Технология обжига цинковых концентратов в печи кипящего слоя
по условиям процесса должен быть отведен. Отвод тепла обеспечивается подачей воды в кессоны испарительного охлаждения.Состояние выходных материальных потоков характеризуется некоторой совокупностью выходных переменных, зависящих от входных переменных и возмущающих воздействий. Как уже было отмечено выше, для протекания процесса необходимо и достаточно ввести в объект управления материальные входные потоки. В результате их взаимодействия в реакционном пространстве печи КС, будут протекать следующие химические реакции:
ZnS+1.5O2→ZnO+SO2+Q
ZnO+SO2+0.5O2→ZnSO4+Q
ZnS+3ZnSO4→4ZnO+4SO2-Q
Очевидно, что выходными переменными характеризующими выходные материальные потоки будут являться:
по огарку - количество получаемого огарка, его химический состав.
Твердые продукты обжига распределены следующим образом:
огарок - 62%, от общего количества;
пыль - 38%, от общего количества.
Химический состав огарка по основным компонентам:
цинк кислоторастворимый 97%;
серы сульфидной до 0,3%.
Химический состав пыли по следующим составляющим:
цинк кислоторастворимый 90%;
серы сульфидной 0,3.
Эти выходные переменные выделены, в связи с задачей процесса обжига цинковых сульфидных концентратов, целью которого является получение структурно-свободной окиси в таком состоянии, чтобы она была наиболее благоприятна для проведения последующих стадий переработки технологии и в конечном счете обеспечивало высокие технико-экономические показатели производства в целом.
Отсюда вытекает требования к огарку, которые можно представить в виде ограничений наложенных на химический состав выходного потока. Огарок должен иметь содержание сульфидной серы не более 0,3%, сульфатов не более 4%. Таким образом, особенностью технологических требований, предъявляемых к операции обжига цинковых концентратов, является глубокий обжиг сульфидов цинка. Ещё одной технологической особенностью процесса обжига является получение обжиговых газов с высокой концентрацией сернистого ангидрида, направляемых на получение серной кислоты в соответствующий цех. Следовательно, следующим выделенным материальным потоком будут обжиговые газы, получающиеся в результате протекания процесса. Выходными переменными, характеризующие этот поток будут:
количество получаемых газов 15000м3/час;
концентрация в них сернистого ангидрида 6-12%.
Важнейшей выходной переменной является температура в кипящем слое. От нее зависит скорость десульфаризации, а, следовательно, получение продуктов обжига в количественном отношении, химический состав получаемых продуктов, протекание химической реакции. На значение этой переменной наложены ограничения - температура в КС должна находиться в пределах 950-9800С. Эти ограничения вызваны рядом причин: во-первых, как было установлено в процессе опытов, константа скорости массопереноса возрастает, начиная при 9100С, а затем падает. Следовательно, максимум выхода оксида цинка достигается при вышеуказанной температуре.
Кроме того, более высокая температура, чем указанный интервал, способствует нежелательному содержанию примесей в получаемом огарке, в результате более интенсивного протекания побочных химических реакций. Скорость же основной химической реакций - окисления сульфида цинка, при более высокой температуре весьма незначительно влияет на скорость протекания процесса. Температура более низкая, чем указанный интервал (950-9800С) имеет существенное влияние на скорость обжига, так как ход процесса будет лимитироваться уже кинетикой и определяется ее законами.
Возмущающими воздействиями, действующими на объект управления по выходному материальному потоку будут: влажность концентрата и его удельный вес в определенный момент времени на ленте транспортера.
Основной регулируемой переменной по которой строится автоматическая система управления, является температура КС. Для регулирования температуры необходимо выбрать управляющее входное воздействие по соответствующему каналу. Для процесса обжига в КС выходная переменная - температура зависит от нескольких входных переменных и в общем виде может быть представлено выражением:
T=f (Fк,Fвозд,Cо2,Fводы)
Т - температура кипящего слоя
Fк - расход концентрата
Со2 - концентрация кислорода
Fвозд - расход воздуха
Fводы - расход воды
Однако в результате изучения процесса был сделан вывод о том, что в регулировании температуры процесса обжига цинковых концентратов, единственным каналом по которому можно осуществлять регулирование, является канал "расход концентрата - температура слоя". Этот вывод последовал из предположений, что рассматриваемый объект является реактором идеального перемешивания.
К этому же выводу можно прийти в результате размышлений: если допустить, что регулирование температуры ведется по каналу "расход воздуха - температура", то при постоянном гранулометрическом составе увеличение расхода воздуха вызывает увеличение линейной скорости воздуха, что приводит к значительному пылевыносу. При уменьшении расхода воздух подаваемого в печь, слой концентрата может не перейти в псевдоожиженное состояние. Очевидно, что в обоих случаях будет иметь место нарушение гидродинамического режима работы печи кипящего слоя.
Регулирование по каналу "концентрация кислорода - температура" - нецелесообразно, так, как известно предельно-допустимое значение концентрации кислорода, которое может задаваться заранее.
Регулирование температуры в печи по каналу "расход воды - температура" оказывается менее эффективным, так, как по этому каналу статистический коэффициент передачи тепла ниже, чем по каналу "расход концентрата - температура". Следуя рекомендациям в литературе, выбираем управляющее воздействие, для которого коэффициент усиления будет максимальным среди всех управляющих воздействий, влияющих на рассматриваемую переменную, а отношение t/Т минимальным. Оставшиеся неиспользованные управляющие воздействия будем поддерживать на определенном уровне.
Таким образом, температурный режим печи устанавливается и регулируется изменениями расхода загружаемого в печь сульфидного цинкового концентрата.
2.2 Современное состояние автоматизации процесса обжига в КС
При окислительном обжиге сернистого сырья с полным выжиганием серы оптимальным было бы регулирование концентрации сернистого ангидрида в обжиговых газах путем изменения расхода загружаемого сырья и регулирование температуры кипящего слоя путем изменения отъема избыточного тепла; при этом расход дутья (воздуха) и давление под сводом автоматически стабилизируются независимыми регуляторами.
В связи с тем, что требуемого диапазона регулирования отъема тепла в печах с температурой в пределах 700-10000С технически эффективными средствами достигнуть не удается, на цинковых заводах страны внедрены схемы с регулированием температуры обжига изменением расхода загружаемого сырья; при этом концентрация сернистого ангидрида в обжиговых газах остается неуправляемой. Благодаря большим коэффициентам взаимосвязи между концентрацией сернистого ангидрида в газах температурой обжига при постоянстве отвода избыточного тепла практически колебания содержания сернистого ангидрида в отходящих газах при работе автоматического регулятора температуры не превышают 0,6-1,0%.
Все контрольно-измерительные приборы, самопишущие и показывающие, со всех печей вынесены на общий пульт управления. На основании показаний приборов мастер или старший обжигальщик с пульта управления руководит процессом.
Контролю и автоматизации подвергаются следующие узлы:
автоматическое регулирование и регистрация температуры в кипящем слое;
автоматический контроль и регистрация давления;
автоматический контроль и регистрация количества подаваемого в печь воздуха;
автоматическое регулирование подачи концентрата в бункера печей;
регистрация давления воздуха перед печью;
дистанционное управление и блокировка электродвигателей оборудования обслуживающего печь КС.
Для питания аппаратуры контроля и автоматики требуется переменный ток 220 и 127в, а также постоянный ток 220в. Для получения постоянного тока электротехнической частью предусмотрено два мотор-генератора, которые питают электродвигатели ленточных питателей, электромагниты самоочищающихся фильтров и схемы сигнализации.
Внедрение автоматизации значительно облегчает обжигальщикам обслуживание печи. Производительность труда на печах возрастает в 1,5-2 раза по сравнению с ручным управлением.
Обслуживание автоматических линий ведется электрослужбой цеха.
Автоматическое регулирование и регистрация температуры в кипящем слое
Температура измеряется хромельалюмелевыми термопарами в десяти точках (в семи точках кипящего слоя, одна - под сводом печи и две точки на входе газа в циклоны), показания термопар передаются на самопишущий двенадцатиточечный (или шеститочечный) потенциометр ФЩЛ5.
Автоматическое регулирование температуры производится изменением количества поступающего в печь концентрата (топлива). Измерительным элементом регулятора служит хромельалюмелевая термопара, устанавливаемая в верхней части кипящего слоя печи. Термопара работает с промышленным компьютером фирмы "SIEMENS", передающим управляющий сигнал на преобразователь частоты VLT, к которому подключен электродвигатель ленточного питателя. Диапозон частоты преобразователя VLT от 0 до 200 Гц, что дает возможность управлять скоростью вращения электродвигателя от 0 до 2000 об/мин и выше. Рабочий диапазон скорости вращения электродвигателя ленточного питателя от 450 до 1600 об/мин.
