Анализ и моделирование биполярных транзисторов
(5.14)В реальном транзисторе добавляются токи утечки и термотоки переходов, поэтому обратный ток базы закрытого транзистора
(5.15)
Входные характеристики транзистора показаны на рис. 5-5. При обратном напряжении базы и коллектора, т. е. в закрытом транзисторе, согласно выражению (5.15), ток базы является в основном собственным током коллекторного перехода . Поэтому при уменьшении обратного напряжения базы до нуля ток базы сохраняет свою величину: .
При подаче прямого напряжения на базу открывается эмиттерный переход и в цепи базы появляется рекомбинационная составляющая тока . Ток базы в этом режиме в соответствии с выражением ; при увеличении прямого напряжения он уменьшается вначале до нуля, а затем изменяет направление и возрастает почти экспоненциально согласно соотношению (5.12).
Рис 5-5 Рис 5-6
Когда на коллектор подано большое обратное напряжение, оно оказывает незначительное влияние на входные характеристики транзистора. Как видно из рис. 5-5, при увеличении обратного напряжения коллектора входная характеристика лишь слегка смещается вниз, что объясняется увеличением тока поверхностной проводимости коллекторного перехода и термотока.
При напряжении коллектора, равном нулю, ток во входной цепи значительно возрастает по сравнению с рабочим режимом ,потому что прямой ток базы в данном случае проходит через два параллельно включенных перехода— коллекторный и эмиттерный. В целом уравнение (5.12) достаточно точно описывает входные характеристики транзистора в схеме с общим эмиттером, но для кремниевых транзисторов лучшее совпадение получается, если вместо и брать .
Коэффициент передачи тока базы. Найдем зависимость тока коллектора от тока базы с помощью выражений:
,
или (5.16)
Величина (5.17)
называется коэффициентом передачи тока базы. Поскольку коэффициент передачи тока эмиттера близок к единице, значение обычно лежит в пределах от 10 до 1000 и более.
Коэффициент передачи тока базы существенно зависит и от тока эмиттера (рис. 5-6). С ростом тока эмиттера коэффициент передачи тока базы вначале повышается вследствие увеличения напряженности внутреннего поля базы, ускоряющего перенос дырок через базу к коллектору и этим уменьшающего рекомбинационные потери на поверхности базы.
При значительной величине тока эмиттера коэффициент передачи тока базы начинает падать за счет снижения коэффициента инжекции, уменьшения эффективной площади эмиттера и увеличения рекомбинационных потерь в объеме базы.
Перечисленные причины обусловливают, как указывалось, небольшую зависимость коэффициента передачи тока эмиттера а от тока эмиттера Iэ (см. рис. 5-3). Но коэффициент передачи тока базы при изменении тока эмиттера может изменяться в несколько раз, поскольку в выражении (5.17) в знаменателе стоит разность близких величин .
Введя обозначение для коэффициента передачи тока базы в выражение (5.16), получим основное уравнение, определяющее связь между токами коллектора и базы в схеме с общим эмиттером:
(5.18)
Зависимость тока коллектора от напряжений базы и коллектора можно найти из выражения (5.48), заменив в нем UЭБ на -UБЭ и UКБ
(5.19)
Уравнения (5.18) и (5.19) являются основными для транзистора, включенного по схеме с общим эмиттером.
Выходные характеристики. Выходные характеристики транзистора в схеме с общим эмиттером при определяются соотношением (5.18) и изображены на рис. 5-7. Минимально возможная величина коллекторного тока получается в том случае, когда закрыты оба перехода - и коллектора базы в этом случае согласно выражению (5.14)
(5.20)
где - ток эмиттера закрытого транзистора.
Рис. 5-7
Ток коллектора закрытого транзистора в соответствии с выражениями (5.18) и (5.20)
(5.21)
Ввиду малости тока эта характеристика на рис.4,19 не видна, она совпадает с осью напряжений.
При токе базы, равном нулю, что имеет место при небольшом прямом напряжении базы, когда рекомбинационная составляющая тока базы равна обратному току коллекторного перехода . коллекторный ток в соответствии с выражением (5.18)
(5.22)
С ростом коллекторного напряжения заметно увеличение этого тока вследствие увеличения коэффициента передачи тока базы .
При токе базы выходная характеристика транзистора смещается вверх на величину . Соответственно выше идут характеристики при больших токах базы , и т. д. Ввиду зависимости коэффициента передачи тока базы от тока эмиттера расстояние по вертикали между характеристиками не остается постоянным: вначале оно возрастает, а затем уменьшается.
При снижении коллекторного напряжения до величины, меньшей напряжения базы, открывается коллекторный переход, что должно было бы повлечь за собой увеличение тока базы, но по условию он должен быть постоянным. Для поддержания тока базы на заданном уровне приходится снижать напряжение базы, что сопровождается уменьшением токов эмиттера и коллектора, поэтому выходные характеристики при имеют резкий спад. Транзистор переходит в режим насыщения, при котором неосновные носители заряда инжектируются в базу не только эмиттерным, но и коллекторным переходом Эффективность управления коллекторным током при этом существенно снижается, коэффициент передачи тока базы резко уменьшается.
Как показано на рис. 5-7 крупным масштабом в окружности, выходная характеристика при наличии тока базы не проходит через начало координат: при на коллекторе существует обратное напряжение порядка нескольких десятых вольта. Величину этого напряжения нетрудно найти из соотношения (5.19), обозначив при :
Отсюда
(5.23)
где - напряжение коллектора в схеме ОБ, при котором , а -напряжение, действующее в этот момент на базе.
Из формулы (5.23) вытекает физический смысл напряжения : оно должно иметь такую величину, чтобы создаваемый им ток инжекции коллекторного перехода полностью компенсировал поступающий з коллекторный переход ток инжекции эмиттерного перехода поскольку, по условию, результирующий коллекторный ток .
Для расчета транзисторных схем иногда применяют выходные характеристики, снятые при постоянном напряжении базы. Они отличаются от рассмотренных характеристик, снимаемых при постоянном токе базы, большей неравномерностью расстояний по вертикали между соседними характеристиками, обусловленной экспоненциальной зависимостью между напряжением и током базы.
6. Анализ эквивалентных схем биполярного транзистора.
Все параметры можно разделить на собственные (или первичные) и вторичные. Собственные параметры характеризуют свойства самого транзистора независимо от схемы его включения, а вторичные параметры для различных схем включения различны.
Рис. 6-1. Эквивалентные Т-образные схемы транзистора с генератором ЭДС (а) и тока (б).
В качестве собственных параметров помимо знакомого нам коэффициента усиления по току принимают некоторые сопротивления в соответствии с эквивалентной схемой транзистора для переменного тока (рис. 6-1). Эта схема, называемая Т-образной, отображает электрическую структуру транзистора и учитывает его усилительные свойства. Как в этой, так и в других эквивалентных схемах следует подразумевать, что на вход включается источник усиливаемых колебаний, создающий входное напряжение с амплитудой , а на выход - нагрузка RH. Здесь и в дальнейшем для переменных токов и напряжений будут, как правило, указаны их амплитуды. Во многих случаях они могут быть заменены действующими, а иногда и мгновенными значениями.
Основными первичными параметрами являются сопротивления , и , г. е. сопротивления эмиттера, коллектора и базы для переменного тока. Сопротивление , представляет собой сопротивление эмиттерного перехода, к которому добавляется сопротивление эмиттерной области. Подобно этому является суммой сопротивлений коллекторного перехода и коллекторной области, но последнее очень мало по сравнению с сопротивлением перехода. А сопротивление есть поперечное сопротивление базы.
В схеме на рис. 6-1,а усиленное переменное напряжение на выходе получается от некоторого эквивалентного генератора, включенного в цепь коллектора; ЭДС этого генератора пропорциональна току эмиттера .
Эквивалентный генератор надо считать идеальным, а роль его внутреннего сопротивления выполняет сопротивление . Как известно. ЭДС любого генератора равна произведению его тока короткого замыкания на внутреннее сопротивление. В данном случае ток короткого замыкания равен , так как при , т. е. при коротком замыкании на выходе. Таким образом, ЭДС генератора равна .
Вместо генератора ЭДС можно ввести в схему генератор тока. Тогда получается наиболее часто применяемая эквивалентная схема (рис. 6-1, б). В ней генератор тока создает ток, равный . Значения первичных параметров примерно следующие. Сопротивление , составляет десятки Ом, — сотни Ом, а — сотни килоОм и даже единицы мегаОм. Обычно к трем сопротивлениям в качестве четвертого собственного параметра добавляют еще . Рассмотренная эквивалентная схема транзистора пригодна только для низких частот. На высоких частотах необходимо учитывать еще емкости эмиттерного и коллекторного переходов, что приводит к усложнению схемы.
Рис. 6-2. Эквивалентная Т-образная схема транзистора, включенного по схеме ОЭ
Эквивалентная схема с генератором тока для транзистора, включенного по схеме ОЭ. показана на рис. 6-2. В ней генератор дает ток , а сопротивление коллекторного перехода по сравнению с предыдущей схемой значительно уменьшилось и равно или, приближенно если учесть. что и . Уменьшение сопротивления коллекторного перехода в схеме ОЭ объясняется тем, что в этой схеме некоторая часть напряжения приложена к эмиттерному переходу и усиливает в нем инжекцию. Вследствие этого значительное число инжектированных носителей приходит к коллекторному, переходу и его сопротивление снижается.
Переход от эквивалентной схемы ОБ к схеме ОЭ можно показать следующим образом. Напряжение, создаваемое любым генератором, равно разности между ЭДС и падением напряжения на внутреннем сопротивлении. Для схемы по рис. 6-1, а это будет
Заменим здесь на сумму . Тогда получим
В этом выражении первое слагаемое представляет собой ЭДС, а второе слагаемое есть падение напряжения от тока на сопротивлении , которое является сопротивлением коллекторного перехода. А ток короткого замыкания, создаваемый эквивалентным генератором тока, равен отношению ЭДС к внутреннему сопротивлению, т. е.
Рассмотренные Т-образные эквивалентные схемы являются приближенными, так как на самом деле эмиттер, база и коллектор соединены друг с другом внутри транзистора не в одной точке. Но тем не менее использование этих схем для решения теоретических и практических задач не дает значительных погрешностей.
7. Н – параметры биполярного транзистора.
В настоящее время основными считаются смешанные (или гибридные) параметры, обозначаемые буквой h или H. Название «смешанные» дано потому, что среди них имеются две относительные величины, одно сопротивление и одна проводимость. Именно h-параметры приводятся во всех справочниках. Параметры системы h удобно измерять. Это весьма важно, так как публикуемые в справочниках параметры являются средними, полученными в результате измерений параметров нескольких транзисторов данного типа. Два из h-параметров определяются при коротком замыкании для переменного тока на выходе, т. е. при отсутствии нагрузки в выходной цепи. В этом случае на выход транзистора подается только постоянное напряжение (u2=const) от источника Е2. Остальные два параметра определяются при разомкнутой для переменного тока входной цепи, т. е. когда во входной цепи имеется только постоянный ток (i1=const), создаваемый источником питания. Условия и2=const и i1=const нетрудно осуществить на практике при измерении h-параметров.
В систему h-параметров входят