Дмитрий Иванович Менделеев – ученый с мировыми заслугами
Муниципальное образовательное учреждение гимназия №14 г. Выксы Нижегородской области.
Дмитрий Иванович Менделеев –
ученый с мировыми заслугами.
Работу выполнил:
Ученица 10 класса,
Научный руководитель:
учитель по химии
2006г.
Г.Выкса
Содержание.
Аннотация.
Введение
Обзор Литературы
Д.И.Менделеев – ученый с мировыми заслугами
Вклад Д.И.Менделеева в области химии:
Периодическая система химических элементов
История создания периодической системы;
Периодический закон;
Предсказание существования неизвестных элементов: 22 Sc, Ga, Ge.
Д.И.Менделеев и таможенная политика России
Участие великого химика в промышленности
Нефтяная промышленность;
Угольная промышленность
Металлургическая промышленность
Вклад ученого в сельское хозяйство
Участие ученого в аэродинамике и гидродинамике
Д.И.Менделеев и метрология
Другие достижения Д.И.Менделеева
Заключение
Приложения.
Список литературы
Аннотация.
Передо мной стоит одна цель узнать и утвердить является ли Дмитрий Иванович Менделеев ученым с мировыми заслугами. Для этого я использую различные материалы в виде видеозаписей о жизни этого ученого, различные книги.
Я исследовала по этапам все, что создал, что сделал, в чем участвовал знаменитый и гениальный ученый Дмитрий Иванович Менделеев, и с гордостью могу сказать, что это великий ученый, завоевавший мировую известность, а так же это человек исключительных душевных качеств, с мужским и неустрашимым характером. В результате работы мне представились различные факты из жизни Дмитрия Ивановича Менделеева, которые утвердили и дали полную достоверность о том, что этого ученого можно с гордостью и уважением назвать «Д.И.Менделеев – ученый с мировыми заслугами».
Введение.
В истории мировой науки запечатлены имена прославленных ученых, чьи открытия способствовали совершенствованию и прогрессу знаний о природе, овладению ее тайнами, использованию их на благо человечества. Среди них имя Дмитрия Ивановича Менделеева по праву занимает одно из первых мест.
Я считаю, что Д.И.Менделеев – это великий ученый, химик, создавший периодическую систему химических элементов, заслуженный физик, так же его можно считать метрологом. Я его ценю не как химика и ученого, а как большого человека, много сделавшего на благо своей Родины, помогающего молодым людям. Это гениальный человек науки.
Представления его о растворах составили ядро современных физико-химических теорий растворов.
Переиздававшиеся восемь раз и переведенные на основные иностранные языки «Основы химии» явились образцом изложения важнейших химических понятий и проблем развивающейся науки, ярким примером сочетания теории и практики, раскрытия взаимосвязи различных наук.
Плодотворный была деятельность Д.И.Менделеев, направленная на развитие промышленности и сельского хозяйства. Он был провозвестником идеи химизации народного хозяйства, инициатором внедрения новых научных и технических открытий в практику, выступал с разнообразными прогнозами, проектами и предложениями, многие из которых не могли получить реализации в условиях царской России. Его работы по созданию бездымного парохода, важные для обороны страны, работы по аэродинамике и гидродинамике, развитию мореходства, аэронавтики, метеорологии.
Имел необычайно широкий научный кругозор и большой практический опыт хозяйственно-технической деятельности, исследовал состав нефти разного происхождения, налаживал производство бездымного парохода, изобрел немало приборов.
Его педагогические идеи, его педагогическая деятельность снискали себе уважение и признательность современников не только в пробуждающейся России, но и во всем мире.
Сколько плодотворных идей и конкретных дел осуществил ученый в своей стране! Он был одним из создателей Русского химического общества, принимал участие в работе Русского технического и Вольного экономического обществ.
Но все эти годы ученый не был одинок. У него было немало единомышленников, друзей и просто попутчиков на этом тернистом пути, который прошел он – разночинец, передовой ученый-материалист, сторонник широкого развития образования профессионального и общего среднего, такой человек не мог не стать идейным вождем молодежи, духовным отцом передовой части русской интеллигенции.