Таким образом, автоматически в зависимости от температуры скорость движения ленточного питателя, подающего концентрат, будет меняться в нужных пределах. Также предусматривается возможность дистанционного управления скоростью движения ленточного питателя. Для этого на пульте управления установлен ручной задатчик скорости. Сигнализация о работе всех питателей выведена на мнемосхему пульта управления.
Схема автоматического регулирования температуры не связывается с узлом регулирования расхода воздуха, подаваемого в печь ибо при узких пределах регулирования расхода концентрата (при практически стабильном технологическом режиме обжига) нет нужды в таком сложном регулировании.
Автоматический контроль давления газа под сводом печи
Давление под сводом печи контролируется самопишущим прибором типа РП-160 со шкалой 0±25 мм вод. ст. присоединенным к первичному прибору типа "Сапфир-22ДИВ". Регулирование давления газа под сводом печи может производиться дистанционно: кнопками, установленными на щите управления, степенью открытия или закрытия дросселя в газоходе перед эксгаустерами.
Регулирование и регистрация подаваемого в печь воздуха
Расход воздуха на печь кипящего слоя контролируется самопишущим расходомером типа "РП-160" со шкалой 0-20000 м3/ч. Для регулирования расхода воздуха на патрубке, нагнетающим воздух в печь, установлена дроссельная заслонка, связанная с исполнительным механизмом с помощью которого можно управлять расходом воздуха в зависимости от заданного режима.
Установленные на центральном щите управления кнопки позволяют дистанционно изменять воздушный режим на печах. Дроссель устанавливается на нагнетающем воздушном патрубке перед печью. Все воздуховоды от турбовоздуходувок имеют соединение с общим воздушным коллектором, что дает возможность подавать воздух от любой турбовоздуходувки.
Автоматическое регулирование подачи концентрата в бункера печей КС
Схема предусматривает ручное и автоматическое управление узла загрузки, технологическую, предупредительную и аварийную сигнализацию (звуковую и световую), контроль наличия концентрата от склада по всей нитке и в бункерах печей КС. При автоматическом управлении предусмотрено ручное отключение с любой автоматической нитки. При нормальном режиме автоматическое отключение производится при всех наполненных бункерах печей КС с выдержкой времени от начала остановки питателя до загрузочного транспортера (выдержка времени берется равной времени чистки дисковой дробилки). Автоматическое включение происходит при уменьшении уровня концентрата в одном из бункеров печей КС.
Уровень в бункере концентрата измеряется комплектом приборов "Vedapuls-Vedamet" с выводом на промышленный компьютером. В момент, когда концентрат в каком-либо бункере опускается ниже заданного уровня, плужковый сбрасыватель этого бункера опускается на ленту транспортера. Плужковые сбрасыватели остальных бункеров поднимаются. Загрузка продолжается до заданного верхнего уровня.
При нормальной подаче концентрата из загрузочного бункера на питатель склада наличие концентрата контролируется флажком. В случае отсутствия концентрата на питателе флажок опускается и автоматически включаются электровибраторы бункера КСК воздушного обрушения. Как только произошло обрушения, контакт размыкается, так как флажок поднялся, останавливаются электровибраторы и закрывается клапан КСК на воздушном обрушении.
На транспортерах, подающих концентрат из склада концентратов в бункера печей КС, наличие концентрата фиксируется также флажками, которые дают импульс на сигнальные лампы, установленные на центральном щите управления. Для работы на ручном управлении необходимо все ключи, установленные на щите, перевести из положения "автоматическое" в положение "ручное" и затем запускать в работу все агрегаты в отдельности непосредственно на месте.
Регистрация давления воздуха перед печью КС
Давление воздуха перед печью или так называемая "упругость дутья" складывается из сопротивления газоходов, пода печи (в сумме около 100-150 мм вод. ст.) и сопротивления самого слоя. Нормальная упругость дутья для работающей печи 2000-4000 мм вод. ст. Изменение упругости дутья в ту или иную сторону свидетельствует об ухудшении работы печи кипящего слоя, т.е. Указывает на ненормальное кипение слоя, образование в нем спеков или на забивание воздухораспределительных отверстий в соплах. Упругость дутья измеряется самопишущим тягомером типа РП-160 со шкалой 0-4000 мм вод. ст.
Дистанционное управление и блокировка электродвигателей оборудования, обслуживающего печь КС
При остановке транспорта огарка под печами - скребкового транспортера, предусматривается автоматическое отключение (остановка) шнеков, установленных на разгрузке печей КС и на газоходной системе. Для этой цели применяют блокировку электродвигателей оборудования. Кроме того, предусмотрено ручное управление агрегатами путем установки специальных ключей на центральном пульте управления.
