Вибірковий метод та його значення для вивчення правових явищ

Размещено на

Міністерство освіти і науки України


Курсова робота

на тему Вибірковий метод та його значення для вивчення правових явищ


Харків 2011

Зміст


Вступ

1. Основні поняття теорії ймовірності

2. Поняття закону великих чисел

3. Вибірковий метод та його значення для вивчення правових явищ

4. Основні положення вибіркового спостереження

5. Способи відбору одиниць у вибіркову сукупність

Висновки

Список літератури


Вступ


У своїй практичній діяльності ми завжди зустрічаємося з явищами, результат яких важко, а інколи і зовсім неможливо передбачати наперед, тому що наслідки їх залежать від випадку. Наприклад, який застрахований об`єкт буде знищено внаслідок стихійного лиха – діло випадку. Але страхові органи керуються в своїй діяльності передбаченням не кожного окремого об`єкта, а їх значної кількості. При вивченні їх у великій кількості можна передбачити їх стан у майбутньому. Тому при статистичній обробці емпіричних даних використовують певні визначення і правила, які встановлені теорією ймовірності.

Теорія ймовірності – це математична наука, яка виникла всередині ХУП сторіччя. Прийнято першими роботами, в яких народилися основні поняття теорії ймовірності, вважати роботи французів Б. Паскаля (1623 – 1662), Фермі П. (1601 – 1665) і голландця Х. Гюйгенса (1629 – 1695). Подальший розвиток теорії ймовірності пов`язують з ім`ям швейцарського математика Я.Бернуллі (1654 – 1705), який в тракті “Ars Conjectandi”, надрукованому в 1713 р., вперше в елементарному вигляді доказав теорему, яка в подальшому була названа законом великих чисел.

В ХІХ сторіччі теорія ймовірності починає з успіхом застосовуватися в страховій справі, статистиці народонаселення, у біології і військових науках, особливо в артилерії. В цей період теорія ймовірності збагачуються працями француза П. Лапласа (1749 – 1827), німця К. Гауса (1777 – 1855), француза С.Пуассон (1784 – 1840) та інших.

Значний вклад в розвиток теорії ймовірності внесено російським вченим П. Л. Чебишевим (1821 – 1894) та його учнями А.А.Марковим (1892 – 1922) і О.М.Ляпуновим (1857 – 1918). Своїми працями вони перетворили теорію ймовірності в систематизовану і чітку математичну науку.


1. Основні поняття теорії ймовірності


Зараз вона використовується у всіх галузях знань, де досліджуються прояви випадкових явищ з стійкою частістю. Наприклад, народжуваність дівчат або хлопчаків на певній території за тривалий проміжок часу.

Теорія ймовірності – це розділ математики, в якому вивчаються тільки випадкові явища (події) з стійкою частістю і встановлюються закономірності при масовому їх повторенні.

Одне з головних визначень теорії ймовірності – це поняття події. Явища, які розглядаються з точки зору, здійснилися вони чи ні, називають подіями. Стосовно до подій ставиться така основна задача: передбачити, чи з`явиться (здійсниться) досліджувана подія при настанні того чи іншого наперед заданого комплексу факторів.

Якщо при даному комплексі факторів обов`язково відбудеться подія, то вона має назву достовірної події. Якщо при даному комплексі факторів подія не може відбутися, то вона має назву неможливої події.

Якщо при даному комплексі факторів подія може відбутися або не відбутися, то вона має назву випадкової події. Інакше кажучи, подія називається випадковою, якщо вона однозначно не визначається умовами, в яких вона протікає, або ми не можемо врахувати всі фактори, які впливають на подію. Наука, яка вивчає закономірності масових випадкових подій, і називається теорією ймовірностей.

Прикладом випадкових подій – народжуваність хлопчика (або дівчини) у конкретній сім`ї; кількість злочинів, вчинених за певний проміжок часу. Кожний окремий злочин – унікальне соціально-стихійне діяння по протиправному вирішенні протиріч між людиною і суспільством. Тому ми ніколи не зможемо з абсолютною достовірністю визначити де, хто і коли вчинить той чи інший злочин. Злочинність є дзеркалом, у якому ми можемо більш-менш об'єктивно бачити, як функціонує наше суспільство, тому рівень зареєстрованих злочинів є вирішальним фактором при оцінці якості нашого життя.

