства выполняют в соответ­ствии с уравнением

где А — значение отсчета; М — размер меры, по которому отсчетное устройство установлено на ноль; п — число целых делений, отсчи­тываемое по шкалам отсчетного устройства; i — цена деления шкалы; k — номер шкалы, т — доля деления шкалы с наименьшей ценой деления, оцененная визуально.

Влияющая физическая величина — физическая величина, не из­меряемая данным средством, но оказывающая влияние на резуль­таты измеряемой величины (например, температура, оказывающая влияние на результат измерения линейного размера).

Нормальные (рабочие) условия применения средств измерений — условия их применения, при которых влияющие величины имеют нормальные значения или находятся в пределах нормальной (рабо­чей) области значений. Так, согласно ГОСТ 9249—59 нормальная температура равна 20 °С, при этом рабочая область температур со­ставляет 20 °С 1°. Нормальные условия для выполнения линей­ных и угловых измерений регламентированы ГОСТ 8.050—73.

Чувствительность измерительного прибора — отношение измене­ния сигнала на выходе измерительного прибора к вызывающему его изменению измеряемой величины. Так, если при измерении диаме­тра вала с номинальным размером х = 100 мм изменение измеряемой величины = 0,01 мм вызвало перемещение стрелки показываю­щего устройства на = 10 мм, абсолютная чувствительность прибора составляет относительная чув­ствительность

Для шкальных измерительных приборов абсолютная чувствитель­ность численно равна передаточному отношению. С изменением цены деления шкалы чувствительность прибора остается неизменной. На разных участках шкалы часто чувствительность может быть различной. Стабильность средства измерений — свойство, выражающее неизменность во времени его метрологических характеристик (по­казаний).

Измерительные приборы бывают контактные (существует меха­нический контакт с поверхностью контролируемого изделия) и бесконтактные (непосредственного соприкосновения измерительного наконечника с поверхностью контролируемого изделия нет). К по­следним, например, относятся оптические, радиоизотопные, индук­тивные. Важной характеристикой контактных приборов является измерительное усилие, создаваемое в месте контакта измерительного наконечника с поверхностью контролируемого изделия и направ­ленное по линии измерения.

В соответствии с ГОСТ 16504—81 геометрический объект кон­троля содержит одну или несколько контрольных точек. Введем дополнительные термины, необходимые для оценки результатов кон­троля (измерений). Зона контроля (измерения) — область взаимо­действия средства контроля (измерения) с объектом контроля (изме­рения). Контролируемая (измеряемая) поверхность — поверхность объекта контроля (измерения), на которой расположена одна или несколько контрольных точек. Линия контроля (измерения) — пря­мая, проходящая через контролируемый (измеряемый) размер. Плоскость контроля (измерения) — плоскость, проходящая через линию контроля (измерения) и выбранную линию расположения контрольных точек.

В ГОСТ 16263—70 выделены следующие общие для средств из­мерений структурные элементы: преобразовательный и чувствитель­ный элементы, измерительная цепь, измерительный механизм, отсчетное устройство со шкалой и указателем и регистрирующее уст­ройство. Кроме того, контактные измерительные приборы обычно снабжены одним или несколькими наконечниками. Измерительный наконечник — элемент в измерительной цепи, находящийся в кон­такте с объектом контроля (измерения) в контрольной точке под не­посредственным воздействием измеряемой величины. Базовый на­конечник — элемент измерительной цепи, расположенный в плоско­сти измерения и служащий для определения длины линии измерения. Опорный наконечник — элемент, определяющий положение линии измерения в плоскости измерения. Координирующий наконечник — элемент, служащий для определения положения плоскости измере­ния на объекте контроля (измерения).


1.5. Погрешности измерения.