2.3 Разработка гибридной структуры управления процессом. Постановка задач исследования и проектирования
Как уже отмечалось в п.2.1 печь кипящего слоя можно рассматривать, как непрерывно действующий реактор почти идеального перемешивания. Загружаемый сульфидный цинковый концентрат в реакционной ванне печи становится текуч в состоянии кипящего слоя: интенсивно перемешивается, перетекает через сливной порог и приобретает другие свойства жидкости за счет подаваемого под давлением воздуха в печь под слой концентрата. Главной целью обжига является перевод сульфидного цинкового концентрата в окисленный цинк.
Входными потоками являются: поток сульфидного цинкового концентрата и поток воздуха, обогащенного кислородом. При этом от расхода концентрата зависит весь режим работы печи кипящего слоя (КС), ее производительность, тепловой баланс, качество готового огарка. Расход обогащенного кислородом дутья влияет на скорость ведения процесса обжига, температуру в печи, обеспечение режима псевдоожижения, манометрический режим и т.д.
Важнейшие выходные переменные: количество получаемого огарка, его химический состав, температура в кипящем слое, манометрический режим в печи.
Основные возмущающие воздействия: химический состав концентрата, его гранулометрический состав, влажность и удельный вес.
В существующих системах управления процессом обжига цинковых огарков в печах КС основной регулируемой переменной является температура кипящего слоя, которая регулируется с помощью изменения расхода концентрата. При этом автоматически стабилизируется: расход концентрата, расход дутья, расход кислорода, разряжение в своде печи.
Основным недостатком существующих систем управления является то, что в них регулируется температура в КС, которая является лишь косвенной оценкой качества готового огарка. Необходимо также учитывать то, что поддержание гидродинамического режима в кипящем слое и манометрического режима в печи осуществляется оператором "вручную". При этом оператор, исходя из своего опыта и интуиции, и, манипулируя уставками регуляторов, выдает задания системам стабилизации: расхода дутья, расхода кислорода, разрежения под сводом печи, расхода концентрата и выгружаемого огарка.
Нами, исходя из анализа существующих систем управления процессами в кипящем слое и современных достижений в области теории управления, предложена структура системы, позволяющая управлять качеством готового раствора "напрямую", а не косвенно (через температуру слоя). Кроме того, поддержание соответствующей гидродинамической обстановки и манометрического режима в печи КС в предлагаемой структуре системы "перекладывается" на компьютер, что снижает влияние на процесс человеческого фактора.
Для реализации этих задач в структуру системы управления (рис.4) кроме традиционного канала управления "расход концентрата - температура в КС" включена подсистема оптимального управления (включающая математическую модель, описывающая материальный и тепловой балансы процесса обжига, а также алгоритм поиска экстремума целевой функции) и интеллектуальная подсистема управления гидродинамическим и манометрическим режимами в печи КС.
Недостатком имеющихся систем управления обжигом цинковых концентратов в кипящем слое является то, что температура в КС (которая является лишь косвенной оценкой качества готового огарка) поддерживается в довольно узком диапазоне независимо от качества исходного сырья. Предлагаемая система позволяет на основе оперативного анализа химсостава и физических свойств концентрата с помощью математической модели процесса и алгоритма оптимизации рассчитать такие температуру - Т*зад и расход концентрата - F*к-та, которые доставляли бы критерию оптимальности (качеству готового огарка) экстремальное значение. В качестве критерия оптимальности выбирается либо концентрация кислоторастворимого цинка (поиск максимума целевой функции), либо концентрация нерастворимого сульфида цинка (поиск минимума целевой функции).
Рис.4. Структурная схема системы управления процессом обжига цинковых концентратов в кипящем слое
Такая структура позволяет определять оптимальный режим подачи концентрата в печь КС и оптимальную температуру кипящего слоя на какой-то фиксированный промежуток времени. Объемы существующих на цинковом заводе "Казцинк" бункеров способны обеспечивать подачу концентрата в течении 8-9 часов. Таким образом, появляется возможность проводить усредненный анализ химического состава и физических свойств (грансостав, влажность и удельный вес) концентрата в течение одной смены еще до начала его переработки в печи КС. Анализ проводится во время выработки очередного бункера, по окончании которой питание печи КС переключается на второй бункер, в котором уже определены химические и физические свойства концентрата. Во время работы печи с этим бункером производится усредненный анализ концентрата первого бункера и по мере выработки второго бункера питание переводится на первый и т.д.
