Ортогональные полиномы и кривые распределения вероятностей

Карпова Наталия Анатольевна

Санкт-Петербургский государственный университет

Санкт Петербург 2003

Введение.

Математическая статистика является наукой, которая изучает соотношения, столь глубоко проникающие в суть вещей, что их можно встретить при самых различных обстоятельствах. Результаты исследований, полученные с помощью аппарата математической статистики, используются в самых различных областях науки и техники, таких как биология, медицина, анатомия, геология, экология, экономика, и т.д.

Данная дипломная работа посвящена рассмотрению двух основных задач математической статистики:

получению кривой распределения вероятностей по имеющейся выборке;

нахождению зависимости между двумя случайными величинами, заданными своими выборками.

Для решения первой задачи используются различные методы. В данной работе рассмотрен метод Карла Пирсона, представителя английской школы статистики. Им было получено дифференциальное уравнение

,

а так же введен критерий æ (каппа Пирсона), с помощью которого Пирсон классифицировал решения этого дифференциального уравнения и представил их в виде двенадцати типов.

Позже в своих теоретических исследованиях Колмогоров А. Н. и Марков А. А. доказали, что любой закон распределения может быть записан в виде одного из двенадцати типов кривых Пирсона, поэтому для решения данной задачи используется метод Пирсона нахождения кривой распределения.

Для решения второй задачи используется метод П.Л. Чебышева, создателя Санкт – Петербургской математической школы. В статистике имя знаменитого русского математика П. Л. Чебышева (1821-1894) известно главным образом по так называемому неравенству Чебышева, которое он предложил для распределения вероятностей, и которое имеет силу для любого статистического распределения численностей.

Однако за последнее время в статистике всё большее значение приобретают ортогональные полиномы Чебышева, которые имеют особое значение при определении множественной и криволинейной регрессии и при вычислении коэффициентов обобщённой функции нормального распределения вероятностей.

Чебышев предложил общую интерполяционную формулу, при которой возможно интерполирование в самых разнообразных случаях. Эта интерполяционная формула удовлетворяет условиям метода наименьших квадратов и выражена при помощи его ортогональных полиномов. Общая интерполяционная формула, или, иначе ряд Чебышева, предложен Чебышевым в 1855 году. Она имеет вид

.

Таким образом в дипломной работе рассматриваются два метода:

метод Пирсона нахождения кривых распределения вероятностей,

метод Чебышева получения ортогональных полиномов,

которые были положены в основу обобщенного метода Грамма – Шарлье нахождения кривой распределения вероятностей.

Глава 1. Система кривых Пирсона.

В данной главе ставится задача нахождения закона распределения случайной величины в удобном для практического использования виде. Для ее решения рассматривается подход К. Пирсона, который является выдающимся представителем английской статистической школы.

§ 1. Дифференциальное уравнение Пирсона.

Рассмотрим случайную величину, заданную своей выборкой , таким образом, можем записать  - статистической распределение. Ставится задача нахождения закона распределения случайной величины в удобном для практического использования виде.

Метод Пирсона заключается в том, что мы рассматриваем дифференциальное уравнение Пирсона:

            (1)

и исследуем, какие решения можно получить при различных значениях параметров уравнения (1).

Общий интеграл этого уравнения представим в виде:

где

.

Значение этого неопределенного интеграла зависит от корней уравнения

       (2),

следовательно, от его дискриминанта

который можно написать в виде

,

вводя параметр

æ.

Или иначе, величину æ можно представить в виде:

æ,

где величины  представимы через центральные моменты статистических распределений  к-го порядка, которые определяются по формуле

,

где  есть

.

Тогда

.

Через величины  можно представить и величины  следующим образом [5]:

Величина æ называется критерием Пирсона (каппа Пирсона) и различные значения ее дают нам следующие выводы о корнях уравнения:

А. Если æ, то  и уравнение (1) имеет вещественные корни различных знаков.

В. Если 0< æ<1, то  и уравнение (1) имеет комплексные корни.

С. Если æ>1, то  и уравнение (1) имеет вещественные корни одного знака.

Соответственно этим случаям Пирсон различает три главных типа своих кривых, которые он назвал соответственно типами I, IV и VI. Затем æ может равняться , что дает переходные типы кривых. Наконец, присоединяя некоторые дополнительные условия, мы можем увеличить число переходных типов. Всего система кривых Пирсона заключает 12 типов и нормальную кривую.

В своих разработках Колмогоров А. Н. и Марков А. А. доказали, что любой закон распределения может быть записан в виде одного из двенадцати типов кривых Пирсона, поэтому для решения задачи идентификации используется метод Пирсона.

§ 2. Основные типы кривых Пирсона.

В этом параграфе будут рассмотрены основные типы кривых распределения вероятностей, предложенные и классифицированные Пирсоном.

Тип I.

Пусть æ<0. Тогда

и уравнение (2) имеет вещественные корни различных знаков: , так что можем записать

.

Тогда правая часть уравнения (1) может быть представлена в виде:

,

где

.

Пусть еще

.

Тогда уравнение (1) перепишется в виде

и общий интеграл его можно представим в виде

,

где  и значения  и  должны удовлетворять условиям

.

Тип I получается, если  заключается в интервале . Тогда

 и

или, как обычно пишут

.

Так как  выражаются определенным образом через моменты , то, очевидно, и  также выражаются через те же моменты. Для этого введем число

.

Тогда простое преобразование дает следующие формулы:

.

Эти формулы используются вообще при вычислении параметров и других кривых Пирсона.

Далее, пользуясь этими же формулами,

,

следовательно,

.

Затем

,

или, после простых подсчетов,

,

где

.

Таким образом,  и  представляют корни уравнения

,

Когда найдены  и ,  и  находятся по формулам

,

в которых

, .

Здесь использовано равенство

,

которое получается, так мы имеем

,

и

,

следовательно,

,

откуда

(так как ), нужно брать .

Таким образам,  и  есть корни уравнения

и  и  по формулам

,

в которых

,

где  находится из равенства

.

Остается найти . Оно находится по равенству

.

При помощи подстановки

мы находим:

.

Следовательно,

.

Тип IV.

Второй главный тип кривых Пирсона, соответствующий значениям

0< æ<1, когда уравнение (1) имеет комплексные корни.

Пусть эти корни равны

,

где

.

Тогда уравнение (1) будет

,

откуда

,

и

,

или

,(3)

причем

.

Параметры кривой (3), выражаются следующим образом через моменты  и константы :

(здесь , и ),

,

где  - функция Пирсона, определяемая равенством

.

Интеграл в правой части можно привести к другому виду:

подстановка

приводит его к виду

.

Обычно, полагая

,

пишут  в виде

,

где

.

Тип VI.

Третий главный тип кривых Пирсона, соответствующий значениям критерия æ>1 . В этом случае уравнение (2) имеет вещественные корни одного знака. Не приводя вывода уравнения кривой типа VI, аналогичного выводу уравнения кривой типа I [5], прямо приведем уравнение, отнесенное к средней выравниваемого распределения, как началу координат:

(в нем ). Его параметры вычисляются по формулам:

,

причем берется , если  и , если ;  и  дают выражения:

,

причем должно быть ;

,

и

.

Уравнение кривой типа VI пишут также в виде:

беря за начало координат точку

.

Параметры  вычисляются как выше, а  имеет теперь такое выражение: