Атомная энергия
июня 1973 года произведены гидравлические испытания систем трубопроводов первого контура. 29 июня 1973 года первенец атомной энергетики Заполярья пущен в эксплуатацию.Четыре энергоблока станции с реакторами ВВЭР-440, которые сооружены в 1973-1984 гг. находятся в эксплуатации до настоящего времени.
В 2003 году на 15 лет сверх первоначально заложенного в проекте продлен срок службы энергоблока №1.
Курская атомная станция
Курская АС расположена в 40 км юго-западнее г. Курска на левом берегу реки Сейм.
На АС эксплуатируются четыре энергоблока с канальными реакторами РБМК-1000.
Курская АС является важнейшим узлом Единой энергетической системы России. Основным потребителем является энергосистема "Центр", которая охватывает 19 областей, в основном центральной России.
Около 30% электроэнергии, вырабатываемой Курской АЭС, используется для нужд Курской области.
Курская АЭС выдает электроэнергию по 11 линиям электропередачи:
2 линии (110 кВ) - для электроснабжения собственных нужд;
6 линий (330 кВ) - 4 линии для электроснабжения области, 2 для севера Украины;
3 линии (750 кВ) - 1 линия для Старооскольского металлургического комбината, 1 линия для северо-востока Украины, 1 линия для Брянской области.
Каждая очередь Курской АЭС состоит из двух энергоблоков. Энергоблок включает в себя следующее оборудование:
- уран-графитовый реактор большой мощности канального типа, кипящий со вспомогательными системами;
- две турбины К-500-65/3000;
- два генератора мощностью 500 МВт каждый.
Каждый блок имеет раздельные помещения для реакторов и их вспомогательного оборудования, систем транспортировки топлива и пультов управления реакторами. Каждая очередь имеет общее помещение для газоочистки и систем спецочистки воды. Все четыре блока Курской АЭС имеют общий машинный зал.
Режим работы АЭС - базовый, водный режим - бескоррекционный, нейтральный.
Курская АЭС - станция одноконтурного типа: пар, подаваемый на турбины, образуется непосредственно в реакторе при кипении проходящего через него теплоносителя. В качестве теплоносителя используется обычная очищенная вода, циркулирующая по замкнутому контуру. Для охлаждения отработанного пара в конденсаторах турбин используется вода из пруда - охладителя. Площадь зеркала пруда - охладителя для четырех блоков - 22 квадратных километра. Источником для восполнения потерь служит р. Сейм. Подпитка осуществляется насосной станцией с четырьмя агрегатами суммарной производительностью 14 кубометров в сек.
В 1986 г. начато сооружение пятого блока третьей очереди АС. Необходимость в нем вызвана потребностями устойчивого электроснабжения Центра России.
Доработанный проект 3-ей очереди Курской АЭС в составе одного энергоблока мощностью 1000 МВт утвержден Минатомом России в декабре 1995 года, его ввод в эксплуатацию намечен на 2006 г.
На 5-ом энергоблоке смонтирован реактор третьего поколения с принципиально новыми ядерно-физическими характеристиками, оснащенный новыми системами управления и защиты, который соответствует современным требованиям безопасности.
Основное оборудование 5-го энергоблока по составу и типам аналогично оборудованию действующих энергоблоков, однако имеет улучшенные технические характеристики, обеспечивающие повышение надежности и безопасности при эксплуатации.
Выявленные после Чернобыльской аварии конструктивные и другие недостатки блоков с реакторами типа РБМК учтены на стадиях проектирования и сооружения энергоблока №5.
Население г. Курчатова около 49 тыс. человек. Имеется 11 детских садов, 6 школ. Как собственность Курской АЭС построен профилакторий и детский оздоровительный лагерь. Гордостью г. Курчатова является спортивный комплекс со стадионом нa 500 мест, с плавательным бассейном и дорожками олимпийского стандарта и тремя спортзалами.
История создания Курской АЭС
Решение о строительстве было принято в середине 60-х годов. Началось строительство в 1971 году. Необходимость была вызвана быстро развивающимся промышленно-экономическим комплексом Курской Магнитной Аномалии (Оскольского и Михайловского горно-обогатительных комбинатов и других промышленных предприятий). Генеральный подрядчик - Управление строительства Курской АЭС.