Организация питания печи КС с двумя бункерами имеет два преимущества. Во-первых, с помощью математической модели и алгоритма оптимизации можно осуществлять расчет оптимальных значений расхода концентрата и температуры КС, доставляющих экстремум целевой функции (например, концентрация кислоторастворимого цинка в готовом огарке). Во-вторых, появляется возможность управлять процессом по каналу: "возмущающее воздействие - температура в печи", что позволяет заранее определять такой расход концентрата (F*к-та), который бы устанавливал заданную температуру (Т*зад) в КС, и таким образом компенсировал бы возмущающее воздействие.
Для реализации предложенной гибридной структуры управления необходимо решить следующие исследовательские задачи:
разработать подсистему оптимального управления процессом с использованием математической модели и алгоритма поиска экстремума;
разработать интеллектуальную подсистему управления гидродинамическим режимом в кипящем слое и манометрическим режимом в печи КС:
рассчитать оптимальные настройки регулятора подсистемы стабилизации температуры.
С целью внедрения предлагаемых подсистем необходимо разработать следующую проектную документацию:
информационное обеспечение АСУТП;
организационное обеспечение АСУТП;
алгоритмическое и программное обеспечения АСУТП;
техническое обеспечение АСУТП;
расчет экономической эффективности от внедрения АСУТП;
мероприятия по технике безопасности и охраны труда.
2.4 Разработка подсистемы оптимального управления
Основным элементом подсистемы оптимального управления является математическая модель процесса обжига концентратов в печи КС. К настоящему времени существует достаточно большое количество исследований, посвященных разработке такой математической модели. Наиболее полно описаны физико-химические процессы обжига цинковых концентратов в псевдоожиженном слое в работах Данилина Л.А. [5,6].
В данной работе за основу математической модели взяты результаты [5,6], дополненные соответствующими соотношениями, учитывающими специфику предлагаемой структуры управления.
При выборе метода поиска экстремума нами были проведены тестовые испытание наиболее известных методов оптимизации, при этом наилучшие результаты по надежности и скорости сходимости показал метод наискорейшего спуска.
Таким образом, к настоящему времени имеются достаточно надежные и точные инструменты создания подсистемы оптимального управления данным процессом.
2.4.1 Описание математической модели процесса окисления сульфидного цинкового концентрата в кипящем слое
В [5] разработана математическая модель периодического процесса окисления сульфидного цинкового концентрата в кипящем слое, в основу которой положена гипотеза о механизме процесса, составленная на основании сведений литературы. Результаты исследования процесса окислительного обжига математическим моделированием изложены в [5], где показано, что скорости окисления сульфидов цинка и железа одинаковы и процесс окисления в частице концентрата протекает зонально. Эти результаты позволяют процесс окисления цинкового концентрата в сете поставленной в [5] цели представить как
2MeS+3O2 =2MeO+2SO2 (1)
где Me - цинк, MeS - сульфидная фаза, MeO - оксидная фаза.
Такое представление о процессе позволяет при принятых в [5] допущениях несколько упростить математическую модель [5]. Действительно, зная текущие массы сульфидной и оксидной фазы и содержание компонентов в частице концентрата, можно определить содержание последних в частице огарка в любой момент окисления.
Изменение во времени текущей массы сульфидной фазы может быть описано уравнением Валенсии [7], выведенным для реакций, аналогичных реакции (1):
(2)
где
где Gc (0) - первоначальная масса частицы концентрата, г; Gc (t) - текущая масса сульфидов, т.е. масса неокисленного сульфидного ядра частицы, г; γc - плотность сульфидной фазы, г/см3; γ0 - плотность оксидной фазы, г/см3; α-коэффициент пропорциональности, подобный стехиометрическому (численно равен массе оксидной фазы, образующейся при взаимодействии по (1) единицы массы кислорода); r0 - первоначальный радиус частицы концентрата, см; Cя - концентрация кислорода в ядре потока, об. %; t - текущее время, мин; D - коэффициент диффузии кислорода через слой оксидной фазы, г/ (см. %. мин).
Текущая масса оксидной фазы будет
(3)
где α1 - коэффициент пропорциональности, подобный стехиометрическому, определяется по содержанию компонентов в концентрате и стехиометрическим коэффициентам соответствующих химических реакций и может быть уточнен по результатам анализов огарков, получаемых при обжиге концентрата, например, на лабораторной установке кипящего слоя.
Текущие массы цинка и железа, связанных в сульфид, и сульфидной серы в окисляющейся частице концентрата описываются следующимим выражениями:
(4), (5)
(6)
где CZn S (0), CFe S (0), CS c (0) - содержания цинка, железа и серы в концентрате. Текущие массы цинка и железа, образующихся в результате окисления сульфидов и находящиеся в частице в оксидной форме, выразим как
(7), (8)
На основании результатов исследования процесса [5] считаем, что масса гематита в частице огарка меняется во времени пропорционально изменению массы оксидной фазы, а образование феррита цинка происходит со скоростью, превосходящей скорость образования оксида железа. Тогда текущую массу цинка, связанного в феррит, опишем выражением
(9)
где D1 - стехиометрический коэффициент.
Потери цинка испарением опишем уравнением, преобразованным к виду, удобному для решения на ЭВМ,
(10)
где Ки - коэффициент массопередачи, a - коэффициент линеаризации (при tЈ15 мин GZn исп (t) =0). Текущая масса кислоторастворимых соединений цинка в частице огарка будет равна
(11)
Текущая масса цинка общего в частице
(12)
Текущая масса частицы огарка
(13)
Уравнение (13) справедливо, если плотности оксидной и сульфидной фаз определены экспериментально для конкретного вида концентрата и полученного из него огарка. Если же плотности определены расчетом с использованием справочных данных, то в (13) необходимо включить член, учитывающий массу "инертных" веществ, например, диоксида кремния и др.
Содержание цинка общего, кислоторастворимого, сульфидного и ферритного рассчитываем по формулам:
(14)
(15)
(16)
(17)
а содержание сульфидной серы
(18)
Таким образом, математическую модель периодического процесса окисления сульфидного цинкового концентрата в кипящем слое в виде, удобном для решения с помощью ЭВМ, может быть представлена системой уравнений (2) - (18).
Другой моделью, позволяющей решать задачи оптимизации режимов обжига цинковых концентратов в печах кипящего слоя является математическую модель процесса, которая, в частности, описывала бы зависимости содержания кислоторастворимого (Znкр), связанного в феррит (Znф) и сульфид (Znс) цинка в огарке от температуры, состава и размера частиц концентрата и концентрации кислорода в газе. Приведенные математические модели не отвечают этому требованию. На первом этапе составления требуемой модели следует составить систему уравнений, описывающих динамику окисления сфалерита. С этой целью разработана гипотеза о механизме процесса, согласно которой в развитом периоде процесса кислород из ядра газового потока диффундирует через ламинарную газовую пленку к внешней поверхности частицы и адсорбируется на ней, а затем через слой ранее образованных оксидов (толщиной l) двигается к реакционной поверхности (площадью S). В результате электронного обмена на реакционной поверхности протекают реакции окисления сульфидов. Между образующимися оксидами цинка и железа протекает реакция образования феррита цинка. Продукты окисления частицы концентрата определяется скоростью внутренней диффузии [8-10].
При составлении математической модели были приняты следующие допущения:
1. частица концентрата состоит из сульфидов цинка и железа и инертных по отношению к цинку веществ;
2. частицы концентрата имеют форму шара одинакового радиуса;
3. начальные этапы окисления, протекающие не по внутридиффузионному механизму, заканчиваются быстро и вносят относительно малый вклад в общую степень окисления;
4. все точки реакционной поверхности равнодоступны для диффундиру-ющих веществ;
5. частицы концентрата в процесс окисления незначительно изменяют свои размеры.
Скорость образования оксидов цинка и железа определяется скоростью диффузии кислорода к реакционной поверхности, т.е.
(19)
(20)
при t=0 и
где - текущие массы оксидов, г; D - здесь и далее стехиометрические коэффициенты пересчета; D - коэффициент диффузии в слое оксидов, г/ (с см. %); К1, К2 - доли поверхности S, занимаемые сульфидами цинка и железа; С - концентрация кислорода в ядре потока газа, об. %; С1, С2 - равновесные концентрации кислорода в системах Zn-S-O2 и Fe-S-O2.
Образующийся оксид железа, взаимодействуя с оксидом цинка, образует феррит цинка
(21), при t=0,
(22)
, (23)
где - масса оксида цинка, связанная в феррит в момент времени t, Кф - макроконстанта скорости реакции, 1/с; - текущие массы свободного оксида железа и связанного в феррит, г; М - доля оксида железа, вступающего в реакцию.
Уравнения материального баланса:
текущая масса свободного оксида цинка в частице огарка
(24)
2) текущие массы сульфидов цинка и железа