Под погрешностью измерения подразу­мевают отклонение результата измерения от истинного значения измеряемой величины. Точность измерений — качество измерения, отражающее близость их результатов к истинному значению изме­ряемой величины. Количественно точность измерения может быть выражена обратной величиной модуля относительной погрешности. Абсолютная погрешность измерения — разность между значением величины, полученным при измерении, и ее истинным значением, выражаемая в единицах измеряемой величины. Относительная погрешность измерения — отношение абсолютной погрешности, изме­рения к истинному значению измеряемой величины. Систематиче­ская погрешность измерения — составляющая погрешности измере­ния, остающаяся постоянной или изменяющаяся по определенному закону при повторных измерениях одной и той же величины; слу­чайная погрешность — составляющая погрешности измерения, из­меняющаяся при этих условиях случайным образом. Следует выде­лять также грубую погрешность измерения, существенно превышаю­щую ожидаемую погрешность.

В зависимости от последовательности причины возникновения различают следующие виды погрешностей. Инструментальная по­грешность — составляющая погрешности измерения, зависящая от погрешностей применяемых средств (качества их изготовления). По­грешность метода измерения — составляющая погрешности измере­ния, вызванная несовершенством метода измерений. Погрешность настроили — составляющая погрешности измерения, возникающая из-за несовершенства осуществления процесса настройки. Погреш­ность отсчитывания — составляющая погрешности измерения, вы­званная недостаточно точным отсчитыванием показаний средств из­мерений (например, погрешность параллакса). Погрешность по­верки — погрешность измерений при поверке средств измерений. Таким образом, в зависимости от способа выявления следует разли­чать поэлементные (составляющие) и суммарные погрешности измерения.

Результат наблюдения — значение величины, полученное при отдельном наблюдении; результат измерения — значение величины, найденное путем ее измерения, т. е. После обработки результатов наблюдения.

Поправка — значение величины, одноименной с измеряемой, при­бавляемое к полученному при измерении значению величины с целью исключения систематической погрешности. Сходимость — качество измерений, отражающих близость результатов измерений, выпол­няемых в одинаковых условиях, воспроизводимость — то же, в раз­личных условиях (в разное время, в различных местах, различными методами и средствами). Точность отражает близость к нулю случай­ных и систематических погрешностей средства измерения, правиль­ность — систематических, сходимость — случайных. Для средств измерения различают статическую погрешность как отклонение по­стоянного значения измеряемой величины на выходе средства изме­рения от истинного ее значения в установившемся состоянии и дина­мическую погрешность как разность между погрешностью средства измерения в динамическом режиме (в неустановившемся состоянии) и его статической погрешностью, соответствующей значению вели­чины в данный момент времени.

Погрешность средства измерения, возникающая при использо­вании его в нормальных условиях, когда влияющие величины на­ходятся в пределах нормальной области значений, называют основной. Если значение влияющей величины выходит за пределы нор­мальной области значений, появляется дополнительная погрешность.

Обобщенной характеристикой средства измерений, определяе­мой пределами основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых устанавливаются в стандартах на отдельные виды средств измере­ния, является класс точности средства измерений (ГОСТ 8.401—80). Класс точности характеризует свойства средства измерения, но не является показателем точности выполненных измерений, поскольку при определении погрешности измерения необходимо учитывать по­грешности метода, настройки и др.


II. ОСНОВНЫЕ ПОНЯТИЯ О СТАНДАРТИЗАЦИИ

ГОСУДАРСТВЕННАЯ СИСТЕМА СТАНДАРТИЗАЦИИ

2.1. Стандартизация и стандарт.

Основные термины и определения в области стандартиза­ции установлены Комитетом ИСО по изучению научных принципов стандартизации (СТАКО). Эти определения приняты многими стра­нами, в том числе и СССР.

Стандартизация — это установление и применение правил с целью упорядочения деятельности в определенной области на пользу и при участии всех заинтересованных сторон, в частности для достижения всеобщей оптимальной экономии при соблюдении условий эксплуатации (использования) и требований безопасности. Стандартизация, основанная на объединенных достижениях науки, техники и передового опыта, определяет основу не только настоя­щего, но и будущего развития промышленности.