1 энергоблок сдан в эксплуатацию в 1976г.
2 энергоблок сдан в эксплуатацию в 1979г.
3 энергоблок сдан в эксплуатацию в 1983г.
4 энергоблок сдан в эксплуатацию в 1985г.
Установленная электрическая мощность каждого энергоблока 1000 МВт.
В 2002 году на энергоблоке №1 Курской АЭС завершена модернизация и получена лицензия на эксплуатацию энергоблока на номинальном уровне мощности.
В настоящее время строится 5-ый энергоблок третьей очереди. Его ввод в эксплуатацию намечен на 2006 год.
Ленинградская атомная станция
Ленинградская АЭС - крупнейший производитель электроэнергии на Северо-Западе России - расположена на живописном побережье Финского залива, в 80 км к юго-западу от Санкт-Петербурга в г. Сосновый Бор.
Начало строительства Ленинградской АЭС - сентябрь 1967 года.
Генеральный подрядчик - Северное управление строительства.
Станция включает в себя 4 энергоблока электрической мощностью 1000 МВт каждый.
На Ленинградской АЭС установлены водо-графитовые реакторы РБМК-1000 канального типа на тепловых нейтронах.
Первый блок введен в эксплуатацию в 1973 году, четвертый - в 1981 году.
При образовании государственного предприятия "Российский государственный концерн по производству электрической и тепловой энергии на атомных станциях " (концерн "Росэнергоатом") в 1992 Ленинградская АЭС не вошла в его состав, а осталась самостоятельной эксплуатирующей организацией, подчиняющейся непосредственно Минатому.
С 1 апреля 2002 года Ленинградская АЭС, как и месяцем ранее другие атомные станции России, стала филиалом государственного предприятия "Российский государственный концерн по производству электрической и тепловой энергии на атомных станциях" (Концерн "Росэнергоатом") утратив статус самостоятельного юридического лица.
Образование Единой генерирующией компании (ЕГК) перестроило отношения с потребителями электроэнергии. Теперь атомные станции на рынке будут представлены единой компанией, и потребители будут рассчитываться с единым продавцом, а не с каждой АЭС в отдельности, как это было ранее.
Технические характеристики энергоблоков АЭС
Проектная годовая выработка электроэнергии - 28 млрд. кВт·ч.
На собственные нужды потребляется 8,0 - 8,5 % от выработанной электроэнергии.
ЛАЭС успешно занимается реконструкцией энергоблоков, связанной с внедрением мероприятий по повышению безопасности в соответствии с международными и национальными правилами Госатомнадзора России.
Каждый энергоблок включает в себя следующее основное оборудование:
реактор РБМК с контуром циркуляции и вспомогательными системами,
2 турбоустановки типа К-500-65/3000 с паровым и конденсатно-питательным трактом.
2 генератора типа ТВВ-500-2.
Реактор и его вспомогательные системы размещены в отдельных корпусах. Машинный зал является общим на 2 энергоблока. Вспомогательные цеха и системы для двух энергоблоков являются общими и территориально расположены вблизи каждой из очередей (2 энергоблока) станции.
Общая площадь, занимаемая Ленинградской АЭС, 454 га.
Технологическая схема АЭС
Тепловая схема каждого энергоблока Ленинградской АЭС — одноконтурная.
Теплоносителем в реакторе является вода, циркулирующая через технологические каналы по контуру многократной принудительной циркуляции (КМПЦ).
Пароводяная смесь из реактора направляется в барабан-сепаратор. Отсепарированный сухой насыщенный пар подается на лопатки турбины.
На одном валу с турбинами установлены генераторы, вырабатывающие электроэнергию.
Реакторная установка
Реактор размещается в шахте на опорной конструкции и окружен биологической защитой - верхней, нижней и боковой.
Реакторное пространство заполнено колоннами из графитовых блоков, в центральных отверстиях которых установлены технологические каналы (ТК) и каналы системы управления и защиты (СУЗ). В ТК помещены тепловыделяющие сборки с ядерным топливом - таблетками двуокиси урана. В каналы СУЗ помещены исполнительные органы - стержни, поглощающие нейтроны, заполненные карбидом бора.
Для предотвращения окисления графита и улучшения его охлаждения в реакторном пространстве циркулирует смесь гелия с азотом.
В реакторе РБМК-1000 предусмотрена возможность замены ТК и каналов СУЗ на остановленном и расхоложенном реакторе.
Ядерное топливо
Топливом для РБМК является двуокись урана с начальным обогащением по урану-235 - 2,6%. Загрузка реактора ураном - 190 т.
С января 2001 г. ЛАЭС приступила к экспериментальной загрузке опытной партии топливных кассет с обогащением по урану-235 - 2,8% и содержанием выгорающего эрбиевого поглотителя. Это позволит в дальнейшем при переходе на это топливо увеличить глубину выгорания по отношению к топливу с обогащением 2,6 % и получить дополнительный экономический эффект.
В реакторе РБМК предусмотрена возможность перегрузки отработанного ядерного топлива на работающем реакторе посредством разгрузо-загрузочной машины (РЗМ).
Основные технические характеристики реактора |
|
Тепловая мощность реактора, МВт |
3200 |
Давление пара, Мпа |
7,0 |
Расход теплоносителя, т/час |
37500 |
Паропроизводительность, т/час |
5600 |
Количество ТК: |
|
на бл 1 и 2 |
1693 |
на бл.З и 4 |
1661 |
Количество каналов СУЗ: |
|
на бл.1 и 2 |
179 |
на бл.З и 4 |
211 |
Барабан-сепаратор
Представляет собой цилиндрический сосуд горизонтального типа.
Внутрисепарационные устройства обеспечивают сепарацию и осушку пара, направляемого на лопатки турбины.
При реконструкции энергоблоков 1 и 2 выполнена замена внутрисепарационных устройств с увеличением объема воды в каждом барабане-сепараторе на 50 мЗ и подвод воды к каждому технологическому каналу через барабан-сепаратор для длительного аварийного расхолаживания (верхняя система САОР).
Турбина
Турбина К-500-65/3000 - паровая, конденсационная, одновальная, пятицилиндровая (ЦВД + 4ЦНД), номинальной мощностью 500 МВт и частотой вращения ротора - 3000 об/мин. ЦВД и все ЦНД - двухпоточные. После ЦВД осуществляется промежуточный перегрев пара в сепараторе - пароперегревателе.
Турбина имеет 8 выхлопов пара и 6 регенеративных отборов.
Основные технические характеристики турбины |
|
Начальное давление сухого насыщенного пара перед турбиной, МПа |
6,59 |
Давление пара в конденсаторе, МПа |
0,004 |
Расход пара на турбину, т/час |
2855 |
Температура сухого насыщенного пара, оС |
284 |
Температура перегретого пара после СПП, оС |
264 |
Теплофикационная нагрузка турбины, Гкал/час |
75 |
Для охлаждения пара в конденсаторе турбины используется морская вода из Финского залива.
Потребители электроэнергии
Электроэнергия ЛАЭС через распределительные устройства по линиям электропередач напряжением 330 и 750 кВ поступает в систему Ленэнерго и РАО ЕЭС России. В системе Ленэнерго ЛАЭС обеспечивает около 50% энергопотребления.
Город Сосновый Бор и прилегающие промышленные предприятия получают тепло в виде горячей воды от бойлерной ЛАЭС.
Проектный теплосъем с каждой турбины составляет 75 Гкал/час.
Попутное производство
На реакторах РБМК производится накопление медицинских и общепромышленных радиохимических изотопов 15-ти наименований, основные среди них: молибден-99 и йод-125. Поставка их осуществляется на радиохимические предприятия Санкт-Петербурга.
ЛАЭС приступила к промышленному производству изотопа кобальта-60 в реакторах в составе двухцелевых поглотителей в объеме порядка 5 млн кюри в год. Изотоп кобальта-60 ЛАЭС поставляет заказчикам по договорам.
Для отечественных и зарубежных заказчиков станция осуществляет радиационное легирование кристаллов кремния диаметром до 85 мм.
ЛАЭС обеспечивает медсанчасть города Сосновый Бор газообразным медицинским кислородом, медицинские учреждения Санкт-Петербурга жидким медицинским кислородом, а промышленные предприятия города жидким азотом, техническим газообразным и жидким кислородом.
История создания Ленинградской АЭС
15 апреля 1966 г. главой Минсредмаша Е.П. Славским было подписано задание на проектирование Ленинградской атомной электростанции в 70 км по прямой к западу от Ленинграда в 4 км от поселка Сосновый Бор.
В начале сентября 1966 г. проектное задание было закончено. 29 ноября 1966 г. Советом Министров СССР принято постановление № 800-252 о строительстве первой очереди ЛАЭС, определена организационная структура и кооперация предприятий для разработки проекта и сооружения АЭС.
29 июня 1967 г. научно-технический совет Министерства среднего машиностроения одобрил технический проект реактора РБМК-1000, представленный НИКИЭТ. Первый ковш земли из котлована под фундамент главного здания будущей Ленинградской АЭС экскаватор поднял 6 июля 1967 г.
Хронология событий
Дата |
Событие |
Май 1967 г. |
Начата разработка котлована под главное здание первой очереди будущей атомной электростанции |
12 сентября 1967 г. |
Уложен первый кубометр бетона в основание станции |
12 декабря 1967 г. |
Уложен первый кубометр бетона в несущие конструкции реакторного блока |
30 июня 1971 г. |
Сдана шахта под сборку и монтаж технологических металлоконструкций реактора первого блока |
1 августа 1972 г. |
Начата графитовая кладка реактора первого блока |
15 октября 1972 г. |
Начат монтаж технологических каналов реактора первого блока |
12 декабря 1972 г. |
Создан сборный железобетонный фундамент под монтаж первого турбогенератора |
18 мая 1973 г. |
Поселок энергетиков Сосновый Бор Ленинградской области получает статус города Сосновый Бор областного подчинения |
27 июля 1973 г. |
Включен первый главный циркуляционный насос в контуре многократной принудительной циркуляции первого блока. Начаты основные пусконаладочные работы |
12 сентября 1973 г. |
Осуществлен физический пуск реактора первого блока |
26 октября 1973 г. |
Сдана шахта реактора второго блока |
15 ноября 1973 г. |
Выведен на мощность реактор первого блока. Осуществлена продувка главных паропроводов паром от реактора |
7 декабря 1973 г. |
Выведен первый турбогенератор первого блока на холостые обороты и проведена пробная синхронизация с энергосистемой |
21 декабря 1973 г. |
Поставлен под промышленную нагрузку для комплексного опробования и предъявления Государственной приемочной комиссии первый блок с турбогенератором № 2 |
23 декабря 1973 г. |
Принят в эксплуатацию первый блок |
18 января 1974 г. |
Постановлением Совета Министров РСФСР Ленинградской атомной электростанции присвоено имя создателя Коммунистической партии и Советского государства Владимира Ильича Ленина |
14 мая 1974 г. |
Начата графитовая кладка реактора второго блока |
15 мая 1974 г. |
Выработан первый миллиард киловатт-часов электроэнергии с момента пуска |
26 июня 1974 г. |
Начат монтаж технологических каналов реактора второго блока |
1 ноября 1974 г. |
Выведен на проектный уровень мощности 1 млн. кВт первый блок |
Апрель 1975 г. |
Начата разработка котлована под главное здание второй очереди Ленинградской атомной электростанции |
23 апреля 1975 г. |
Включен первый главный циркуляционный насос в контуре многократной принудительной циркуляции второго блока. Начаты основные пусконаладочные работы |
5 мая 1975 г. |
Осуществлен физический пуск реактора второго блока |
11 июля 1975 г. |
Поставлен под промышленную нагрузку для комплексного опробования второй блок с турбогенератором № 3 |
Август 1975 г. |
Начато бетонирование плиты под главное здание второй очереди Ленинградской АЭС |
1 ноября 1975 г. |
Произведена первая перегрузка разгрузочно-загрузочной маши ной топливных кассет на работающем реакторе первого блока. С этого момента осуществляется непрерывная перегрузка топлива на реакторах без снижения их мощности |
19 декабря 1975 г. |
С начала пуска Ленинградской АЭС выработано 10 млрд. кВт ч электроэнергии |
8 января 1976 г. |
Второй энергоблок выведен на проектный уровень мощности 1 млн. кВт. Тем самым вступила в строй крупнейшая в Европе атомная электростанция мощностью 2 млн. кВт |
17 января 1977 г. |
Произведена первая перегрузка топлива разгрузочно-загрузочной машиной на работающем реакторе второго блока |
4 ноября 1977 г. |
Строителями и монтажниками выполнено обязательство к 60-летию Великого Октября — шахта реактора третьего блока сдана под монтаж металлоконструкций реактора |
15 мая 1978 г. |
Начата графитовая кладка реактора третьего блока |
20 сентября 1978 г. |
Начат монтаж технологических каналов реактора третьего блока |
17 июля 1979 г. |
Включен первый главный циркуляционный насос в контуре многократной принудительной циркуляции третьего блока. Начаты основные пусконаладочные работы |
17 сентября 1979 г. |
Осуществлен физический пуск реактора третьего блока |
1 ноября 1979 г. |
Выведен на мощность реактор третьего блока. Осуществлена продувка главных паропроводов паром от реактора |
7 декабря 1979 г. |
Произведена синхронизация первого турбогенератора третьего блока с энергосистемой |
30 декабря 1979 г. |
Принят в эксплуатацию третий блок |
26 июня 1980 г. |
Достиг проектного уровня мощности 1 млн. кВт третий блок |
22 июля 1980 г. |
Сдана шахта реактора четвертого блока |
3 сентября 1980 г. |
Начата графитовая кладка реактора четвертого блока. Произведена первая перегрузка топлива разгрузочно-загрузочной маши ной на работающем реакторе третьего блока |
26 сентября 1980 г. |
Начат монтаж технологических каналов реактора четвертого блока |
4 декабря 1980 г. |
Включен первый главный циркуляционный насос в контуре многократной принудительной циркуляции четвертого блока. Начаты основные пусконаладочные работы |
26 декабря 1980 г. |
Осуществлен физический пуск реактора четвертого блока |
31 января 1981 г. |
Выведен на мощность реактор четвертого блока. Произведена продувка главных паропроводов паром от реактора |
9 февраля 1981 г. |
поставлен под промышленную нагрузку четвертый блок с турбогенератором № 7 |
22 июня 1981 г. |
Принят в эксплуатацию четвертый блок |
6 августа 1981 г. |
Произведена первая перегрузка топлива разгрузочно-загрузочной машиной на работающем реакторе четвертого блока |
29 августа 1981 г. |
Выведен на проектный уровень мощности 1 млн. кВт четвертый блок. Вступила в строй крупнейшая в мире атомная электростанция мощностью 4 млн. кВт с уран-графитовыми реакторами кипящего типа |
Нововоронежская атомная станция
Нововоронежская АС является первенцем освоения энергоблоков с реакторами ВВЭР. Станция расположена в живописной излучине Дона, в 42 км от г. Воронеж.
В пяти километрах от промышленной зоны АС на берегу искусственного водоема располагается благоустроенный город энергетиков - Нововоронеж .
АЭС развивалась на базе несерийных водо-водяных энергетических реакторов корпусного типа с обычной водой под давлением.
Сегодня Нововоронежская АЭС остается надежным источником электрической энергии, полностью обеспечивает потребности Воронежской области.
Станция является не только источником электроэнергии. С 1986 года она на 50% обеспечивает город Нововоронеж теплом.
В настоящее время в работе находятся энергоблоки № 3,4,5 общей электрической мощностью 1834 Мвт. Энергоблоки № 1и 2 уже выведены из эксплуатации (табл.1.)
Состав Нововоронежской АЭС |
||||
Станционный номер энергоблока (тип РУ) |
Установленная мощность энергоблока (МВт эл.) |
Год ввода энергоблока в эксплуатацию |
Проектный срок службы (лет) |
Год вывода энергоблока из эксплуатации (фактический или проектный) |
Энергоблок №1 (В-1) |
210 |
1964 |
20 |
1984 |
Энергоблок №2 (В-ЗМ) |
365 |
1969 |
30 |
1989 |
Энергоблок №3 (В-179) |
417 |
1971 |
30 |
2016 (продлен на 15 лет в 2001 г.) |
Энергоблок №4 (В-179) |
417 |
1972 |
30 |
2017 (продлен на 15 лет в 2002 г.) |
Энергоблок №5 (В-187) |
1000 |
1980 |
30 |
2010 |
Каждый из пяти реакторов станции является головным, то есть прототипом серийных энергетических реакторов:
энергоблок 1 с реактором ВВЭР-210, энергоблок 2 с реактором ВВЭР-365,
энергоблоки 3,4с реакторами ВВЭР-440, энергоблок 5 с реактором ВВЭР-1000.
Электроэнергия АС выдается потребителям по линиям напряжением 110, 220 и 500 кВ.
Более10 лет на станции работает учебно-тренировочный центр. Он оснащен функционально-аналитическим тренажером, автоматизированными обучающими системами для оперативного и ремонтного персонала станции.
На полномасштабном тренажере проходят подготовку работники как Нововоронежской АЭС, так и других атомных станций.
История создания Нововоронежской АЭС
Строительство первого энергоблока началось в 1957 году. В освоении его мощности можно выделить следующие даты:
17 декабря 1963г. - достижение критичности и физический пуск;
30 сентября 1964г. - энергетический пуск и подключение к энергосистеме;
27декабря 1964 г. на Нововоронежской АЭС был осуществлен энергетический пуск первого в стране водо-водяного энергетического реактора мощностью 210 тыс. кВт. Это была большая победа ученых, конструкторов, проектировщиков, строителей и эксплуатационников.
Последующие вводимые на площадке Нововоронежской АЭС энергоблоки являлись отражением развития технических идей, направленных на повышение технико-экономических характеристик и надежности атомных энергетических установок, а также на снижение удельных затрат на их сооружение.
С 1964 г. на АЭС было сооружено пять энергоблоков с реакторами ВВЭР: ВВЭР-210, ВВЭР-365, два блока ВВЭР-440, ВВЭР-1000.
В 1984 г. из эксплуатации, после 20-летней работы, был выведен энергоблок № 1 (ВВЭР-210), в 1990г. - энергоблок № 2 (ВВЭР-365). В эксплуатации остались энергоблоки № 3,4 (ВВЭР-440) и энергоблок № 5 (ВВЭР-1000).
Воронежская область, не имевшая собственных запасов углеводородного топлива, получила надежный и экологически чистый источник электрической энергии, позволивший области динамично развивать промышленность и сельское хозяйство. Сегодня Нововоронежская АЭС на 85% обеспечивает Воронежскую область дешевой электроэнергией.
Основные даты сооружения и освоения Нововоронежской АЭС
1957 г. май - начало строительства энергоблока № 1.
1961 г. - монтаж основного технологического оборудования энергоблока №1.
1962 г. - с Ижорского завода поступил корпус реактора. 5 апреля он был установлен на штатное место. Начался монтаж основной технологической линии первого контура.
1963 г. - монтаж контрольно-измерительных систем и автоматики, начаты пуско-наладочные операции. В декабре произведен физический пуск реактора.
1964 г. - 30 сентября в 15 час. 45 мин. осуществлен энергетический пуск энергоблока №1. НВ АЭС включена в Единую Европейскую энергосистему. 29 декабря энергоблок №1 выведен на проектную мощность. Началось строительство энергоблока №2.
1965 г. - Нововоронежская АЭС выработала 1-й миллиард киловатт-часов электроэнергии.
1967г. - подписан акт о приеме первого энергоблока из опытно-промышленной эксплуатации в промышленную. Началось строительство энергоблоков №3, 4.
1969 г. - в декабре осуществлен энергетический пуск энергоблока №2.
1971 г. - в декабре осуществлен энергетический пуск головного энергоблока №3.
1972 г. - в декабре произведен энергетический пуск энергоблока №4.
1973 г. - проектная мощность энергоблока №4 освоена в рекордно короткий срок в течение 83 суток.
1975 г. - начались работы по сооружению водохранилища для энергоблока №5.
1976 г. - Нововоронежская атомная электростанция награждена Орденом Трудового Красного Знамени.
1978 г. - на штатное место установлен корпус реактора энергоблока №5. Народное хозяйство страны в этом году получило 9,9 миллиардов киловатт-часов.
1979 г. - полным ходом велись пуско-наладочные работы на энергоблоке №5. Коллектив станции 30 сентября 1979 г. отметил свое пятнадцатилетие. К этому времени страна получила более 80 млрд. кВт·ч. электроэнергии.
1980 г. - 31 мая ТАСС передал сообщение: на Нововоронежской атомной электростанции дал промышленный ток энергоблок №5 мощностью 1000 МВт.
1981 г. - на проектную мощность выведен энергоблок №5.
1987 г. август - НВ АЭС выработала с начала пуска 200 млрд. кВт·ч. электроэнергии.
1997 г. май - Нововоронежская АЭС выработала с начала пуска 300 млрд. кВт·ч. электроэнергии.
2000 г. - 30 мая исполнилось 20 лет с начала промышленной эксплуатации энергоблока с реактором типа ВВЭР-1000 на Нововоронежской АЭС.
2002 г. - на 15 лет сверх первоначально заложенного в проекте продлен срок службы энергоблока №4.
В период с 1999 по 2003 годы впервые в истории отечественной атомной энергетики в полном объеме реализована программа работ по повышению безопасности и обеспечению продления срока эксплуатации энергоблоков №3 и №4 Нововоронежской АЭС. В данную программу входят модернизация, комплексное обследование и углубленная оценка безопасности. По результатам модернизации обоснована возможность продолжения безопасной эксплуатации этих энергоблоков в течение 15-летнего дополнительного срока и в установленном порядке были получены лицензии Госатомнадзора России (в н.в. Ростехнадзор) на их эксплуатацию на дополнительный срок службы.
30 сентября 2004 года исполнилось 40 лет со дня энергетического пуска энергоблока №1 Нововоронежской атомной станции.
Смоленская атомная станция
На встрече с руководителями подразделений Смоленской АЭС генеральный директор концерна "Росэнергоатом" Сергей Обозов представил нового директора атомной станции - Андрея Петрова
. Петров Андрей Ювенальевич родился в 1963 году. В 1985 - окончил Ивановский энергетический институт. Имеет научную степень кандидата технических наук. Работал на трех атомных электростанциях: Хмельницкой, Балаковской, и последние годы на Волгодонской АЭС - в должности главного инженера. Женат, имеет двух сыновей - студентов. В своем выступлении перед руководителями структурных подразделений Смоленской АЭС Андрей Петров сказал, что исторически между Волгодонской и Смоленской станциями сложились хорошие производственные отношения и многих руководителей САЭС он знает лично. Смоленская АЭС имеет очень хорошие производственные показатели и это заслуга всего коллектива станции. Поэтому необходимо не снижать темпов, стремиться к улучшению производственных показателей и производственную программу этого года и следующего выполнить максимально эффективным способом.
Ввод в действие первого энергоблока АС явился первым шагом по сооружению крупнейшей АС в Нечерноземной зоне России.
Смоленская АС расположена недалеко от западной границы России, в Смоленской области. Ближайшие региональные центры: Смоленск – 150 км, Брянск – 180 км, Москва – 350 км.
На Смоленской АЭС эксплуатируются три энергоблока с реакторами РБМК-1000. Проектом предусматривалось строительство 4-х энергоблоков: сначала 2 блока первой очереди, затем 2 блока второй очереди, но в связи с прекращением в 1986 году строительства четвертого энергоблока вторая очередь осталась незавершенной.
Первая очередь Смоленской АЭС относится ко второму поколению АЭС с реакторами РБМК-1000, вторая очередь - к третьему. Замедлителем нейтронов в реакторах этого типа служит графит, в качестве теплоносителя используется вода. Все энергоблоки оснащены системами локализации аварий, исключающими выброс радиоактивных веществ в окружающую среду даже при самых тяжелых предусмотренных проектом авариях, связанных с полным разрывом трубопроводов контура охлаждения реактора максимального диаметра.
Все оборудование контура охлаждения размещено в герметичных железобетонных боксах, выдерживающих давление до 4,5кгс/см2.
Для конденсации пара в аварийных режимах в составе системы локализации аварий предусмотрен бассейн - барботер, расположенный под реактором, с запасом воды около 3000 м3. Специальные системы обеспечивают надежный отвод тепла от реактора даже при полной потере станцией электроснабжения с учетом возможных отказов оборудования.
Для нужд технического водоснабжения на реке Десна было создано искусственное водохранилище площадью 42 км2, для обеспечения населения хозяйственной и питьевой водой используются подземные воды.
Теплоснабжение промплощадки и города в нормальном режиме обеспечивается от любого энергоблока через специальный промежуточный контур, исключающий попадание активированных веществ в теплосети при повреждениях оборудования. При останове всех трех блоков в работу включается пускорезервная котельная. Энергоблоки с реакторами РБМК-1000 одноконтурного типа. Это означает, что пар для турбин вырабатывается непосредственно из воды, охлаждающей реактор. В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый. Турбогенераторы установлены в общем для всех трех блоков турбинном зале длиной около 600 м, каждый реактор расположен в отдельном здании. Станция работает только в базовом режиме, ее нагрузка не зависит от изменения потребностей энергосистемы.
Совершенствованию подготовки и переподготовки персонала здесь уделяется много внимания. Учебно-тренировочный центр на Смоленской АС был открыт в 1986 г. В составе центра функционируют полномасштабный тренажер и автоматизированная обучающая система.
Десногорск - город, построенный для обслуживающего персонала АЭС на берегу живописного искусственного водохранилища, созданного на реке Десна. Расположен он в 3 км от АЭС. Население города около 40 тыс. человек. Застроен город девяти и шестнадцатиэтажными домами. Инфраструктура Десногорска обычна для большинства современных российских городов. Десногорцы обеспечены медицинскими учреждениями, телефонной связью, кабельным и спутниковым телевидением, транспортом, предприятиями торговли и бытовых услуг. Кроме АЭС и вспомогательных производств, других крупных промышленных предприятий в городе нет.
Худграф Перспектива интерьера
История создания Смоленской АЭС
1966 год: 26 сентября - Совет Министров принял постановление № 800/252 о строительстве Смоленской АЭС.
1966 год: 3 октября - Министерство энергетики и электрификации СССР утвердило задание на проектирование Смоленской АЭС.
1971 год: 22 апреля - Совет Министров подписал документ о начале подготовительных работ по строительству САЭС.
1971 год: 5 июня - Директором строящейся САЭС назначен Мельник И.А..
1972 год: июль - Закладка первого пятиэтажного дома.
1974 год: 24 февраля - Зарегистрирован поселок Десногорск.
1978 год: октябрь - Перекрытие реки Десны. Началось заполнение водохранилища.
1979 год: Идет строительство главного корпуса.
1979 год: 16 мая - Директором назначен Тепикин Л.Е.
1980 год: Идет строительство блоков А,Б,В,Г.
1980 год: Январь - Директором назначен Копчинский Г.А.
1981 год: Введены в работу ОРУ-110 KB, ОРУ-330 KB.
Введена в работу в работу химводоочистка и начато накопление химобессоленной воды для холодных промывок.
1982 год: 9 сентября - Начат физпуск.
1982 год: 25 декабря - Государственной приемочной комиссией был подписан акт о приемке 1 энергоблока в эксплуатацию.
1983
год: 10
января - Подписан
приказ Министерства
о Смоленской
АЭС.
1983
год: 5
марта - Директором
САЭС назначен
Сараев Ю.П.
1985 год: 4 мая - 2-й энергоблок САЭС был включен в единую энергосистему страны.
1986 год: 10 марта - Директором назначен Поздышев Э.Н.
1986 год: Июнь - Директором назначен Сараев Ю.П.
1988 год: 18 февраля - Директором назначен Сафрыгин Е.М.
1989 год: Указом Президиума Верховного Совета СССР от 31 января 1989 года поселку Десногорск присвоен статус города областного подчинения.
1990 год: 17 января