Связь комбинаторики с различными разделами математики
0). В окрестности нуля , а .При больших t имеем
.
Полагая t = 6 и пользуясь формулой (15), получаем приближённое равенство . Полученный результат с хорошей точностью (отклонение составляет не более 3%) приближает искомое значение.
На основании рассмотренного примера можно сделать некоторые выводы о комбинаторных задачах и методах их решения. Задачи перечислительной комбинаторики состоят в подсчёте числа объектов, принадлежащих некоторому семейству конечных множеств. У каждого множества семейства имеется свой номер (в задаче о счастливых билетах таким номером была сумма цифр трёхзначного числа).
Как правило, задача перечислительной комбинаторики «в принципе» разрешима: для каждого множества из семейства можно выписать все его элементы и таким образом узнать их число. Проблема состоит в том, чтобы найти «хорошее» решение, не требующее выписывания всех элементов изучаемых множеств. Определить, что такое «хорошее» решение, довольно трудно.
При решении задач перечислительной комбинаторики очень полезно рассматривать производящие многочлены. В нашем случае пользу принёс производящий многочлен А3. Операции с комбинаторными объектами очень естественно выражаются в терминах производящих функций. Так, переход от однозначных чисел с заданной суммой цифр к трёхзначным числам состоял просто в возведении производящего многочлена А1 в куб. Привлечение методов из смежных областей математики (например, из анализа) позволяет по-иному взглянуть на перечислительную задачу и найти новые, зачастую неожиданные, подходы к её решению.
Библиографический список
Болтянский, В.Г. Теоремы и задачи комбинаторной геометрии [Текст] / В.Г. Болтянский, И.Ц. Гохберг // – М.: Наука, 1965.
Болтянский, В.Г. Разбиение фигур на меньшие части [Текст] / В.Г. Болтянский, И.Ц. Гохберг // – М.: Наука, 1971.
Калужнин, Л.А. Преобразования и перестановки [Текст] / Л.А. Калужнин, В.И. Сущанский // – М.: Наука, 1979.
Кофман, А. Развитие методов пересчета [Текст] / А. Кофман // Введение в прикладную комбинаторику – М.: Наука, 1975. – с. 60–73.
Ландо, С.К. Счастливые билеты [Текст] // Математическое просвещение, сер. 3, вып. 2. – М.: Просвещение, 1998. – с. 127–132.