Диагностическое обследование и ремонт нефтепровода

России;

магистральных нефтепроводах экспортного направления;

магистральных нефтепроводах, задействованных в перспективных проектах развития системы;

магистральных нефтепроводах или участках, не имеющих дублирующего направления;

магистральных нефтепроводах регионального значения от мест добычи и загруженных свыше 70% от проектной производительности.

2.8 Методы ремонта дефектных участков нефтепровода


Запрещается установка на нефтепроводах заплат всех видов, накладных элементов ("корыта") и других, нерегламентированных настоящим РД конструктивных элементов. Все ранее установленные на нефтепроводах заплаты и накладные элементы должны быть заменены постоянными методами.

Разрешенные методы ремонта.

Для ремонта дефектов магистральных и технологических нефтепроводов могут применяться следующие методы ремонта:

шлифовка;

заварка;

вырезка дефекта (замена катушки или замена участка);

установка ремонтной конструкции (муфты, патрубки).

Методы ремонта нефтепроводов подразделяются на методы постоянного ремонта и методы временного ремонта.

К методам постоянного ремонта относятся методы, восстанавливающие несущую способность дефектного участка нефтепровода до уровня бездефектного участка на все время его дальнейшей эксплуатации.

К методам и конструкциям для постоянного ремонта относятся шлифовка, заварка, вырезка, композитная муфта, обжимная приварная муфта, галтельная муфта, удлиненная галтельная муфта для ремонта гофр, патрубок с эллиптическим днищем.

Конструкции временного ремонта применяются на ограниченный период времени, установка их в плановом порядке запрещается. К конструкциям для временного ремонта относятся необжимная приварная муфта и муфта с коническими переходами. Муфты этих типов разрешается применять для аварийного ремонта с последующей заменой в течение одного календарного месяца и для ремонта гофр на срок не более одного года с обязательной последующей заменой на постоянные методы ремонта.

Допустимый срок эксплуатации ранее установленных муфт с коническими переходами, необжимных приварных муфт и заплат определяется в зависимости от отношения максимального рабочего давления в зоне дефекта к проектному давлению нефтепровода.

Ремонтные конструкции должны быть изготовлены в заводских условиях, в условиях Центральных баз производственного обеспечения или ремонтных участков ОАО МН по техническим условиям и конструкторской документации, разработанной, согласованной и утвержденной в установленном порядке и иметь паспорт.

Применение муфт и других ремонтных конструкций, изготовленных в полевых условиях (в трассовых условиях) запрещается.


2.9 Краткая характеристика подводного перехода


Река Калмаш находится на территории Чекмагушевского района Башкортостана. Участок подводного перехода нефтепровода Калтасы – Уфа-2 через реку Калмаш расположен у деревни Калмаш, по трассе трубопровода – это 107,8 км. Ремонт подводного перехода делается на основании диагностического обследования. На этом участке трубопровода обнаружено многочисленное количество дефектов подлежащих ремонту и один дефект подлежащий первоочередному ремонту.

Длина подводного перехода, м 134;

ширина русла, м 27,5;

максимальная глубина реки, м 1,5;

максимальная глубина разрабатываемой траншеи: 2,5;

характеристика трубы: 720ґ10 мм; сталь 17Г1С;

рабочее давление, МПа 6,4;

русло реки сложено гравийно-галечным материалом с песком

Течение реки – 0,9 м/с, справа налево если смотреть по трассе.

Изоляционное покрытие «Пластобит – 40», усиленное: грунтовка, мастика, «Изобит» и обертка ПЭКОМ.

Футеровка: сплошная, деревянными рейками сечением 4000ґ60ґ30 по ТУ 102-14-86.

Балластировка: чугунными грузами, марка СЧ-15 ГОСТ 1412-85.

Участок перехода представляет собой относительно равную с абсолютными отметками от 106,23 до 05,65 м. На участке перехода русло извилистое, с пологими берегами. Берега проросли кустарником, полоса зарослей от 5 до 5 м. Река Калмаш не судоходная. Амплитуда колебаний воздуха составляет от 57 до 62 0С. [14]

3 РАСЧЕТНЫЙ РАЗДЕЛ


3.1 Расчет толщины стенки трубопровода


В общем случае толщину стенки трубопровода d согласно СНиП 2.05.06-85* можно определить следующим образом

,

где y1 – коэффициент двухосного напряженного состояния металла труб;

nр – коэффициент надежности по нагрузке от внутреннего давления, nр=1,1 [1];

р – внутреннее давление в трубопроводе;

Dн – наружный диаметр трубопровода;

R1 – расчетное сопротивление материала и его можно рассчитать по формуле

,

где - нормативное сопротивление материала, зависящее от марки стали, =sв=520МПа;

m – коэффициент условий работы трубопровода, для первой категории трубопроводов m=0,75 [1];

к1 – коэффициент надежности по металлу, для данной марки стали к1=1,47 [1];

кн – коэффициент надежности по назначению, для трубопровода с условным диаметром 720 мм и внутренним давлением 6,4 МПа кн=1 [1];

МПа;

Коэффициент y1=1 при сжимающих продольных осевых напряжениях sпр N>0.

При sпр N<0 y1 определяется по формуле

.

Первоначально принимаем y1=1.

Рассчитаем предварительную толщину стенки

Уточняем это значение по ГОСТ и принимаем δ=10 мм [31].

Продольные осевые напряжения рассчитаем по формуле

,

где Dt – расчетный перепад температур;

m - коэффициент Пуассона, m=0,3 [1];

at – коэффициент линейного расширения металла,

at=1,2Ч10-5 1/0С [1];

Е – модуль Юнга, Е=2,06Ч105 МПа [1];

nt – коэффициент надежности по температуре, nt=1 [1];

Dвн – внутренний диаметр трубопровода.

мм;

Расчетный перепад температур Dt

0 С,

0 С.

Рассчитаем продольные напряжения sпр N

Так как для sпр N(-)>0 y1=1 и данный случай уже рассчитан, то рассчитаем значение коэффициента двуосного напряженного состояния для sпр N(+)<0

y

Для данного значения коэффициента y1 рассчитаем толщину стенки

Окончательно принимаем трубу 720Ч10.


3.2 Проверка толщины стенки на прочность и деформацию


Прочность в продольном направлении проверяется по условию

зsзyR,

где y- коэффициент, учитывающий двухосное напряженное состояние металла труб, при растягивающих осевых продольных напряжениях (s0) y=1,0 , при сжимающих (s<0) определяется по формуле

y=,

где s-кольцевые напряжения в стене трубы от расчетного внутреннего давления,

s=,

s=,

y=.

s=246,4<, что удовлетворяет условию;

s=з-5,7з<, условие выполняется.

Для предотвращения недопустимых пластических деформаций трубопроводов проверку производят по условиям

з sзy,

,

где s-максимальные продольные напряжения в трубопроводе от нормативных нагрузок и воздействий;

y-коэффициент, учитывающий двухосное напряженное состояние металла трубы;

-кольцевые напряжения в стенках трубопровода от нормативного внутреннего давления;

-нормативное сопротивление материала, зависящее от марки стали, =sт=360МПа;

s=Dt±,

где -упругого изгиба оси трубопровода

Для проверки по деформациям находим:

1)кольцевые напряжения от действия нормативной нагрузки - внутреннего давления

;

МПа.

Коэффициент y определяется по формуле

y,

y.

Условие выполняется 224;

2)продольные напряжения

при <0, y=0,389,

>0, y,

для положительного температурного перепада

а)=,

б)=,

условие зsзy, выполняется в двух случаях

МПа,

МПа,

для отрицательного температурного перепада

а)=

б)=

условие зsзy, выполняется в двух случаях

;


3.3 Расчет устойчивости трубопровода на водном переходе


Уравнение устойчивости подводного трубопровода согласно СНиП 2.05.06-85* имеет следующий вид

,

где nб – коэффициент надежности по нагрузке, nб=1 для чугунных пригрузов [1];

кн.в - коэффициент надежности против всплытия, кн.в=1,1 для русловых участков переходов при ширине реки до 200 м [1];

qизг – расчетная нагрузка, обеспечивающая упругий изгиб трубопровода соответственно рельефу дна траншеи.

qв – расчетная выталкивающая сила воды, действующая на трубопровод;

qверт – величина пригруза, необходимая для компенсации вертикальной составляющей Ру воздействия гидродинамического потока на единицу длины трубопровода, qверт=Ру;

qг – величина пригруза, необходимая для компенсации горизонтальной Рх составляющей воздействия гидродинамического потока на единицу длины трубопровода, qг=Рх /к;

к – коэффициент трения трубы о грунт при поперечных перемещениях, к=0,45 [2];

qдоп – нагрузка от веса перекачиваемого продукта, qдоп=0 т.к. рассчитывается крайний случай - трубопровод без продукта;

qтр – расчетная нагрузка от собственного веса трубопровода;

ρбит=1040 кг/м3плотность изобита, [2].

Расчетная выталкивающая сила воды, действующая на трубопровод

,

где Dн.ф. – наружный диаметр футерованного трубопровода;

rв =1100 Н/м,[2] – плотность воды.

где dип – толщина изоляционного покрытия,

dгр – толщина покрытия грунтовки,

dмас – толщина покрытия мастики,

dоб – толщина обертки.

Н/м.

Горизонтальная составляющая гидродинамического воздействия потока

,

Сх–гидродинамический коэффициент лобового сопротивления, зависящий от числа Рейнольдса и характера внешней поверхности трубопровода.

где Vср – средняя скорость течения реки, Vср=0,9 м/с;

νв – кинематическая вязкость воды, м2/с.

Для офутерованного трубопровода и 105<Re<107 коэффициент Сх=1,0 [2].

Н/м.

Вертикальная составляющая гидродинамического воздействия потока

,

Су – коэффициент подъемной силы, Су=0,55 [10];

Н/м.

Расчетную нагрузку от собственного веса трубопровода рассчитаем по следующей формуле

qтр=nсвЧ(qмн + qизн+qфутн),

где nсв – коэффициент надежности по нагрузкам от действия собственного веса, nсв=0,95 [1];

qмн – нормативная нагрузка от собственного веса металла трубы;

qизн -нормативная нагрузка от собственного веса изоляции;

qфутн – нормативная нагрузка от собственного веса футеровки.

Нормативная нагрузка от собственного веса металла трубы

,

gм – удельный вес металла, из которого изготовлены трубы (для стали gм=78500 Н/м3 [2]);

Н/м.

Нормативная нагрузка от собственного веса битумной изоляции

,

где rбит– плотность битумной изоляции (изобита);

Dн.и. – наружный диаметр изолированного трубопровода

Н/м.

Нормативная нагрузка от собственного веса обертки

q··D···g

где к=1,09- коэффициент для двухслойной изоляции;

=0,6·10 м – толщина обертки;

=880 кг/м - плотность обертки.

q=1,09·3,14·0,728·0,6·10·880·9,81=12,91 Н/м.

Нормативная нагрузка от собственного веса изоляции

q=q+q