Обзор литературы.
В ходе работы я использовала различную литературу, из которой я набирала материал. К примеру, я использовала Большую школьную энциклопедию (см. на стр. 292), из которой я взяла цитату Д.И.Менделеева: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от атомных весов элементов». Это первая формулировка периодического закона.
«Он оценил потребности всей России в нефтепродуктах, принял в расчет все тогда известные и предполагаемые им месторождения нефти, выявил условия, когда нефтеперерабатывающие заводы лучше размещать в местах добычи нефти, а когда - в центрах ее потребления, и составил схему размещения новых нефтеперерабатывающих заводов в Центральной России, в особенности вблизи Москвы и в крупнейших городах на Волге (в Царицыне, Саратове, Самаре, Нижнем Новгороде, Ярославле, Рыбинске)» это утверждал и рассказывал историк Макарелл, А.А. (по книге Макарелл, А.А., Д.И.Менделеев: книга для учащихся 8-9 классов средней школы/ А.А.Макарелл, Ю.В.Рысев. – 3-е издание перераб. – М.: Просвещение, 1988. – 127с.). И из многих других наиболее интереснейших книг я брала самые интересные и неординарные отрывки и цитаты.
1. Д.И.Менделеев – ученый с мировыми заслугами.
Дмитрий Менделеев родился 8 февраля 1834 года в Тобольске в семье директора гимназии и попечителя народных училищ Тобольской губернии Ивана Павловича Менделеева и Марии Дмитриевны Менделеевой, урожденной Корнильевой. Воспитывала его мать, поскольку отец будущего химика ослеп вскоре после рождения своего сына.
Осенью 1841 года Митя поступил в Тобольскую гимназию.
9 августа 1850 года Дмитрий был зачислен студентом Главного педагогического института в Петербурге на физико-математический факультет.
В Педагогическом институте преподавали в то время выдающиеся русские ученые – математик Остроградский, физик Ленц, химик Воскресенский и другие. Воскресенский и профессор минералогии Куторга предложили Менделееву разработать метод анализа минералов артрита и пироксена, доставляемых из Финляндии.
В мае 1855 года Ученый совет присудил Менделееву титул «Старший учитель» и наградил золотой медалью.
Много времени он отдавал работе над магистрской диссертацией, в которой рассматривал проблему «удельных объемов» с точки зрения унитарной теории Жерара, полностью отбросив дуалистическую теорию Берцелиуса. Эта работа показала удивительную способность Менделеева к обобщению и его широкие познания в химии.
Осенью Менделеев блестяще защитил диссертацию, с успехом прочел вступительную лекцию «Строение силикатных соединений» и в начале 1857 года стал приват-доцентом при Петербургском университете.
В конце февраля 1861 года Менделеев приехал в Петербург. Он решается написать учебник органической химии. Вышедший вскоре в свет учебник, а также перевод «Химической технологии» Вагнера принесли Менделееву большую известность.
1 января 1864 года Менделеев получил назначение на должность штатного доцента органической химии Петербургского университета. Одновременно с этой должностью Менделеев получил место профессора в Петербургском технологическом институте. Менделеев приступил к работе над докторской диссертацией.
Исследования продолжались почти год. Проследив изменение удельного веса в зависимости от процентного содержания спирта в воде, Менделеев установил, что самую большую плотность имеет раствор, в котором соотношение между молекулами спирта и воды составляет один к трем. Впоследствии это открытие стало основной гидратной теории растворов.
Защита диссертации состоялась 31 января 1865 года. Через два месяца Менделеев был назначен экстраординарным профессором по кафедре технической химии Петербургского университета, а в декабре – ординарным профессором.
В то время возникла острая необходимость создать новый учебник по неорганической химии, который бы отражал современный уровень развития химической науки. Эта идея захватила Менделеева.
Менделеев тщательно изучил описание свойств элементов и их соединений. Но в каком порядке их проводить? Никакой системы расположения элементов не существовало. Тогда ученый сделал картонные карточки. На каждую карточку он заносил названия элемента, его атомный вес, формулы соединений и основные свойства. Постепенно корзина наполнялась карточками, содержащими сведения обо всех известных к этому времени элементах. И все равно долгое время ничего не получалось. Говорят, что периодическую таблицу элементов ученый увидел во сне, оставалось ее лишь записать и обосновать.
6 марта его друг профессор химии Меншуткин сообщил об этом открытии на заседании Русского химического общества. Любопытно, что вначале русские химики не поняли, о каком великом открытии идет речь.
Зато значение таблицы осознавал сам Дмитрий Иванович. С того дня, когда за простыми рядами символов химических элементов Менделеев увидел проявление закона природы, другие вопросы отошли на задний план. Взяв за основу периодический закон, Менделеев изменил атомные веса этих элементов и поставил их в один ряд со сходными по свойствам элементами.
В это же время Менделеев глубоко заинтересовался еще одним вопросом – состоянием газов при очень высоком давлении.
Повторное доказательство предсказаний Менделеева вызвало настоящий триумф. Вскоре стали поступать сообщения об избрании Менделеева почетным членом различных европейских университетов и академий.
Круг интересов Менделеева был очень широк. Классическими являются и его работы по химии растворов. Кроме того, он много занимался исследованиями нефти и вплотную подошел к открытию ее сложного состава.
Во время полного солнечного затмения 1887 года Менделеев должен был вместе с воздухоплавателем подняться на воздушном шаре. Однако перед стартом начался дождь, намокший шар не мог подняться с двумя пассажирами. Тогда Менделеев высадил летчика и полетел один. Рассказывают и то, что на досуге он делал великолепные чемоданы.
Зная об обширных познаниях Менделеева во многих областях науки, видные государственные деятели нередко обращались к нему за советом и помощью. В 1892 году министр финансов Витте предложил Дмитрию Ивановичу должность ученого хранителя Палаты мер и весов, и Менделеев согласился. Несмотря на преклонный возраст, он начал активную и разностороннюю работу в этой новой области. Здесь ученый также сделал несколько открытий. В частности, он разработал точнейшие эталоны веса.
Дмитрий Иванович работал до последнего дня. Он скончался утром 20 января 1907 года.
После смерти Менделеева его имя было присвоено Русскому химическому обществу, и ежегодно 27 января, в день рождения ученого, в Петербурге происходит торжественное заседание, на котором представляют авторов лучших работ по химии и награждают их медалью имени Д.И. Менделеева. Эта награда считается одной из самых престижных в мировой химии.
Автобиография великого русского ученого подтверждает, что Д.И. Менделеев всю свою жизнь был великим тружеником. Его упорная деятельность привела к множеству блестящих научных открытий в области химии, физики и даже таможенного дела. Но всегда следует помнить, что триумфальный периодический закон Менделеева – это результат огромного труда, глубоких раздумий и постоянного поиска.
2. Вклад Д.И.Менделеева в области химии.
Не раз указывал Д.И.Менделеев на роль динамических представлений в развитии химической науки. Уже в самом начале своей научной деятельности он правильно осознал место химической динамики в системе химических наук и роль изучения реакционной способности химических соединений в решении главной задачи химии. «Предмет химии не есть одно изучение состава тел, - писал он, - а главным образом – изучение превращений; самый состав есть результат превращения вещества…»1.
Главное открытие ученого – Периодический закон химических элементов – не имеет равных в истории. Вместо разрозненных, не связанных между собой веществ перед наукой встала единая стройная система, объединившая в одно целое все химические элементы. Закон Менделеева оказал огромное влияние на развитие знаний о строении атома, о природе вещества. Написанный им учебник «Основы химии» представлял собой первое стройное изложение неорганической химии и был переиздан 13 раз. В своем дневнике Дмитрий Иванович так охарактеризовал свои основные научные достижения: «всего более четыре предмета составили мое имя: периодический закон, исследования упругости газов, понимание растворов как ассоциаций и «Основы химии». Тут все мое богатство. Оно не отнято у кого-нибудь, а произведено мною, это мои дети и ими, увы, дорожу сильно, столько же, как детками»2.
2.1. Периодическая система химических элементов.
Исследуя изменение химических свойств элементов в зависимости от величины их относительной атомной массы (атомного веса), Д. И. Менделеев в 1869 г. открыл закон периодичности этих свойств: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от атомных весов элементов». Физическая основа периодического закона была установлена в 1922 г. Н. Бором. Поскольку химические свойства обусловлены строением электронных оболочек атома, периодическая система Менделеева – это естественная классификация элементов по электронным структурам их атомов. Простейшая основа такой классификации – число электронов в нейтральном атоме, которое равно заряду ядра (см приложение1). Но при образовании химической связи электроны могут перераспределяться между атомами, а заряд ядра остается неизменным, поэтому современная формулировка периодического закона гласит: «Свойства элементов находятся в периодической зависимости от зарядов ядер их атомов». Это обстоятельство отражено в периодической системе в виде горизонтальных и вертикальных рядов – периодов и групп. (см приложение.2).
Период – горизонтальный ряд, имеющий одинаковое число электронных слоев, номер периода совпадает со значением главного квантового числа n внешнего уровня (слоя); таких периодов в периодической системе семь. Второй и последующие периоды начинаются щелочным элементом (ns1) и заканчивается благородным газом (ns2np6).По вертикали периодическая система подразделяется на восемь групп, которые делятся на главные – А, состоящие из s- и p-элементов, и побочные – B-подгруппы, содержащие d-элементы. Подгруппа III B, кроме d-элементов, содержит по 14 4f- и 5f-элементов (4f- и 5f-семейства). Главные подгруппы содержат на внешнем электронном слое одинаковое число электронов, которое равно номеру группы. В главных подгруппах валентные электроны (электроны, способные образовывать химические связи) расположены на s- и p-орбиталях внешнего энергетического уровня, в побочных – на s-орбиталях внешнего и d-орбиталях предвнешнего слоя. Для f-элементов валентными являются (n – 2)f- (n – 1)d- и ns-электроны. Сходство элементов внутри каждой группы – наиболее важная закономерность в периодической системе. Следует, кроме того, отметить такую закономерность, как диагональное сходство у пар элементов Li и Mg, Be и Al, B и Si и др. Эта закономерность обусловлена тенденцией смены свойств по вертикали (в группах) и их изменением по горизонтали (в периодах). Все сказанное выше подтверждает, что структура электронной оболочки атомов элемента изменяется периодически с ростом порядкового номера элемента. С другой стороны, свойства определяются строением электронной оболочки и, следовательно, находятся в периодической зависимости от заряда ядра атома. Далее рассматриваются некоторые периодические свойства элементов. (см. приложение 3)
Первый период (n = 1, l = 0) состоит из двух элементов H (1s1) и He (1s2).
Во втором периоде (n = 2, l = 0, 1) заполняются s- и p-орбитали от Li до Ne. Элементы называются соответственно s- и p-элементами.
В третьем периоде появляются пять d-орбиталей (n = 3, l = 0, 1, 2). Пока они вакантны, и третий период, как и второй, содержит восемь p-элементов элементов от Na до Ar.
Следующие за аргоном калий и кальций имеют на внешнем уровне 4s-электроны (четвертый период). Появление 4s-электронов при наличии свободных 3d-орбиталей обусловлено экранированием ядра плотным 3s23p6-электронным слоем. В связи с отталкиванием от этого слоя внешних электронов для калия и кальция реализуются [Ar]4s1- и [Ar]4s2-состояния. Сходство K и Ca с Na и Mg соответственно, кроме чисто «химического» обоснования, подтверждается также электронными спектрами. При дальнейшем увеличении заряда у следующего за кальцием скандия 3d-состояние становится энергетически более выгодным, чем 4p, поэтому и заселяется 3d-орбиталь (см. приложение 3). Из анализа зависимости энергии электрона от порядкового номера элемента В. М. Клечковский сформулировал правило, согласно которому энергия атомных орбиталей возрастает по мере увеличения суммы (n + l). При равенстве сумм сначала заполняется уровень с меньшим n и большим l, а потом с большим n и меньшим l. Так у K и Ca заполняется 4s-орбиталь (4 + 0 = 4), а потом у Sc заполняется 3d-орбиталь (3 + 2 = 5).
Приведенные рассуждения подтверждаются экспериментальными данными об изменении энергии s-, p-, d- и f-орбиталей в зависимости от порядкового номера элемента. Как следует из рис. 1.3, значения энергии различных состояний зависит от заряда ядра Z, и чем больше Z, тем меньше различаются эти состояния по энергиям. Характер этого различия таков, что кривые, выражающие изменение энергии, пересекаются. Так для элементов K и Ca (Z = 19 и 20) энергия 3d-орбиталей выше, чем 4p, а для элементов с Z ≥ 21 энергия 3d-орбиталей ниже, чем 4p. Начиная со скандия (Z = 21) заполняется 3d-орбиталь, а во внешнем слое остаются 4s-электроны. Поэтому в четвертом периоде в ряду от Sc до Zn все десять 3d-элементов – металлы с низшей степенью окисления, как правило, 2, за счет внешних 4s-электронов. Общая электронная формула этих элементов – 3d1–104s1–2. Для хрома и меди наблюдается проскок (или провал) электрона на d-уровень: Cr – 3d54s1, Cu – 3d104s1. Такой проскок с ns- на (n – 1)d-уровень наблюдается также у Mo, Ag, Au, Pt и у других элементов и объясняется близостью энергий ns- и (n – 1)d-уровней и стабильностью наполовину и полностью заполненных уровней.
Образование катионов d-элементов связано с потерей, прежде всего внесших ns- и только затем (n – 1)d-электронов. (см приложение 4)
Дальше в четвертом периоде после десяти d-элементов появляются p-элементы от Ga (4s24p1) до Kr (4s24p6).
Пятый период повторяет четвертый – в нем также 18 элементов, и 4d-элементы, как и 3d образуют вставную декаду (4d 1–105s 0–2).
В шестом периоде после лантана (5d16s2) – аналога скандия и иттрия следуют 14 4f-элементов – лантаноидов. Свойства этих элементов очень близки, поскольку идет заполнение глубоколежащего (n – 2)f-подуровня. Общая формула лантаноидов 4f 2–145d 0–16s 2. (см. приложение 5)
После 4f-элементов заполняются 5d- и 6p-орбитали.
Седьмой период отчасти повторяет шестой. 5f-элементы называются актиноидами. Их общая формула 5f 2–146d 0–17s2. Далее следуют еще 6 искусственно полученных 6d-элементов незавершенного седьмого периода.
Периодическая система элементов.
2.2. История создания Периодической системы.
Зимой 1867-68 года Менделеев начал писать учебник "Основы химии" и сразу столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 года, обдумывая структуру учебника, он постепенно пришел к выводу, что свойства простых веществ (а это есть форма существования химических элементов в свободном состоянии) и атомные массы элементов связывает некая закономерность.
Менделеев многого не знал о попытках его предшественников расположить химические элементы по возрастанию их атомных масс и о возникающих при этом казусах. Например, он не имел почти никакой информации о работах Шанкуртуа, Ньюлендса и Мейера.
Решающий этап его раздумий наступил 1 марта 1869 года (14 февраля по старому стилю). Днем раньше Менделеев написал прошение об отпуске на десять дней для обследования артельных сыроварен в Тверской губернии: он получил письмо с рекомендациями по изучению производства сыра от А. И. Ходнева - одного из руководителей Вольного экономического общества.
В Петербурге в этот день было пасмурно и морозно. Под ветром поскрипывали деревья в университетском саду, куда выходили окна квартиры Менделеева. Еще в постели Дмитрий Иванович выпил кружку теплого молока, затем встал, умылся и пошел завтракать. Настроение у него было чудесное.
За завтраком Менделееву пришла неожиданная мысль: сопоставить близкие атомные массы различных химических элементов и их химические свойства. Недолго думая, на обратной стороне письма Ходнева он записал символы хлора Cl и калия K с довольно близкими атомными массами, равными соответственно 35,5 и 39 (разница всего в 3,5 единицы). На том же письме Менделеев набросал символы других элементов, отыскивая среди них подобные "парадоксальные" пары: фтор F и натрий Na, бром Br и рубидий Rb, иод I и цезий Cs, для которых различие масс возрастает с 4,0 до 5,0, а потом и до 6,0. Менделеев тогда не мог знать, что "неопределенная зона" между явными неметаллами и металлами содержит элементы - благородные газы, открытие которых в дальнейшем существенно видоизменит Периодическую систему.
После завтрака Менделеев закрылся в своем кабинете. Он достал из конторки пачку визитных карточек и стал на их обратной стороне писать символы элементов и их главные химические свойства. Через некоторое время домочадцы услышали, как из кабинета стало доноситься: "У-у-у! Рогатая. Ух, какая рогатая! Я те одолею. Убью-у!". Эти возгласы означали, что у Дмитрия Ивановича наступило творческое вдохновение. Менделеев перекладывал карточки из одного горизонтального ряда в другой, руководствуясь значениями атомной массы и свойствами простых веществ, образованных атомами одного и того же элемента. В который раз на помощь ему пришло доскональное знание неорганической химии. Постепенно начал вырисовываться облик будущей Периодической системы химических элементов. Так, вначале он положил карточку с элементом бериллием Be (атомная масса 14) рядом с карточкой элемента алюминия Al (атомная масса 27,4), по тогдашней традиции приняв бериллий за аналог алюминия. Однако затем, сопоставив химические свойства, он поместил бериллий над магнием Mg. Усомнившись в общепринятом тогда значении атомной массы бериллия, он изменил ее на 9,4, а формулу оксида бериллия переделал из Be2O3 в BeO (как у оксида магния MgO). Кстати, "исправленное" значение атомной массы бериллия подтвердилось только через десять лет. Так же смело действовал он и в других случаях.
Постепенно Дмитрий Иванович пришел к окончательному выводу, что элементы, расположенные по возрастанию их атомных масс, выказывают явную периодичность физических и химических свойств. В течение всего дня Менделеев работал над системой элементов, отрываясь ненадолго, чтобы поиграть с дочерью Ольгой, пообедать и поужинать.
Вечером 1 марта 1869 года он набело переписал составленную им таблицу и под названием "Опыт системы элементов, основанной на их атомном весе и химическом сходстве" послал ее в типографию, сделав пометки для наборщиков и поставив дату "17 февраля 1869 года" (это по старому стилю).
Так был открыт Периодический закон, современная формулировка которого такова: Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядер их атомов.
Отпечатанные листки с таблицей элементов Менделеев разослал многим отечественным и зарубежным химикам и только после этого выехал из Петербурга для обследования сыроварен.
До отъезда он еще успел передать Н. А. Меншуткину, химику-органику и будущему историку химии, рукопись статьи "Соотношение свойств с атомным весом элементов" - для публикации в Журнале Русского химического общества и для сообщения на предстоящем заседании общества.
18 марта 1869 года Меншуткин, который был в то время делопроизводителем общества, сделал от имени Менделеева небольшой доклад о Периодическом законе. Доклад сначала не привлек особого внимания химиков, и Президент русского химического общества, академик Николай Зинин (1812-1880) заявил, что Менделеев делает не то, чем следует заниматься настоящему исследователю. Правда, через два года, прочтя статью Дмитрия Ивановича "Естественная система элементов и применение ее к указанию свойств некоторых элементов", Зинин изменил свое мнение и написал Менделееву: "Очень, очень хорошо, премного отличных сближений, даже весело читать, дай Бог Вам удачи в опытном подтверждении Ваших выводов. Искренне Вам преданный и глубоко Вас уважающий Н. Зинин"3. Не все элементы Менделеев разместил в порядке возрастания атомных масс; в некоторых случаях он больше руководствовался сходством химических свойств. Так, у кобальта Co атомная масса больше, чем у никеля Ni, у теллура Te она также больше, чем у иода I, но Менделеев разместил их в порядке Co - Ni, Te - I, а не наоборот. Иначе теллур попадал бы в группу галогенов, а иод становился родственником селена Se.
2.3. Периодический закон Д.И.Менделеева.
Закон открыт и сформулирован Д.И.Менделеевым: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от атомных весов элементов». Закон создан на основе глубокого анализа свойств элементов и их соединений. Выдающиеся достижения физики, главным образом разработка теории строения атома, дали возможность раскрыть физическую сущность периодического закона: периодичность в изменении свойств химических элементов обусловлена периодическим изменением характера заполнения электронами внешнего электронного слоя по мере возрастания числа электронов, определяемого зарядом ядра. Заряд равен порядковому номера элемента в периодической системе. Современная формулировка периодического закона: «Свойства элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от заряда ядра атомов». Созданная Д.И.Менделеевым в 1869-1871 гг. периодическая система является естественной классификацией элементов, математическим отражением периодического закона.
Менделеев не только первый точно сформулировал этот закон и представил содержание его в виде таблицы, которая стала классической, но и всесторонне обосновал его, показал его огромное научное значение, как руководящего классификационного принципа и как могучего орудия для научного исследования.
Физический смысл периодического закона. Был вскрыт лишь после выяснения того, что заряд ядра атома возрастает при переходе от одного химического элемента к соседнему (в периодической системе) на единицу элементарного заряда. Численно заряд ядра равен порядковому номеру (атомному номеру Z) соответствующего элемента в периодической системе, то есть числу протонов в ядре, в свою очередь равному числу электронов соответствующего нейтрального атома. Химические свойства атомов определяются структурой их внешних электронных оболочек, периодически изменяющейся с увеличением заряда ядра, и, следовательно, в основе периодического закона лежит представление об изменении заряда ядра атомов, а не атомной массы элементов. Наглядная иллюстрация периодического закона — кривые периодические изменения некоторых физических величин (ионизационных потенциалов, атомных радиусов, атомных объёмов) в зависимости от Z. Какого-либо общего математического выражения периодического закона не существует. Периодический закон имеет огромное естественнонаучное и философское значение. Он позволил рассматривать все элементы в их взаимной связи и прогнозировать свойства неизвестных элементов. Благодаря периодическому закону многие научные поиски (например, в области изучения строения вещества — в химии, физике, геохимии, космохимии, астрофизике) получили целенаправленный характер. Периодический закон — яркое проявление действия общих законов диалектики, в частности закона перехода количества в качество.
Физический этап развития периодического закона можно в свою очередь разделить на несколько стадий:
1. Установление делимости атома на основании открытия электрона и радиоактивности (1896-1897);
2. Разработка моделей строения атома (1911-1913);
3. Открытие и разработка системы изотопов (1913);
4. Открытие закона Мозли (1913), позволяющего экспериментально определять заряд ядра и номер элемента в периодической системе;
5. Разработка теории периодической системы на основании представлений о строении электронных оболочек атомов (1921-1925);
6. Создание квантовой теории периодической системы (1926-1932).
2.4. Предсказание существования неизвестных элементов.
Самое же важное в открытии Периодического закона - предсказание существования еще не открытых химических элементов. Под алюминием Al Менделеев оставил место для его аналога "экаалюминия", под бором B - для "экабора", а под кремнием Si - для "экасилиция". Так назвал Менделеев еще не открытые химические элементы. Он даже дал им символы El, Eb и Es.
По поводу элемента "экасилиция" Менделеев писал: "Мне кажется, наиболее интересным из, несомненно, недостающих металлов будет тот, который принадлежит к IV группе аналогов углерода, а именно, к III ряду. Это будет металл, следующий тотчас же за кремнием, и потому назовем его экасилицием". Действительно, этот еще не открытый элемент должен был стать своеобразным "замком", связывающим два типичных неметалла - углерод C и