Характеристики компонентов волоконно-оптических систем передачи

систем передачи" width="97" height="30" align="BOTTOM" border="0" />

6. Удельная обнаружительная способность - величина, обратная удельному порогу чувствительности,


4.2.4 Параметры спектральной характеристики ФПМ

1. Длина волны максимума спектральной чувствительности ^.„акс ~ длина волны, соответствующая максимуму спектральной характеристики чувствительности.

Коротковолновая (длинноволновая) граница спектральной чувствительности- наименьшая (наибольшая) длина волны монохроматического излучения, при которой монохроматическая чувствительность ФПМ равна 0,1 ее максимального значения.

Область спектральной чувствительности- диапазон длин волн спектральной характеристики, в котором чувствительность ФПМ составляет не менеесвоего максимального значения.


4.2.5 Геометрические параметры ФПМ

1. Эффективная фоточувствительная площадь ФПМ (АЭф) _ площадь фоточувствительного элемента эквивалентного по сигналу ФПМ, чувствительность которого равномерно распределена по фоточувствительному элементу и равна номинальному значению локальной чувствительности данного ФПМ. Определяется соотношением


где- номинальное значение локальной чувствительности в точке

(обычно центр чувствительного элемента в ФПМ); А - полная площадь чувствительного элемента ФПМ: - чувствительность к потоку излучения точки на фоточувствительном элементе ФПМ с координатами

Плоский угол зрения- угол в нормальной к фоточувствительному элементу плоскости между направлениями падения параллельного пучка излучения, при которых фотосигнал уменьшается до заданного уровня.

Эффективное поле зрения- телесный угол, определяемый соотношением

где- напряжение фотосигнала;- азимутальный угол;- угол между направлением падающего излучения и нормалью к фоточувствительному элементу.


4.2.6 Параметры инерционности ФПМ

1. Время нарастания (спада)илисоответственно – ми нимальный интервал времени между точками нормированной переходной (обратной переходной) характеристики со значениями 0,1 и 0,9 соответственно.

2. Время установления переходной характеристики ФПМ по уровню - минимальное время от начала импульса излучения, по истечении

которого максимальное отклонение нормированной переходной характеристикиот установившегосязначения не превышает

Предельная частота ФПМ- частота синусоидально модулированного потока излучения, при которой чувствительность ФПМ падает до значения 0,707 от чувствительности при немодулированном напряжении.

Емкость ФПМ С - собственная емкость ФПМ.


Спектральные характеристики ФПМ

Спектральная характеристика чувствительности- зависимость монохроматической чувствительности ФПМ от длины волны регистрируемого потока излучения.

Абсолютная спектральная характеристика чувствительности-зависимость монохроматической чувствительности, измеренной в абсолютных единицах от длины волны регистрируемого потока излучения.

3. Относительная спектральная характеристика чувствительности зависимость монохроматической чувствительности, отнесенной к значению максимальной монохроматической чувствительности, от длины волны регистрируемого потока излучения.

2.2.8. Основные характеристики зависимости параметров ФПМ

Энергетическая характеристика фототока ФПМ- зависимость фототока от потока или плотности потока излучения, падающего на ФПМ.

Энергетическая характеристика напряжения(токаI фотосигнала - зависимость напряжения (тока) фотосигнала от потока или плотности потока излучения падающего на ФПМ.

Частотная характеристика чувствительности ФПМ- зависимость чувствительности ФПМ от частоты модуляции потока излучения.

4. Переходная (обратная переходная) нормированная характеристика - отношение фототока, описывающего реакцию ФПМ в зависимости от

времени, к установившемуся значению фототока при воздействии импульса излучения в форме единичной ступени (при резком прекращении воздействия излучения).

Устройство р-i-п-фотодиода

В предыдущем разделе мы рассмотрели взаимодействие света с ри-переходом. На основе-переходов функционирует основная масса современных ФПМ. К числу наиболее простых и распространенных ФПМ относятсяфотодиоды (ФД). Такие ФД представляют собой трехслойную структуру, в которой между слоямитипов находится слаболегированный тонкийслой, или, как говорят, слой с собственной проводимостью. Такая структура позволяет сформировать тонкий высоколегированный ■слой, практически полностью пропускающий падающее излучение, на поверхностислоя с собственной проводимостьютипа. Как известно, распространение обедненного слоя внутрь материала пропорционально удельному сопротивлению материала; особенно широк этот слой, следовательно, на границах

Обратного напряжения в несколько вольт достаточно, чтобы обедненная область распространилась на весьслой. Ширинаслоя выбирается таким


Рис. 2.20.Конструкция и диаграмма, поясняющие действиефотодиода:


а - структурафотодиода; б - распределение заряда в-структуре; в – распределение напряженности поля вструктуре; г - распределение потенциала в обратносмещенной

структуре

образом, чтобы обеспечить практически полное поглощение падающего излучения, что позволяет получить высокую квантовую эффективность. Поперечное сечениефотодиода, а также распределение концентраций зарядов, напряженности электрического поля и потенциала вструктуре при обратном смещении, представлено на рис. 2.20. Считая в первом приближении поле внутрислоя однородным, можно записать



где- напряжение обратного смещения, приложенное к электродам ФД;

- ширинаслоя. Собственную емкость ФД можно представить как емкость плоского конденсатора и записать в виде



где- относительная диэлектрическая проницаемость полупроводника; го - диэлектрическая проницаемость вакуума;- площадьперехода;- ширина слоя, или, точнее, ширина слоя объемного заряда.


4.5.3 Режимы работы фотодиода

В зависимости от схемы подключения ФД к электрической цепи различают два режима работы ФД: фотогальванический и фотодиодный. Параметры и характеристики ФД в этих режимах имеют некоторые отличия. Режим включения, когда внешний источник питания смещает-переход ФД в обратном направлении, называется фотодиодным. Принципиальная схема включения диода в этом режиме представлена на рис. 2.21. Схема характеризуется наличием источника ЭДС С/Ип, напряжение которого приложено к диоду в обратном направлении и нагрузочным резисторомс которого

снимается выходной сигналПри включении ФД в обратном смещении

ток, протекающий через фотодиод-, равен



где- напряжение, приложенное к

ФД (с учетом знака); - фототок

(см.(2.46)). При достаточно большом обратном напряжении экспоненциальный член становится достаточно малым и тогда



Описать электрическую схему (рис. 2.21) можно следующим соотношением:


Воспользовавшись формулами (2.51)—(2.53), легко построить нагрузочную прямую на графике семейства вольт-амперных характеристик ФД (см. рис. 2.22). Рабочая точка определяется пересечением нагрузочной прямой и соответствующей данному потоку ветви характеристики ФД. Максимальный поток излучения, который можно зарегестрировать при заданных определяется пересечением нагрузочной кривой с осью ординат. В аналитической форме это можно записать следующим образом:



где. - токовая чувствительность ФД;- максимальный поток излуче-

ния, который может зарегистрировать ФД в фотодиодном режиме.

Необходимо отметить, что фотодиодный режим работы является линейным, так как ток, протекающий через ФД и напряжение на нагрузке прямопропорциональны потоку излучения.

Если ФД не имеет внешнего источника питания, он работает как преобразователь энергии светового излучения в электрическую и эквивалентен генератору, характеризующемуся напряжением холостого ходаили током короткого замыкания Схема включения ФД в фотогальваническом режиме приведена на рис. 2.23. Вольт-амперные характеристики для диода, включенного в фотогальваническом режиме, приведены на рис. 2.24. Чтобы получить основные соотношения для фотогальванического режима, вспомним формулу (2.46) для р-п-перехода под действиием потока излучения, которую можно переписать в следующем виде:



где - напряжение ненагруженного ФД, которое фактически равно изменению потенциала барьера-перехода Такимобразом, получаем

Из формулы (2.56) следует, что пои малой облученности, т.е. пр! зависимость напряжения на ФД от фототока, а следовательно, и от потока излучения близка к линейной

При больших значениях облученности, когда, эта зависимость - логарифмическая


Нагрузочная прямая для фотогальваническогорежима описывается формулой


5. ПОЛУПРОВОДНИКОВЫЕ ИСТОЧНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ


5.1 Виды генерации оптического излучения


Можно выделить два основных вида: генерация в результате нагревания, иначе говоря, тепловое излучение; люминесцентное излучение.

Тепловое излучение присуще всем нагретым телам и хорошо изучено. Спектр излучения (светимость) физического тела, нагретого до определенной температуры описывается формулой Планка



Анализ формулы (3.1) показывает, что при температуре, близкой к комнатной, или при незначительном нагреве спектр излучения тела практически целиком лежит в ИК-области. При нагреве тела до значительной температуры (1000 К) происходит все большее смещение максимума теплового излучения в видимую область спектра при увеличении светимости.

Типичным примером теплового излучателя может служить электрическая лампа накаливания. Однако такие недостатки, как высокая инерционность, низкий КПД, отсутствие направленности, очень широкий спектр излучения, а также хрупкость и несовместимость с технологией ИС привели к тому, что тепловые излучатели находят ограниченное применение в опто-электронике, обычно в некоторых типах оптронов и оптронных схем.

Основу современной оптоэлектроники составляют люминесцентные генераторы оптического излучения. Явление люминесценции известно уже более полувека, однако лишь в последние два десятилетия наблюдалось бурное развитие приборов на ее основе. Существует несколько видов люминесценции, из которых наиболее важными представляются электро- и фотолюминесценция. В первом случае возбуждение атомов вещества происходит под действием электрического поля, а во втором - путем поглощения более коротковолнового оптического излучения. Электролюминесценцию можно, в свою очередь, разделить на два вида: катодолюминесценция, которая вызывается свечением люминофора под действием ускоренных в электрическом поле заряженных частиц и широко применяется в различных типах вакуумных и газоразрядных приборов; и инжекционная люминесценция, происходящая за счет излучения фотонов электронами при изменении их энергетического состояния, вызванного протеканием электрического тока. В этом разделе будет рассмотрена инжекционная люминесценция и приборы, работающие на ее основе, такие, как светодиоды и инжекционные лазеры.



