Методологические и методические проблемы оценки нефтяного загрязнения в природных водах
Бикбулатов Э.С., Ершов Ю.В., Бикбулатова Е.М., Степанова И.Э.
Применительно к природным водам рассмотрены проблемы количественного определения и разделения на антропогенную и естественную составляющие углеводородов (СН). Констатируется, что надежным индикатором отсутствия нефтяного загрязнения является близость величин отношения общего количества углеводородов к содержанию органического вещества на фоновом и исследуемом участках водоема. Предложенная ранее одним из авторов формула, опирающаяся на этот результат, позволяет избежать неоправданно завышенных оценок степени загрязнения водоемов нефтепродуктами, т.к. устанавливает точную меру естественной и антропогенной компонентов. Показано, что сезонные изменения в жизнедеятельности гидробионтов на фоновом участке накладывают ощутимый отпечаток на оценку доли СН антропогенного генезиса в общем их содержании и тем самым на оценку степени загрязнения водоемов. Использование битумоидов в качестве одной из составляющих меры нефтяного загрязнения вместо валового органического вещества может приводить к ошибочным результатам.
В негативном процессе загрязнения окружающей среды во многих случаях ключевую роль играют продукты добычи и переработки нефти и газа, в том числе сырая нефть, моторное топливо, смазочные масла и т.п. Все они представляют чрезвычайно сложную смесь веществ, включающих в себя, помимо преобладающих в количественном отношении различного молекулярного веса (от простейших пентана, гексана до тяжелых фракций - битумов, смол, асфальтенов) и строения (алифатические, нафтеновые, ароматические) углеводородов (СН), также органические соединения, содержащие азот, кислород, серу и многие другие элементы. Широкое разнообразие соединений, попадающих в окружающую среду, в совокупности с непостоянством состава (разные месторождения нефти содержат соответствующие компоненты в различных соотношениях; особенно это касается гетероциклических соединений, ароматических и нафтеновых СН) создает большие трудности при выделении и последующем анализе нефтепродуктов (НП). Проблема анализа усложняется и тем, что НП в природных объектах находятся в различных агрегатных состояниях - в виде пленок на поверхности воды, истинного раствора, самостоятельных жидких и твердых взвешенных частиц, а также сорбированных и окклюдированных на частицах почвы и донных отложений.
В то же время из-за неполярной природы, а часто и относительно меньшей плотности, выделение НП из природных сред не представляет особого труда. Во всех случаях они могут быть отделены от водной или твердой фазы с помощью неполярных органических растворителей. В качестве экстрагентов использовались метиленхлорид, хлороформ, четыреххлористый углерод, трихлортрифторэтан, гексан, бензол, пентан, петролейный эфир, смеси метанол-бензол и др. [10, 12, 17, 22]. Это приводит не только к некоторой условности термина "содержание нефтепродуктов" и ограничивает понятие "нефтепродукты" неполярными и малополярными соединениями [17], но и к различающимся количественным результатам. В практике исследований НП наибольшее распространение получили ССЦ и гексан [7, 10, 12,19, 20].
Неспецифичность практически всех экстрагентов по отношению к НП ведет к тому, что в извлекаемую фазу дополнительно попадают органические продукты естественного генезиса, по своей природе не относящиеся к перечисленным выше классам соединений, такие как низкомолекулярные составляющие фульвокислот, органоминеральные компоненты, хлорофиллы и множество других веществ неопределенного состава и структуры. Поэтому в большинстве разработанных методов предусматривается отделение мешающих элементов от основного содержания пробы. На этой стадии анализа обычно используют методы колоночной хроматографии, а в качестве наполнителей колонок - ионообменные смолы, силикагель и окись алюминия разной степени активности. [12, 17, 22]. На стеклянной колонке диаметром 1см и длиной 10 см с окисью алюминия задерживаются растительные и животные жиры, растительные масла, смолы, битумы, воск, тяжелые углеводороды, некоторые моющие вещества и т.п. Этого количества окиси алюминия достаточно для поглощения более 100 мг полярных соединений. Минеральные масла и другие неполярные и слабополярные вещества проходят через колонку и их можно определить одним из известных способов [17]. На конечной стадии анализа применяют, весовые, спектрофотометрические (в ультрафиолетовой и инфракрасной областях спектра), люминесцентные, хроматографические (тонкослойная, газовая, жидкостная) и массспектрометрические методы. [12, 14, 15, 17, 20-22]. Весовой метод, не требующий каких-либо стандартных растворов, предлагается в качестве арбитражного [17], но из-за низкой его чувствительности необходимо подвергать обработке очень большие объемы природных вод. Низка чувствительность и методов детектирования СН, использующих спектрофотометрию в УФ-области. Хроматографические методы позволяют оценивать общее содержание СН по ограниченному числу отдельных компонентов на основании заранее установленных соответствующих соотношений в чистых НП. Однако вследствие довольно широких вариаций этих отношений в зависимости от особенностей формирования нефтяных месторождений, они не являются пригодными на все случаи жизни. Наиболее обоснованным представляется метод инфракрасной спектроскопии, базирующийся на избирательном поглощении ИК-излучения метальными и метиленовыми радикалами, которыми представлены основные группы углеводородов нефти (парафиновые и нафтеновые). Для измерения очень малых количеств СН в морских водах вариант этого метода был разработан шведскими исследователями [19]. Он прошел серьезную многолетнюю апробацию во многих лабораториях мира и вошел в известные руководства по анализу вод [12, 20]. Модификация этого метода, разработанная и давно применяемая в лаборатории гидрохимии Института биологии внутренних вод РАН [7,16] выглядит следующим образом. В отобранные пробы вносили по 25 мл четыреххлористого углерода. Образцы переносили в большие делительные воронки и встряхивали вручную или на автоматической мешалке в течение 20 минут. После отстаивания в течение -15 мин фазы разделялись и экстракт сливали в мерный стакан. Операцию повторяли и экстракты объединяли. В процессе экстракции, особенно загрязненных вод, часто образуется пенообразная масса, которая серьезно мешает дальнейшим операциям. В таких случаях все количество использованного растворителя вместе с пеной (после отделения от основной массы воды) замораживали в холодильнике, а затем оттаивали. Многократное (часто достаточно одного раза) повторение процедуры замораживания - оттаивания приводит к полному разрушению пены и расслоению пробы на две фазы [16]. В делительных воронках малого объема отделяли водную фазу от экстрагента. Объединенные (из одной пробы воды) экстракты пропускали через колонку с окисью алюминия активности 1 по Брокману, помещали в кварцевую кювету длиной 5см и записывали спектры поглощения в интервале длин волн 2800-3100 см"1 на инфракрасном спектрофотометре UR-20. Полученную кривую экстинкции интегрировали планиметром и по заранее построенному калибровочному графику находили общее содержание СН в пробе. На начальном этапе исследований для построения калибровочного графика использовали природные углеводороды, выделенные специально из большого объема природных вод, соляровое масло и рекомендованные [12, 19] искусственные смеси СН известного состава (37.5% изооктана, 37.5% цетана и 25% бензола). Опыт показал, что во всех трех случаях получаются близкие результаты (отличия не превышают 10%). Поэтому, в зависимости от технических возможностей, можно использовать любой из перечисленных способов построения калибровочного графика.
Практическая ценность этого метода была продемонстрирована при исследованиях экологической ситуации в Шекснинском плесе Рыбинского водохранилища, сложившейся после аварии на очистных сооружениях г. Череповца. Было показано, что происшедшая катастрофа не повлияла на уровень валового содержания СН верхневолжских водохранилищ, поскольку среднее содержание (120 мкг/л) не превышало аналогичных данных до аварии [8] и происшедшие изменения должны быть обусловлены другими факторами. В верхневолжских водохранилищах были выявлены участки с повышенным содержанием СН, которые, как было показано с применением дополнительных приемов, испытывают антропогенный углеводородный пресс от точечных источников [2], а присутствие значительных количеств СН в донных отложениях влияет на морфологию [4], видовой состав и количество бентосных организмов [9].
Имеется множество обзоров различной полноты, касающихся как общих, так и частных вопросов нефтяного загрязнения, из которых можно заключить, что углеводороды являются наиболее изученными органическими соединениями в наземных и водных экосистемах [22]. Одной из малоисследованных сторон задачи корректной оценки нефтяного загрязнения природной среды до сих пор остается необходимость строгого разграничения антропогенной и естественной составляющих СН. Давно и хорошо документировано, что заметные количества СН могут поступать в объекты суши и гидросферы в результате жизнедеятельности их коренных обитателей (животных, рыб, фито- и зоопланктонных организмов, бактерий, грибов). Причем основную роль в накоплении устойчивых к биохимическому окислению СН в водотоках и водоемах играют первичные продуценты (фитопланктон) и бактерии. В поверхностных водах количества СН естественного происхождения могут достигать 1.5 мг/л [13] и существенно перекрывать предельно допустимые концентрации (ПДК). Низкие значения ПДК, равные 0.3 мг/л для водоемов общего пользования и 0.05мг/л для водоемов рыбохозяйственного назначения [11, 12] и отсутствие заметных отличий в групповом составе и структуре придают особую остроту проблеме разграничения антропогенной и естественной составляющих.
Обширные исследования сотрудников Гидрохимического института (г. Новочеркасск) [13], проведенные люминесцентным, УФ- и ИК- спектрофотометрическими, весовым методами с использованием колоночной, тонкослойной и газовой хроматографии, показали, что в основу идентификации естественных и нефтяных СН могут быть положены следующие критерии:
1. Различие в соотношениях между углеводородными и полярными компонентами;
2. Различие в групповом составе, т.е. в соотношении между алифатическими и ароматическими углеводородами;
3. Особенности компонентного состава ароматических и алифатических СН.
Однако сами авторы вышеприведенного исследования отмечают, что им не удалось обнаружить резких различий в групповом составе естественных и нефтяных СН. Для них наиболее характерными оказались различия в компонентном химическом составе ароматической и алифатической фракций.
Газохроматографический анализ нефтяных алифатических СН показал, что в их составе преобладают соединения с содержанием углерода от Си до С^, причем максимальные концентрации приходились на Си - Cio o Основную долю СН, выделенных из незагрязненных вод и донных отложений (естественная компонента), составляли соединения с числом атомов углерода от 19 до 30. Причем в области высококипящих компонентов преобладали СН с нечетным числом углеродных компонентов, особенно GI? и ?29 o На основании проведенных исследований сделан вывод о том , что "в качестве критериев, по которым можно судить о природе присутствующих компонентов, следует использовать совокупность различий в оптических свойствах углеводородов в сочетании с результатами тонкослойной и особенно газовой хроматографии" [13].
Исследования в районе г. Токио (сильно загрязненные воды) и чистых прудовых вод с островов Огасавара с применением газовой хроматографии в сочетании с массспектрометрией и рядом других методов привели к заключению, что важными индикаторами углеводородного загрязнения являются ряд отношений [21]:
1. Содержания углерода в углеводородах к количеству общего углерода в пробах воды;
2. Содержания углерода в углеводородах к количеству углерода во фракции, извлеченной из водных образцов путем экстракции этилацетатом;
3. Количества сложной смеси углеводородов, не разделяющихся на хроматограммах, к содержанию нормальных алканов (Cis - Сзз);
4. Относительно сложной комбинации отношений содержания нормальных алканов с четными и нечетными атомами углерода.
Оба представленных выше подхода к оценке загрязнения природных вод углеводородами из антропогенных источников дают ценную информацию, указывающую на возможные пути решения проблемы. Однако эти рекомендации скорее носят качественный или полуколичественный характер, поскольку не устанавливают точных процедур для соответствующих оценок, особенно на последнем расчетном этапе. Избежать неопределенности позволяет подход, предложенный одним из авторов этой работы [7]. На заведомо незагрязненном участке водоема определяется общее содержание углеводородов СН и валовое содержание органического вещества ОВ*ОН (оценивается по органическому углероду Сорг, либо по другому показателю, например, бихроматной окисляемости -ХПК), которые принимаются за фоновые. Их отношение на таком участке, как известно, является хорошим естественным маркером отсутствия нефтяного загрязнения воды в данном водоеме [21]. Умножение полученной величины отношения СН / ОВ*ОН на общую концентрацию органических веществ (ОВ) в других, отличных от фоновой, зонах (при условии ОВ>> СНобщ), приводит к величине естественной (СНест) составляющей на этих участках, а разность между общим количеством углеводородов ( СНобщ) и СНест дает оценку антропогенной составляющей (СНнеф), что можно выразить общей формулой. В приведенных выше обозначениях эти выкладки принимают вид:
СНнеф = СНобщ - (ОВХ х СНфон) / ОВфон, где ОВХ - содержание органических веществ в любой точке вне фоновой зоны.
При подобного рода оценках, как видно, большая роль отводится выбору фонового участка, о котором заведомо можно было бы сказать, что здесь не содержатся СН, связанные с продуктами переработки нефти. Далее можно использовать средние величины по фоновому участку, что в общем случае надежнее, или ограничиться данными по единственной точке, что вполне достаточно для не слишком больших и не очень различающихся по характеристике водных масс водоемов.
Ценность изложенного выше подхода к разделению антропогенной и естественной составляющих СН была нами продемонстрирована на 2-х водоемах, испытывающих постоянное антропогенное давление [1]. Часть этих материалов излагается ниже. Одним из таких водоемов, имеющим большое историческое, культурное и народнохозяйственное значение является жемчужина средней полосы России - оз. Неро Ярославской области, на западном берегу которого стоит древнейших русский город - Ростов Великий. Неро - самое большое озеро в пределах Волжского Поволжья. При среднем многолетнем уровне 93.75м (БС) длина его 13.2 км, максимальная ширина - 8.3 км, площадь зеркала 57.8 км2, объем - 90х106 м3. В него впадает около 20 притоков, наибольший из которых р. Сара имеет длину 93 км. В эту реку сбрасываются коммунальные и промышленные стоки поселка Петровское и села Поречье-Рыбное, где расположен консервный завод. Вытекает из озера р. Векса Ростовская, которая через 5км сливается с р. Устье, образуя сравнительно многоводную р. Ко-торосль. Последняя впадает в р. Волгу в пределах г. Ярославля [18]. Неро - мелководный водоем со средней глубиной 1,6 м. Около 80% акватории занимают участки с глубинами, близкими к 1 м, и только в средней части имеется ложбина с максимальной глубиной 4 м. Дно озера покрыто толстым слоем сапропеля, мощность которого на отдельных участках достигает 20 м, в среднем составляя около 5 м. Обширные пространства (более 20% акватории [6]) заняты высшей водной растительностью. Самые крупные массивы зарослей сосредоточены в юго-восточной части, да и многие другие заливы южного берега сплошь покрыты и пронизаны растениями. Пятнистость растительного покрова и меньшее ценотическое разнообразие характерны для северной части. Полосы растительности на западном и восточном берегах существенно уже, а в пределах городской черты практически отсутствуют [5]. Зимой, из-за создающихся анаэробных условий, часты заморы.
Пробы воды на приведенной схеме станций (Рисунок) отбирали с поверхностного горизонта (0,5 м) металлическим батометром и помещали в склянки с притертыми пробками объемом 1л. Для консервации туда же сразу вносили 25 мл четыреххлористого углерода. По возвращении в береговую лабораторию (спустя 2-4 часа) образцы переносили в большие делительные воронки. Дальнейшую обработку проб и измерения проводили в соответствии с изложенной выше методикой с ИК-спектрофотометрическим окончанием. Содержание органического углерода в отдельной пробе определяли персульфатным методом [3]. За меру битумоидов принимали всю совокупность органических веществ, извлеченных из 1 л воды хлороформом [15], которые взвешивали после удаления растворителя.
Основываясь на всей совокупности гидрохимических и гидробиологических данных для оз. Неро в качестве заведомо незагрязненного был выбран участок в районе заказника - водное пространство, расположенное вдали от городской черты и устьев рек и со всех сторон окруженное густыми зарослями тростника (ст. 12), полагая, что даже при сильном ветровом волнении туда не могут проникать воды, загрязненные нефтепродуктами. Только при характеристике зимней ситуации, в отсутствие необходимых данных по этому участку, использованы материалы по станции №15, куда, по всей вероятности, в подледный период также не могут попадать загрязненные воды.
В соответствии с полученными результатами в подледный период 1990г. в оз. Неро максимальные концентрации СН сосредоточены в северо-западной (ст.5) и центральной (ст.4д, дно) частях озера, откуда они сразу попадают в Вексу (ст. 6), которая, протекая по открытой местности до с. Белогостицы (место отбора проб), еще более обогащается углеводородами (табл.1).