Из определения следует, что стандартизация — это плановая деятельность по установлению обязательных правил, норм и требо­ваний, выполнение которых обеспечивает экономически оптимальное качество продукции, повышение производительности общественного труда и эффективности использования материальных ценностей при соблюдении требований безопасности.

Стандарт — нормативно-технический документ по стандарти­зации, устанавливающий комплекс норм, правил, требований к объ­екту стандартизации и утвержденный компетентным органом. Стандарт, разработанный на основе достижений науки, техники, передо­вого опыта, должен предусматривать оптимальные для общества решения. Стандарты разрабатывают как на материальные предметы (продукцию, эталоны, образцы веществ и т. п.), так и на нормы, правила, требования к объектам организационно-методического и общетехнического характера. Стандарт — это самое целесообразное решение повторяющейся задачи для достижения определенной цели. Стандарты содержат показатели, которые гарантируют возможность повышения качества продукции и экономичности ее производства, а также повышения уровня ее взаимозаменяемости.

Технические условия (ТУ) — нормативно-технический документ по стандартизации, устанавливающий комплекс требований к кон­кретным изделиям, материалу и другой продукции, ее изготовлению и контролю. ТУ разрабатываются в соответствии с ГОСТ 2.115—70 и утверждаются руководством министерства (или предприятия) на срок, зависящий от нормативных сроков обновления продукции.

Для усиления роли стандартизации в техническом прогрессе, повышении качества продукции и экономичности ее производства в соответствии с постановлением СМ СССР от 11.01.1965 г. разра­ботана и введена в действие в народном хозяйстве Государственная система стандартизации (ГСС). Она представляет собой комплекс взаимоувязанных правил и положений, определяющих цели и за­дачи стандартизации, структуру органов и служб стандартизации, их права и обязанности, организацию и методику проведения работ по стандартизации во всех отраслях народного хозяйства СССР и союзных республик, порядок разработки, оформления, согласования, утверждения, издания, внедрения стандартов и другой нормативно-технической документации, а также контроля за их внедрением и соблюдением. Таким образом, ГСС определяет организационные, ме­тодические и практические основы стандартизации во всех звеньях народного хозяйства (рис. 2).

ГСС непрерывно совершенствуется и дополняется. Все изменения и дополнения, которые вносятся в действующие стандарты, публи­куются в Информационном указателе стандартов (ИУС). В комплекс стандартов ГСС входят: ГОСТ 1.0—68—ГОСТ 1.5—68; ГОСТ 1.7—78, ГОСТ 18—79; ГОСТ 1.9—67; ГОСТ 1.11—75; ГОСТ 1.13—75;

ГОСТ 1 15—82; ГОСТ 1.16—78—ГОСТ 1.18—78; ГОСТ 1.19—75;

ГОСТ 1.20—69; ГОСТ 1.21—75; ГОСТ 1.22—76; ГОСТ 1.23—77;

ГОСТ 1.25—76; ГОСТ 1.26—77.

Главная цель ГСС — с помощью стандартов, устанавливающих показатели, нормы и требования, соответствующие передовому уровню отечественной и зарубежной науки, техники и производства, содействовать обеспечению пропорционального развития всех от­раслей народного хозяйства страны. Эта система имеет также сле­дующие цели:

Улучшение качества работы, качества продукции и обеспечение его оптимального уровня;

Обеспечение условий для развития специализации в области проектирования и производства продукции, снижения ее трудо­емкости, металлоемкости и улучшения других показателей;

Обеспечение увязки требований к продукции с потребностями обороны страны;

Обеспечение условия для широкого развития экспорта товаров высокого качества, отвечающих требованиям мирового рынка;

Рациональное использование производственных фондов и эко­номия материальных и трудовых ресурсов;

Развитие международного экономического и технического сотруд­ничества;

Обеспечение охраны здоровья населения, безопасности труда работающих, охраны природы и улучшения использования при­родных ресурсов.