Застосовувати теорію ймовірності можна лише у тих випадках, коли ми в силу об`єктивних причин не можемо абсолютно точно знати про умови, походження та розвиток явища. Теорія ймовірності описує лише ті випадкові події, яким притаманні стійкі частості. Причому чим в менших межах коливаються частості вихідних подій, тим більш точніше теорія ймовірності опише досліджуване явище.

Одне із основних понять – це ймовірність. Існують різні підходи щодо визначення цього поняття. Класичне визначення ймовірності таке: ймовірність випадкової події дорівнює відношенню числа випадків, які сприяють події, до спільного числа можливих випадків. Інакше кажучи, для значної кількості іспитів ймовірність характеризує частість події.

Кожна подія має числову характеристику у вигляді ймовірності. Ймовірність завжди знаходиться у межах від 0 до 1 (або у відсотках від 0 до 100%), ймовірність випадкової події завжди знаходиться між 0 та 1, тобто ніколи не дорівнює ні 1, ні 0. Тому, що якщо ймовірність буде дорівнювати 1, то в цьому випадку ми кажемо про вірогідність. Нас же цікавить ймовірність події, яка буде наближуватися до 1, але ні в якому випадку ймовірність випадкової події не може дорівнювати 1.

Величина випадкової події характеризується випадковою величиною, яка приймає якесь одне значення із деякої множини можливих значень. Але яким буде це значення, заздалегідь сказати не можна. Інакше кажучи, випадкова величина має цілий набір припустимих значень і в результаті кожного експерименту набуває лише якогось одного з них.

Найбільш поширений приклад: випадання герба при підкиданні монети. Зрозуміло, що може бути або герб, або ні. Відомо, що французький вчений Буфон наприкінці ХУШ сторіччя провів експеримент з підкиданням монети 4040 разів, при цьому 2028 разів випад герб, а 2012 – ні. Тобто в його експерименті частість випадання герба дорівнювала 0,5069 (2028 / 4040) при ймовірності 0,5000 (1/2).

Англійський вчений К. Пирсон провів 2 експерименти: перший раз він підкидав монету 12 тисяч разів, другий – 24 тисячі разів. При першому експерименті він отримав частість 0,5016, а при другому – 0,5005.

Усе це свідчить, що при збільшенні кількості спостережень частість усе менше відрізняється від ймовірності.


2. Поняття закону великих чисел


Динамічні та статистичні закономірності

Закон великих чисел – це один із основних законів, який використовується статистикою для дослідження явищ суспільного життя. Він дає змогу зрозуміти, чому із великої кількості хаосу випадкових зв`язків, ми можемо встановити і встановлюємо закономірності у розвитку суспільних явищ. Наприклад, народжуваність дівчат або хлопчиків у кожній окремій родині носить випадковий характер: в якихось родинах народжуватимуться одні дівчата, в інших – одні хлопчики, в деяких – пропорційна їх кількість. Але якщо проаналізуємо народжуваність за якийсь значний період (наприклад, за місяць і більше), то обов`язково встановимо, що на 100 народжених дівчаток припадає 103 – 104 хлопчики, а іноді й більше (навпаки не може бути ніколи).

Наведений приклад підкреслює те, що кожне окреме явище суспільного життя завжди унікальне, тому що на нього впливає велика кількість випадкових чинників. Розпізнати між ними закономірність у кожному конкретному – випадку практично неможливо. Але якщо вивчати ці явища у значній кількості, то можна з`ясувати закономірності, оскільки випадкові відхилення, властиві кожному окремому явищу, в своїй сукупності нейтралізують одне одного. Наприклад, окремий чоловік може прожити довше, ніж окрема жінка, але статистичні дані свідчать про те, що середня тривалість життя чоловіків на 5 – 6 років менша, ніж у жінок, а коефіцієнт смертності чоловіків у 2 – 3 рази вищий, ніж у жінок тієї ж самої вікової групи.

Закономірність – це повторюваність, послідовність та порядок у розвитку соціальних явищ. Вона може проявлятися по-різному. В філософії розрізняють два види закономірностей: динамічну та статистичну.

Динамічна закономірність – це така, яка виявляється в кожному окремому випадку і не залежить від кількості одиниць, які ми спостерігаємо. Вона притаманна природним явищам. Наприклад, закон Архімеда можна виявити і на одному об`єкті, який занурюють в рідину, і на тисячі об`єктів. Аналогічним чином можна виявити закон земного тяжіння та інші фізичні, хімічні та математичні закони.

Статистична закономірність – це така, яка виявляється лише в достатній кількості однорідних одиничних елементів, котрі й утворюють сукупність. Тобто кожний окремий елемент може не підтверджувати існування тієї чи іншої закономірності, тому що існування її в кожному елементі носить імовірний характер. Інакше кажучи, статистична закономірність властива лише сукупності одиниць, яка має назву статистичної сукупності.

Статистична сукупність – це певна множина елементів, поєднаних однаковими умовами існування та розвитку. Об`єктивною основою існування статистичної сукупності є складне перетинання причин та умов, які формують той чи інший масовий процес, наприклад, зміни в тенденцій в розвитку злочинності залежно від зміни соціально-економічної та політичної ситуації в країні.

Кожний окремий елемент, який складає статистичну сукупність, має назву одиниці сукупності. Кожна окрема одиниця сукупності є носієм явища, що вивчається, і відрізняється від іншої одиниці сукупності розміром ознаки. Завжди має місце коливання (варіювання) значень ознаки у кожної одиниці статистичної сукупності.

Явищам хімії, фізики, математики та інших природничих наук властиві лише динамічні закономірності.

Явища суспільного життя, які вивчаються статистикою, відносяться до статистичних закономірностей. Окремі елементи статистичної сукупності характеризуються значною кількістю різних ознак, але відповідно до мети дослідження вони мають загальні властивості, що і робить їх статистичною сукупністю. Математично вивчати статистичну закономірність дає змогу використання закону великих чисел.

Відповідно до цього закону при достатньо великій кількості досліджуваних одиниць сукупності можна виявити закономірність, яка не залежить від випадку. В разі підсумовування значної кількості одиничних явищ зникають випадкові відхилення і проявляється та чи інша закономірність, яку неможливо було виявити при дослідженні незначної кількості одиниць сукупності.

Закон великих чисел – це математично обґрунтована теорія, відповідно до якої, спираючись на знання теорії імовірності, можна стверджувати, що спільна дія значної кількості випадкових фактів призводить до наслідків, які не залежать від випадку. В разі підсумовування значної кількості одиничних явищ обов`язково проявляється порядок і закономірність їх руху і розвитку, які не можна встановити при дослідженні малої кількості одиниць сукупності. Інакше кажучи, закон великих чисел дає змогу встановити закономірність там, де на перший погляд проявляється лише випадковість.

З точки зору діалектичного підходу випадковість і необхідність нерозривно пов`язані між собою і завжди переходять одна в іншу, особливо в разі достатньої кількості досліджуваних одиниць сукупності.

Проте закон великих чисел не може визначити ні рівень, ні динаміку розвитку суспільного явища. Він лише обумовлює взаємопогашення випадкових відхилень, які властиві окремим одиницям статистичної сукупності, дозволяє виявити в ній дію об`єктивних законів розвитку суспільних явищ.


3. Вибірковий метод та його значення для вивчення правових явищ


Вибіркове спостереження є найбільш поширеним видом несуцільного спостереження, який застосовують при вивченні різноманітних закономірностей суспільного життя. Відмінність його від інших видів несуцільного спостереження полягає в тому, що його проведення і поширення результатів на всю масу досліджуваних явищ спирається на знання математики. Застосування його дає можливість значно швидше з меншими витратами часу і матеріальних засобів одержати результати. Вибірковий метод дає змогу обстежити сімейні бюджети населення, вивчити громадську думку. При дослідженні деяких явищ взагалі можна застосувати тільки його. Наприклад, вивчення якості електричних лампочок, якості вина, міцності взуття або схожості зерен.

Сутність вибіркового спостереження полягає в тому, що з усієї сукупності за певними правилами відбирається заздалегідь обумовлена частина сукупності (кожна четверта, або п'ята, або десята одиниця), яка ретельно вивчається. Результати цього часткового спостереження поширюються на усю генеральну сукупність з урахуванням похибки репрезентативності. При відборі одиниць у вибіркову сукупність повинна бути забезпечена рівна можливість потрапити у вибірку кожної з одиниць сукупності. Порівняно з суцільним спостереженням вибіркове спостереження має переваги, оскільки воно потребує менше коштів і часу для його проведення, при цьому також зменшуються й помилки реєстрації.