5.2 Светодиоды


Светодиодом или светоизлучающим диодом (СИД) называется полупроводниковый прибор спереходом, протекание тока через который вызывает интенсивное некогерентное излучение.


5.2.1 Основные параметры и характеристики светодиодов

Параметры и характеристики СИД можно разбить на две группы: к первой отнести величины, характеризующие светодиод как генератор оптического излучения, а ко второй - параметры, определяющие рабочие режимы. Кроме того, следует помнить, что в зависимости от назначения, например для индикаторных светодиодов, ИК-диодов, излучательных диодов для ВОЛС, может несколько изменяться система параметров и характеристик, приводимых в паспорте прибора. Рассмотрим последовательно основные параметры и характеристики СИД.

1. Сила света- обычно приводится при заданном значении прямого тока через диод и измеряется в канделах. Аналогичным параметром для ИК-диодов является мощность излучениякоторая опреде ляется как поток излучения определенного спектрального состава, излучаемый СИД при заданном прямом токе, и измеряемый в ваттах. Для быстро действующих ИК-диодов воз можно задание импульсной мощности излучения

2. Световая характеристика СИД - зависимость силы света от прямого тока, т.е. Графики зависимости для некоторых типов светодиодов приведены на рис. 3.6. Как видно из приведенных зависимостей, на начальном участке при малых токах зависимость силы свет

а

Рис. 3.7. Зависимости мощности излучения (а) и импульсной мощности излучения (б) в отн. ед. от протекающего прямого и импульсного прямого тока соответственно (показаны зоны разброса и усредненная кривая)


от протекающего тока существенно нелинейна из-за сильного влияния безиз-лучательных процессов. При значительных уровнях протекающего тока характеристика становится более линейной; обычно рабочая область выбирается именно на этом участке.

Для светодиодов ИК-диапазона аналогичную роль выполняет ватт-амперная характеристика, показывающая зависимость мощности, излучаемой диодом, от протекающего прямого тока, а для некоторьгх приборов приводится

также зависимость импульсной мощности излучения от амплитуды импульса прямого тока(рис. 3.7).

Как видно из рис. 3.7, ватт-амперные характеристики ИК-светодиодов более линейны по сравнению со световыми характеристиками диодов видимого спектрального диапазона. Линейность сохраняется, за исключением малого начального участка, вплоть до очень высоких импульсивных токов инжекции. Это объясняется тем, что для ИК-светодиодов подбирают исключительно материалы с прямозонной структурой, в то время как в светодиодах видимого спектра часто используют непрямозонные полупроводники с легирующими присадками.

3. Спектральная характеристика СИД - выражает зависимость интенсивности излучения от длины волны излучаемого света. Вид спектральной характеристики обычно целиком определяется материалом активной области светодиода и характером легирующих примесей. Спектральные характери стики современных светодиодов, изготовленных из различных материалов,приведены на рис. 3.8 [44].

Ин/ересно отметить, что спектральная характеристика светодиода на основелегированного одновременно азотом и оксидом цинка, имеет два

выраженных максимума в красном и зеленом участках спектра. В зависимости от количества легирующих примесей, внедренных в структуру излучающего кристалла при изготовлении, можно получить любые промежуточные цвета от зеленого до красного включительно. Примером светодиода, где реализован этот принцип получения цветов, может служить ЗЛ341Е, обладающий желтым цветом свечения.

Спектр излучения светодиода характеризуется двумя основными параметрами: длиной волны максимума спектрального распределенияи шириной спектра излучения по уровню 0,5 от максимальной интенсивности

4. Диаграмма направленности излучения показывает изменение интен
сивности излучения СИД в зависимости от направления, откуда ведется наблюдение. Диаграмма направленности зависит в основном от конструкции и материала корпуса светодиода и формы оптической линзы. С особым вниманием к учету этой характеристики следует относиться при разработке элементов индикации электронной аппаратуры для обеспечения удобств эксплуатации; подробнее эти вопросы освещаются в [45].

5. Электрические свойства светодиодов описываются вольтамперной характеристикой, которая аналогична ВАХ обычного диода, но прямое падение напряжения на светодиоде при одинаковом токе существенно больше,чем в кремниевом диоде, что объясняется большей шириной запрещенной зоны в материале,используемом для светодиодов.ВАХ некоторых светодиодов приведены на рис. 3.9.

6. Предельные эксплуатационные режимы СИД описываютсяследующими параметрами: максимальный прямой ток светодиода ; максимальный прямой импульсный ток ; максимально допустимое обратное напряжение

Следует помнить, что светодиоды не предназначены для работы в режиме обратного смещения. Величина максимально допустимого обратного напряжения обычно не превышает единиц вольт, поэтому использование СИД в цепях, где меняется полярность питающего напряжения, требует обеспечения мер защиты для предотвращения выхода СИД из строя.

7. Существенным недостатком светодиодов является сильная зависимость параметров от температуры окружающей среды, причем температурная зависимость проявляется как в изменении мощности излучения, так и в изменении спектрального состава (рис. 3.10). Например, при увеличении температуры окружающей среды напроисходит уменьшение мощности излучения приблизительно на