Для достижения указанных целей необходимо решить следующие задачи:

установление прогрессивных систем стандартов на основе ком­плексных целевых программ, определяющих требования к конструкции изделий, технологии их производства, качеству сырья, материа­лов, полуфабрикатов и комплектующих изделий, а также созда­ющих условия для формирования требуемого качества конечной продукции на стадии ее проектирования, серийного производства и эффективного использования (эксплуатации);

определение единой системы показателей качества продукции, методов и средств контроля и испытаний, а также необходимого уровня надежности в зависимости от назначения изделий и условий их эксплуатации;

установление норм, требований и методов в области проектиро­вания и производства продукции с целью обеспечения ее оптималь­ного качества и исключения нерационального многообразия видов, марок и типоразмеров продукции;

развитие унификации промышленной продукции и агрегатирования машин как важнейшего условия специализации, повышения экономичности производства, производительности труда, уровня взаимозаменяемости, эффективности эксплуатации и ремонта изделий;

обеспечение единства и достоверности измерений в стране, созда­ние и совершенствование государственных эталонов единиц физи­ческих величин, а также методов и средств измерений высшей точ­ности;


Рис. 2. Принципиальные методические и научно-технические основы Государственной системы стандартизации в СССР

установление единых систем документации, в том числе унифи­цированных систем документации, используемых в автоматизиро­ванных системах управления, установление систем классификации и кодирования технико-экономической информации, форм и систем организации производства и технических средств научной органи­зации труда;

установление единых терминов и обозначений в важнейших обла­стях науки и техники, а также в отраслях народного хозяйства и др.

Для достижения поставленных целей работы по стандартизации планируют, придавая им народнохозяйственное значение, постоянно обновляют стандарты на основе достижений науки, техники и произ­водства с учетом комплексности и системности решений задач стан­дартизации.


2.2. Категории стандартов.


В зависимости от сферы действия ГСС предусматривает следующие категории стандартов: государственные (ГОСТ), отраслевые (ОСТ), республиканские (РСТ) и стандарты предприятий (объединений) (СТП). Государственные стандарты обя­зательны для всех предприятий, организаций и учреждений страны в пределах сферы их действия. Отраслевые стандарты используют все предприятия и организации данной отрасли (например, станко­строительной. Автотракторной и т. д.), а также другие предприятия и организации (независимо от их ведомственной принадлежности), разрабатывающие, изготовляющие и применяющие изделия, которые относятся к номенклатуре, закрепленной за соответствующим мини­стерством. Республиканские стандарты обязательны для всех пред­приятий и организаций республиканского и местного подчинения Данной союзной республики независимо от их ведомственной при­надлежности. Стандарты предприятий (объединений) действуют только на предприятии, утвердившем данный стандарт.

Стандарты утверждают соответствующие организации: ГОСТ — Госстандарт СССР; ОСТ — министерство (ведомство), являющееся ведущим в производстве данного вида продукции; РСТ — советы министров союзных республик или их Госпланы; СТП — руковод­ство предприятий. Особо важные ГОСТы утверждает СМ СССР и Госстрой СССР.

Порядок разработки, согласования, утверждения, оформления, регистрации и издания стандартов установлен ГОСТ 1.2—68, ГОСТ 1.3—68 и ГОСТ 1.4-68.

Государственные стандарты устанавливают требования преиму­щественно к продукции массового и крупносерийного производства широкого и межотраслевого применения, к изделиям, прошедшим государственную аттестацию, экспортным товарам; они устанавли­вают также общие нормы, термины и т. п. Исходя из этого, можно указать на следующие объекты государственной стандартизации:

общетехнические и организационно-методические правила и нормы (ряды нормальных линейных размеров, нормы точности зубчатых передач, допуски и посадки, размеры и допуски резьбы, предпочти­тельные числа и др.); нормы точности изделий межотраслевого при­менения; требования к продукции, поставляемой для эксплуатации в различных климатических условиях, методы их контроля; меж­отраслевые требования и нормы техники безопасности и производ­ственной санитарии; научно-технические термины, определения и обозначения; единицы физических величин; государственные эта­лоны единиц физических величин и общесоюзные поверочные схемы;

методы и средства поверки средств измерений; государственные испы­тания средств измерений; допускаемые погрешности измерений; си­стемы конструкторской, технологической, эксплуатационной и ре­монтной документации; системы классификации и кодирования тех­нико-экономической информации и т. д.

Отраслевые стандарты устанавливают требования к продукции, не относящейся к объектам государственной стандартизации, к тех­нологической оснастке, инструменту, специфическим для отрасли, а также на нормы, правила, термины и обозначения, регламентация которых необходима для обеспечения взаимосвязи в производственно-технической деятельности предприятий и организаций отрасли и для достижения оптимального уровня качества продукции. Объек­тами отраслевой стандартизации могут быть машины, оборудование, приборы и другие изделия серийного производства, детали и состав­ные части этих изделий; сырье, материалы, топливо, полуфабрикаты, применяемые в отрасли; типовые технологические процессы внутри­отраслевого применения и др. ОСТы разрабатывают также для огра­ничения, например, типоразмеров крепежных деталей, полей допу­сков и посадок и др.

Республиканские стандарты устанавливают требования к про­дукции, выпускаемой предприятиями союзно-республиканского и местного подчинения союзной республики. Номенклатура продук­ции, на которую утверждают республиканские стандарты, должна быть согласована с Госстандартом СССР и соответствующими веду­щими министерствами и ведомствами СССР по закрепленным груп­пам продукции. Объектами республиканской стандартизации могут быть сырье, материалы, топливо и полезные ископаемые внутри-республиканского производства и применения; отдельные типы изде­лий массового или серийного производства, относящиеся к профилю республиканских министерств, товары народного потребления и др.

Стандарты предприятий (объединений) распространяются на нормы, правила, методы, составные части изделий и другие объекты, имеющие применение только на данном предприятии; на нормы в области организации и управления производством; на технологи­ческие нормы и требования, типовые технологические процессы. Оснастку, инструмент и т. п. Стандарты предприятий могут также устанавливать ограничения по применяемой номенклатуре деталей, составных частей, материалов, предусмотренные государственными, отраслевыми или республиканскими стандартами.

В последние годы стандарты предприятий стали фундаментом комплексной системы управления качеством продукции; они охва­тывают все сферы деятельности предприятия и позволяют доводить требования государственных стандартов до каждого рабочего места, до каждого исполнителя. Стандарты предприятий (объеди­нений) оказывают существенное влияние на все сферы деятельности заводов. Они влияют на развитие унификации технологической и контрольной оснастки, нестандартного оборудования, обеспечивают более рациональное использование сырья, материалов, энергии и т. д. Число стандартов предприятий непрерывно растет; например, в объединении ЗИЛ их насчитывается свыше 5500.


2.3. Виды стандартов.


В зависимости от объектов и содержания стандарты делят на стандарты: технических условий (общих техни­ческих условий); параметров (размеров); типов, марок, сортамента;

конструкции; правил приемки, методов испытаний (контроля, ана­лиза, измерений); методов и средств поверки мер и измерительных приборов; правил эксплуатации и ремонта; типовых технологических процессов и др.

В настоящее время установлен новый, более совершенный поря­док разработки стандартов всех категорий и видов. Он предусматри­вает переход от разработки отдельных нормативно-технических до­кументов на конкретную продукцию к созданию в отраслях народ­ного хозяйства взаимосвязанных комплексов стандартов и техниче­ских условий, охватывающих продукцию на всех этапах ее жизнен­ного цикла. При этом государственные (ГОСТы), отраслевые (ОСТы) и республиканские (РСТы) стандарты должны разрабатываться на группы однородной продукции по результатам научно-исследова­тельских, опытно-конструкторских и опытно-технологических работ с учетом перспектив развития этой продукции; на конкретную про­дукцию должны разрабатываться технические условия (ТУ) и при необходимости ОСТы и РСТы, фиксирующие результаты разработки и постановки продукции на производство.


2.4 Планирование работ по стандартизации


Планирование работ по стандартизации является