При проведенні вибіркового спостереження завжди присутня помилка (похибка репрезентативності), оскільки частина завжди відрізняється від цілого. Інакше кажучи, похибка репрезентативності визначає розбіжність між одержаними даними і тими, які б ми мали, якщо б вивчали всі одиниці сукупності без винятку. Причому вона існує завжди. Спираючи на формули, що розроблені теорією імовірності, можна заздалегідь розрахувати її величину.

Отже, основною вимогою до вибіркових спостережень є його репрезентативність – властивість вибіркового масиву відтворювати характеристики всієї сукупності. Теорія і практика проведення вибіркового спостереження показує, що вибіркове спостереження при правильному його організації дає достовірні дані, які цілком придатні для використання. Середні та відносні показники, що отримані при вибірковому спостереженні, досить точно відтворюють відповідні показники всієї сукупності. До вибіркового спостереження в силу випадковості відбору одиниць сукупності можуть бути застосовані закон великих чисел і теореми теорії ймовірностей, що дають можливість обчислити межу помилок, допущених при вибірковому спостереженні.

Вибірковий масив представляє лише зменшену модель усієї сукупності. Для правильної організації вибіркового спостереження необхідно визначити, яким способом будемо відбирати одиниці у вибіркову сукупність, який буде обсяг вибірки і яка за розміром нас задовольнить похибка репрезентативності.

Кількість одиниць сукупності, які відбираються для вибіркового спостереження, повинна бути досить велика. Якщо спостереженню піддається занадто мало одиниць, то результати будуть неточні, нерепрезентативні, і в такому випадку можуть бути зроблені неправильні висновки про всю сукупність. Якщо ж відбирається занадто багато одиниць, то відбувається зайва витрата сил і засобів для проведення вибіркового спостереження (в цьому разі нівелюється основний зміст вибіркового спостереження). Причому кількість відібраних одиниць для вибіркового спостереження залежить від того, наскільки однорідна чи різнорідна сукупність. Чим більш різнорідна сукупність, тим більше відбирається одиниць і навпаки.

Вибіркові дослідження в силу ряду своїх переваг широко використовуються в різних галузях статистики. Останнім часом усе ширше і ширше вони починають застосовуватися при дослідженнях різних правових явищ. Це обумовлено, у першу чергу, тим, що суцільне спостереження, яке існує у формі звітності, при усіх своїх перевагах має деякі недоліки. Вона містить лише ті показники, що необхідні для повсякденної оперативної роботи. Але, якщо необхідно поглиблене вивчання окремих видів злочинів, цивільних і адміністративних правопорушень і особливості осіб, їх що вчинили, то доцільно прибігати до вибіркового спостереження.

Ґрунтуючись на апробованих можливостях вибіркового методу в соціальних дослідженнях, представляється доцільним і важливим його застосування і для вирішення таких задач, як визначення характерних тенденцій, які виявленні при правовому аналізі правових явищ; одержання представлення про невідображені ознаки генеральної сукупності правових явищ і деякі ін.

Вибіркове спостереження може використовувати різні джерела: архівні карні та цивільні справи; картки на підсудних, картки на цивільні й адміністративні справи, розглянуті у судових органах і т.п. Єдине обмеження при відборі джерел інформації – відібрана частина для вибіркового спостереження повинна відображати всю сукупність. Це обмеження обов'язково для будь-якого вибіркового спостереження, у якій би з галузей господарства воно не проводилося.

Сучасна соціальна обстановка в країні характеризується тим, що ми все частіше й частіше зіштовхуємося з окремими унікальними правовими явищами. Тому безперечно необхідно усе більше і більше уваги приділяти методам вибіркового спостереження, особливо теорії і практиці застосування методів малої вибірки, коли кількість одиниць менше 25. Необхідність її застосування при дослідженні правових явищ зв'язана з тим, що її можна використовувати в умовах обмеженої інформації. Використовуючи метод малої вибірки, можна відшукувати методи оцінки явищ, інваріантних до законів розподілу випадкової величини.


4. Основні положення вибіркового спостереження


При вибірковому спостереженні можуть виникати помилки реєстрації і похибки вибірки (репрезентативності).

Помилки реєстрації, як і при суцільному статистичному спостереженні, являють собою розбіжність між зафіксованими даними в процесі спостереження і дійсними даними. Вони можуть бути випадковими і систематичними. Як правило, помилки реєстрації при вибірковому спостереженні зустрічаються рідко, тому що значно менший обсяг роботи приходиться на одного реєстратора, самі реєстратори завжди більш кваліфіковані, чим при проведенні суцільного спостереження.

Як уже відзначалося раніше, похибки репрезентативності властиві будь-якому вибірковому спостереженню. Завдання організації правильного проведення вибіркового спостереження – це вибір такої похибки репрезентативності, яка б задовольняла дослідника при даному спостереженні.

Зупинимось на основних термінах вибіркового спостереження. Основні поняття: генеральна і вибіркова сукупності.

Генеральна сукупність – це уся сукупність одиниць, з якої проводиться відбір частини одиниць для вибіркового спостереження. Відібрана певним способом частина генеральної сукупності для вибіркового спостереження називається вибірковою сукупністю. Узагальнюючі показники генеральної сукупності називаються генеральними, а відповідні показники вибіркової сукупності – вибірковими. Позначення показників генеральної та вибіркової сукупності наведено в табл. 1.

Таблиця 1.Позначення показників генеральної і вибіркової сукупності


Показник

Позначення

у генеральній сукупності у вибірковій сукупності
Кількість одиниць N n
Середнє значення ознаки

Частина одиниць, що мають дану ознаку p w
Частина одиниць, що не мають даної ознаки q = 1 - p 1 – w

Переваги вибіркового спостереження перед суцільним реалізуються лише при додержані наукових принципів його організації і проведення, насамперед неупередженого, випадкового відбору одиниць для спостереження. Вибіркова сукупність повинна повністю відтворювати склад генеральної сукупності. Принцип випадковості відбору забезпечує усім одиницям генеральної сукупності рівні можливості потрапити у вибіркову сукупність.

При проведенні вибіркового спостереження слід спиратися на знання закону великих чисел і теорії імовірності. Якби ні проводився відбір одиниць сукупності, завжди будуть розбіжності між характеристиками генеральної і вибіркової сукупностей, які пов'язані із сутністю вибіркового методу. Частина завжди відрізняється від цілого. Розбіжності між показниками генеральної і вибіркової сукупностей називається похибкою репрезентативності. Середня в генеральній сукупності відрізняється від середньої у вибірковій сукупності на величину похибки репрезентативності:


= ± D,


де: D – похибка репрезентативності

Наприклад, після проведення вибіркового спостереження з`ясувалось, що середній вік рецидивістів дорівнює 32 роки. Похибка репрезентативності становить ± 5%, інакше кажучи – 1,6 роки. Середній вік рецидивістів, в усій сукупності, якщо вивчити їх усіх, дорівнюватиме 32,0 ± 1,6, тобто він буде коливатися в межах від 30,4 року до 33,6 років.

Згідно з теоремою Чебишева з уточненнями Ляпунова, математикою було доведено, що при достатньо великій кількості обстежених одиниць сукупності середня величина досліджуваної ознаки у вибірковій сукупності буде відрізнятися від середньої величини в генеральній сукупності на величину:


D = tμ = t ,


де: D (дельта) – гранична похибка вибірки, тобто похибка репрезентативності; μ (мю) – середня похибка вибірки;

t – коефіцієнт, що залежіть від імовірність, з якою можна гарантувати певний розмір похибки репрезентативності.

Якщо t = 0, то імовірність також дорівнює 0; якщо t = 0,5, то імовірність дорівнює 0,383, або 38,3%; якщо t = 1, то імовірність дорівнює 0,683, або 68,3%; якщо t = 2, то ймовірність дорівнює 0,954, або 95,4%; якщо t = 3, то ймовірність дорівнює 0,997 або 99,7 %; якщо t = 4, то імовірність становить 0,999936 і т.п.

При цьому варто врахувати, що даний коефіцієнт може приймати не тільки цілі числа, але й дробові значення.

Із наведеної формули видно, що похибка репрезентативності залежить від багатьох чинників: імовірності, з якою ми бажаємо одержати результат; чисельності одиниць вибіркової сукупності (чим менше одиниць складатиме вибіркова сукупність, тим більше буде похибка репрезентативності, і навпаки); однорідності досліджуваної сукупності (чим більш різнорідна сукупність, тим похибка репрезентативності буде більше) і від способу відбору одиниць в вибіркову сукупність.

Як правило, при проведенні вибіркового спостереження перед дослідником для успішного його проведення необхідно визначення необхідної кількості одиниць вибіркової сукупності та розрахунок похибки репрезентативності з встановленим рівнем імовірності.

Багаторічна практика свідчить, що довірча імовірність 95,4 % (для t = 2) є оптимальної для більшості розрахунків у різних галузях господарства, тим більше для правових явищ. Тому для полегшення досить громіздких розрахунків похибки вибіркового спостереження існують спеціальні таблиці. Межі похибки при певному числі спостережень з довірчою імовірністю 95,4% – табл. 2. Визначення чисельності вибіркового спостереження при заданій величині похибки репрезентативності з довірчою імовірністю 95,4 % – табл. 3).


Таблиця 2.Величина похибки вибірки при даному числі спостережень

Питома вага спостережень, % Число спостережень

100 200 300 400 500 600 700 800 900 1000
5 (95) 4,4 3,1 2,8 2,5 1,9 1,8 1,6 1,5 1,4 1,4
10 (90) 6,0 4,3 3,5 3,0 2,7 2,5 2,3 2,1 2,0 1,9
15 (85) 7,2 5,1 4,1 3,6 3,2 2,9 2,7 2,5 2,4 2,3
20 (80) 8,0 5,7 4,6 4,0 3,6 3,3 3,0 2,8 2,7 2,5
25 (75) 8,7 6,2 5,0 4,3 3,9 3,5 3,3 3,1 2,9 2,7
30 (70) 9,2 6,5 5,3 4,6 4,1 3,7 3,5 3,2 3,1 2,9
35 (65) 9,6 6,8 5,5 4,8 4,3 3,9 3,6 3,4 3,2 3,0
40 (60) 9,9 7,0 5,6 4,9 4,4 4,0 3,7 3,5 3,3 3,1
45 (55) 10,0 7,1 5,7 5,0 4,5 4,1 3,8 3,5 3,3 3,1
50 10,0 7,1 5,8 5,0 4,5 4,1 3,8 3,5 3,3 3,2

На підставі даних, які наведені в табл. 2, видно, що чим більше одиниць попадає до вибіркової сукупності, тим менше буде можлива похибка вибірки.

У конкретно-правових дослідженнях, як правило, задається відсоток похибки середнього значення самим дослідником на основі програми спостереження і відповідно до даних раніш проведених досліджень. Як правило, вважається допустимою гранична похибка вибірки (похибка репрезентативності) в межах 3 – 5 %.

Якщо допустити похибку в два рази більшу, то обсяг вибірки можна зменшити в чотири рази і навпаки, якщо необхідно зменшити похибку вибірки в два рази, то обсяг вибірки треба збільшити в чотири рази.

Слід звернути увагу, що табл. 2 побудована для власне випадкового способу відбору одиниць у вибіркову сукупність, тому її з більшим ступенем вірогідності можна використовувати її при механічному і типовому способах відбору одиниць у вибіркову сукупність. При серійному (гніздовому) способу відбору одиниць у вибірку використовувати дані, які наведені в табл. 2 і 3, не можна.

Як можна і треба користуватися вищенаведеною табл. 2? Наприклад, припустимо, що на основі обстеження 200 осіб, яких засуджено за тяжкі насильницькі злочини, було встановлено, що 65% з них вчинені в стані алкогольного сп'яніння. Нас цікавить, наскільки достовірний цей результат, тобто в яких межах коливається дане значення у всій генеральній сукупності.

За даними табл. 2 визначаємо, що на перетинанні горизонтального рядка з числом 65 з вертикальною другою графою з числом 200, знаходиться число 6,8. Це означає, що частка засуджених, що вчинили тяжкі насильницькі злочини в стані сп'яніння, може коливатися в межах від 58,2 % до 71,8 % (65% 6,8 %).

Таблиця 2 дає можливість відповісти на запитання, яке мінімальне число одиниць сукупності необхідно включити до вибіркової сукупності, щоб очікуваний результат похибки репрезентативності коливався у встановлених межах.

Найважливіше завдання при проведенні вибіркового дослідження правових явищ – це визначення репрезентативного обсягу вибіркового спостереження, тобто скільки необхідно проаналізувати одиниць з генеральної сукупності, щоб одержана випадкова похибка середнього значення досліджуваної ознаки не перевершувала визначеної величини похибки репрезентативності з достатньою імовірністю.

Спираючись на математичні теореми закону великих чисел, можна встановити, що при зменшенні обсягу вибірки в декілька квадратів разів похибка середнього значення збільшується в стільки ж разів, і навпаки, зменшення похибки середнього значення вибірки в декілька разів призводить до збільшення обсягу вибірки в стільки ж квадратів разів. Отже, визначення величини похибки середнього значення ознаки для встановлення обсягу вибірки має велике значення.

При практичному застосуванні формул дослідник завжди зустрічається з тим, що необхідні дані про коливання ознаки в генеральній сукупності. Як правило, на практиці для визначення обсягу вибірки прибігають до даних попередніх досліджень або проводять так звані пробні обстеження і на їх основі визначають орієнтовні розміри коливання ознаки.

Взагалі слід пам'ятати, що головне при організації вибіркового спостереження – це доведення обсягу його до допустимого мінімуму. При цьому не слід прагнути до надмірного зменшення меж похибки вибірки, тому що це може призвести до невиправданого збільшення обсягу вибірки і, отже, до підвищення витрат на проведення вибіркового спостереження. В той же час не можна і надмірно збільшувати розмір похибки репрезентативності, тому що в цьому випадку хоча і відбудеться зменшення обсягу вибіркової сукупності, але це призведе до погіршення достовірності одержаних результатів.

Таблиця 3.Обсяг вибіркової сукупності при заданій похибки репрезентативності

Питома вага показника в % Величина похибки репрезентативності в %

1 2 3 4 5 10
10 3600 900 400 230 150 37
20 6400 1600 710 400 260 65
40 9600 2400 1070 600 390 97
45 9900 2500 1100 620 400 100
55 9900 2500 1100 620 400 100
65 9100 2300 1010 570 370 92
70 8400 2100 930 530 340 85
80 6400 1600 710 400 260 65

Наведемо приклад визначення чисельності вибірки на основі табл. 3. Припустимо, що величина досліджуваного показника дорівнює 40 % (частка (питома вага) тяжких злочинів в області), а похибка репрезентативності, яку вважаємо допустимою при даному дослідженні, не повинна бути більш 4 %.

По табл. 3 визначаємо, що мінімальний обсяг вибіркової сукупності повинен скласти 600. Отже, щоб наше вибіркове дослідження було репрезентативним з довірчою імовірністю в 95,4 % за наших вихідних даних, нам необхідно обстежити мінімум 600 чоловік засуджених.

Якщо таблиці 2 і 3 відсутні, то в цьому випадку обсяг вибіркової сукупності обчислюється на базі раніш наведеної формули шляхом нескладного її перетворення. Формула для встановлення обсягу вибіркової сукупності буде мати вигляд:


,


де: n – обсяг вибіркової сукупності; w – частина одиниць, які мають дану ознаку; t – коефіцієнт; ∆ – похибка репрезентативності.

Наприклад, у вибіркову сукупність необхідно взяти 470 – 500 одиниць, щоб із імовірністю 95,4% можна було стверджувати, що похибка репрезентативності при обчисленні частки сукупності не буде відхилятися більше, ніж на ± 4%, якщо відомо, що значення частки у сукупності досягає 25%, тобто за вищенаведеною формулою:


.


У більшості випадків при вибіркових дослідженнях дані аналізуються і збирають не по одному, а по декількох ознаках одночасно. У цьому випадку необхідний обсяг вибіркової сукупності визначається по кожній з цих ознак, а потім приймається для дослідження максимальна величина по одній з найбільш істотних ознак.

При наявності якісної сукупності альтернативних ознак (подія може або наступити, або не наступити), якщо не відома реальна величина коливання ознаки, то його величина приймається рівнозначній 50%.


5. Способи відбору одиниць у вибіркову сукупність

вибіркове спостереження сукупність

Вибіркове спостереження організаційно може застосовуватися двома способами відбору: повторним та безповторним.

Повторний відбір здійснюється таким чином: кожна одиниця (або група одиниць) генеральної сукупності, яка потрапила до вибіркової сукупності, знову повертається до генеральної сукупності і бере участь у відборі в подальшому. Таким чином якась одиниця може декілька разів потрапити у вибіркову сукупність.

При безповторному відборі одиниця сукупності, яка потрапила у вибіркову сукупність, не повертається до генеральної сукупності і не може ще раз бути включена до вибіркової сукупності. Правова статистика використовує тільки безповторний відбір, внаслідок чого імовірність окремих одиниць потрапити у вибіркову сукупність збільшується. При проведенні безповторного відбору