Ортогональные полиномы и кривые распределения вероятностей
Карпова Наталия Анатольевна
Санкт-Петербургский государственный университет
Санкт Петербург 2003
Введение.
Математическая статистика является наукой, которая изучает соотношения, столь глубоко проникающие в суть вещей, что их можно встретить при самых различных обстоятельствах. Результаты исследований, полученные с помощью аппарата математической статистики, используются в самых различных областях науки и техники, таких как биология, медицина, анатомия, геология, экология, экономика, и т.д.
Данная дипломная работа посвящена рассмотрению двух основных задач математической статистики:
получению кривой распределения вероятностей по имеющейся выборке;
нахождению зависимости между двумя случайными величинами, заданными своими выборками.
Для решения первой задачи используются различные методы. В данной работе рассмотрен метод Карла Пирсона, представителя английской школы статистики. Им было получено дифференциальное уравнение
,
а так же введен критерий æ (каппа Пирсона), с помощью которого Пирсон классифицировал решения этого дифференциального уравнения и представил их в виде двенадцати типов.
Позже в своих теоретических исследованиях Колмогоров А. Н. и Марков А. А. доказали, что любой закон распределения может быть записан в виде одного из двенадцати типов кривых Пирсона, поэтому для решения данной задачи используется метод Пирсона нахождения кривой распределения.
Для решения второй задачи используется метод П.Л. Чебышева, создателя Санкт – Петербургской математической школы. В статистике имя знаменитого русского математика П. Л. Чебышева (1821-1894) известно главным образом по так называемому неравенству Чебышева, которое он предложил для распределения вероятностей, и которое имеет силу для любого статистического распределения численностей.
Однако за последнее время в статистике всё большее значение приобретают ортогональные полиномы Чебышева, которые имеют особое значение при определении множественной и криволинейной регрессии и при вычислении коэффициентов обобщённой функции нормального распределения вероятностей.
Чебышев предложил общую интерполяционную формулу, при которой возможно интерполирование в самых разнообразных случаях. Эта интерполяционная формула удовлетворяет условиям метода наименьших квадратов и выражена при помощи его ортогональных полиномов. Общая интерполяционная формула, или, иначе ряд Чебышева, предложен Чебышевым в 1855 году. Она имеет вид
.
Таким образом в дипломной работе рассматриваются два метода:
метод Пирсона нахождения кривых распределения вероятностей,
метод Чебышева получения ортогональных полиномов,
которые были положены в основу обобщенного метода Грамма – Шарлье нахождения кривой распределения вероятностей.
Глава 1. Система кривых Пирсона.
В данной главе ставится задача нахождения закона распределения случайной величины в удобном для практического использования виде. Для ее решения рассматривается подход К. Пирсона, который является выдающимся представителем английской статистической школы.
§ 1. Дифференциальное уравнение Пирсона.
Рассмотрим
случайную величину, заданную своей выборкой , таким образом, можем записать
- статистической
распределение. Ставится задача нахождения закона распределения случайной
величины в удобном для практического использования виде.
Метод Пирсона заключается в том, что мы рассматриваем дифференциальное уравнение Пирсона:
(1)
и исследуем, какие решения можно получить при различных значениях параметров уравнения (1).
Общий интеграл этого уравнения представим в виде:
где
.
Значение этого неопределенного интеграла зависит от корней уравнения
(2),
следовательно, от его дискриминанта
который можно написать в виде
,
вводя параметр
æ.
Или иначе, величину æ можно представить в виде:
æ,
где
величины представимы через
центральные моменты статистических распределений
к-го порядка, которые
определяются по формуле
,
где
есть
.
Тогда
,
.
Через
величины можно представить и
величины
следующим образом [5]:
Величина æ называется критерием Пирсона (каппа Пирсона) и различные значения ее дают нам следующие выводы о корнях уравнения:
А.
Если æ, то
и уравнение (1) имеет
вещественные корни различных знаков.
В.
Если 0< æ<1, то и уравнение (1) имеет
комплексные корни.
С.
Если æ>1, то и уравнение (1) имеет
вещественные корни одного знака.
Соответственно
этим случаям Пирсон различает три главных типа своих кривых, которые он назвал
соответственно типами I, IV и VI. Затем æ может равняться , что дает переходные типы кривых. Наконец, присоединяя
некоторые дополнительные условия, мы можем увеличить число переходных типов.
Всего система кривых Пирсона заключает 12 типов и нормальную кривую.
В своих разработках Колмогоров А. Н. и Марков А. А. доказали, что любой закон распределения может быть записан в виде одного из двенадцати типов кривых Пирсона, поэтому для решения задачи идентификации используется метод Пирсона.
§ 2. Основные типы кривых Пирсона.
В этом параграфе будут рассмотрены основные типы кривых распределения вероятностей, предложенные и классифицированные Пирсоном.
Тип I.
Пусть æ<0. Тогда
и
уравнение (2) имеет вещественные корни различных знаков: , так что можем записать
.
Тогда правая часть уравнения (1) может быть представлена в виде:
,
где
.
Пусть еще
.
Тогда уравнение (1) перепишется в виде
и общий интеграл его можно представим в виде
,
где
и значения
и
должны удовлетворять условиям
.
Тип
I получается, если заключается в интервале
. Тогда
и
или, как обычно пишут
.
Так
как выражаются определенным образом через моменты
, то,
очевидно, и
также выражаются через те же моменты. Для
этого введем число
.
Тогда простое преобразование дает следующие формулы:
.
Эти формулы используются вообще при вычислении параметров и других кривых Пирсона.
Далее, пользуясь этими же формулами,
,
следовательно,
.
Затем
,
или, после простых подсчетов,
,
где
.
Таким
образом, и
представляют корни уравнения
,
Когда
найдены и
,
и
находятся по формулам
,
в которых
,
.
Здесь использовано равенство
,
которое получается, так мы имеем
,
и
,
следовательно,
,
откуда
(так
как ), нужно брать
.
Таким
образам, и
есть корни уравнения
и
и
по формулам
,
в которых
,
где
находится из равенства
.
Остается
найти . Оно
находится по равенству
.
При помощи подстановки
мы находим:
.
Следовательно,
.
Тип IV.
Второй главный тип кривых Пирсона, соответствующий значениям
0< æ<1, когда уравнение (1) имеет комплексные корни.
Пусть эти корни равны
,
где
.
Тогда уравнение (1) будет
,
откуда
,
и
,
или
,(3)
причем
.
Параметры
кривой (3), выражаются следующим образом через моменты и константы
:
(здесь
, и
),
,
где
- функция Пирсона, определяемая равенством
.
Интеграл в правой части можно привести к другому виду:
подстановка
приводит его к виду
.
Обычно, полагая
,
пишут
в виде
,
где
.
Тип VI.
Третий главный тип кривых Пирсона, соответствующий значениям критерия æ>1 . В этом случае уравнение (2) имеет вещественные корни одного знака. Не приводя вывода уравнения кривой типа VI, аналогичного выводу уравнения кривой типа I [5], прямо приведем уравнение, отнесенное к средней выравниваемого распределения, как началу координат:
(в
нем ). Его
параметры вычисляются по формулам:
,
причем
берется , если
и
, если
;
и
дают выражения:
,
причем
должно быть ;
,
и
.
Уравнение кривой типа VI пишут также в виде:
беря за начало координат точку
.
Параметры
вычисляются как выше, а
имеет теперь такое выражение: