Анализ и моделирование биполярных транзисторов

а потом цепи коллектора, но не наоборот.

Если надо измерить ток , то в цепь коллектора обязательно включают ограничительный резистор и производят измерение при разрыве провода базы.

16



5. Статические характеристики биполярного транзистора.

Схема с общей базой

В транзисторах в качестве одной из независимых переменных обыч­но выбирают ток эмиттера, легче поддающийся регулированию, чем напряжение. Из характеристик наибольшее распространение получи­ли входные и выходные характеристики транзистора.

Входные характеристики. Входные характеристики транзисторов в схеме с общей базой при определяются зави­симостью (5.1):

(5.1)

При большом обратном напряжении коллектора () ток мало зависит от коллекторного напряжения. На рис. 5-1,а по­казаны реальные входные характеристики германиевого транзистора. Они соответствуют теоретической зависимости (5.1), подтверждается и вывод о слабом влиянии коллекторного напряжения на ток эмиттера.

Рис 5-1

Начальная область входных характеристик, построенная в соот­ветствии с теоретической зависимостью (5.1), показана на рис. 5-1, а крупным масштабом (в окружности). Отмечены токи I11 и I12, а так­же эмиттерный ток закрытого транзистора

(5.2)

протекающий в его цепи при обратных напряжениях эмиттера и кол­лектора. Как следует из соотношения (5.1), ток эмиттера равен нулю при напряжении эмиттера

(5.3)

Такое же напряжение устанавливается на эмиттере, если он изо­лирован от других электродов.

Реальные характеристики транзистора в начальной области не­сколько отличаются от теоретических. Обратный ток эмиттера при короткозамкнутом коллекторе, обозначаемый , отличается от тока экстракции I11 наличием еще двух составляющих: термотока и тока поверхностной проводимости :

(5.4)

Обратный ток эмиттера при обратном напряжении коллектора

(5.5)

Входные характеристики кремниевого транзистора показаны на pиc. 5-1,б. Они смещены от нуля в сторону прямых напряжений; как и у кремниевого диода, смещение равно 0,6—0,7 В. По отношению к входным характеристикам германиевого транзистора смещение со­ставляет 0,4 В.

Выходные характеристики.

Теоретические выходные характеристи­ки транзистора в схеме с общей базой при IЭ=const опре­деляются зависимостью (5.6):

(5.6)

Они представлены на рис. 5-2,а. Вправо по горизонтальной оси принято откладывать рабочее, т. е. обратное, напряжение коллектора (отрицательное для транзисторов типа р-n и положительное для транзисторов типа n-р-n). Значения протекающего при этом тока коллектора откладывают по вертикальной оси вверх. Такой выбор осей координат выгоден тем, что область характеристик, соответствую­щая рабочим режимам, располагается при этом в первом квадранте, что удобно для расчетов.

Если ток эмиттера равен нулю, то зависимостьпредстав­ляет собой характеристику электронно-дырочного перехода: в цепи коллектора протекает небольшой собственный обратный ток IКо или с учетом равенства (5.7) ток IКБо. При Uэб=0 собственный обратный ток коллектора


(5.7)

При прямом напряжении коллек­тора ток изменяет направление и резко возрастает — открывается кол­лекторный переход (в целях наглядности на рис. 5-2 для положитель­ных напряжений взят более крупный масштаб).

Рис 5-2

Если же в цепи эмиттера создан некоторый ток Iэ, то уже при ну­левом напряжении коллектора в его цепи в соответствии с выражением (5.6) протекает ток Iк=Iэ обусловленный инжекцией дырок из эмиттера. Поскольку этот ток вызывается градиентом концентрации дырок в базе, для его поддержания коллекторного напряжения не требуется.

При подаче на коллектор обратного напряжения ток его несколько возрастает за счет появления собственного тока коллекторного пере­хода IКБ0 и некоторого увеличения коэффициента переноса v, вызван­ного уменьшением толщины базы.

При подаче на коллектор прямого напряжения появляется прямой ток коллекторного перехода. Так как он течет навстречу току инжекции Iэ, то результирующий ток в цепи коллектора с ростом прямого напряжения до величины UK0 быстро уменьшается до нуля, затем при дальней­шем Рис 5-3 повышении прямого напряжения коллектора приобретает обратное направление и начинает быстро возрастать.

Если увеличить ток эмиттера до зна­чения , то характеристика сместится пропорционально вверх на величину и т. д.

На рис. 5-2,б представлены реаль­ные выходные характеристики транзи­стора МП14; они имеют такой же вид, как и теоретические, с учетом поправок на термоток перехода и ток его поверхностной проводимости.

Коэффициент передачи тока эмиттера. Как показывает опыт, коэф­фициент передачи тока а зависит от величины тока эмиттера (рис. 5-3).

С ростом тока эмиттера увеличи­вается напряженность внутреннего поля базы, движение дырок на коллектор становится более направленным, в результате уменьшают­ся рекомбинационные потери на поверхности базы, возрастает коэф­фициент переноса , а следовательно, и . При дальнейшем увеличении тока эмиттера снижается коэффициент инжекции и растут потерн на объемную рекомбинацию, поэтому коэффициент передачи тока на­чинает уменьшаться.

В целом зависимость коэффициента передачи тока от тока эмит­тера в маломощных транзисторах незначительна, в чем можно убедить­ся, обратив внимание на масштаб по вертикальной оси рис. 5-3.

В транзисторах, работающих при высокой плотности тока, наблю­дается значительное падение напряжения вдоль базы, обусловленное током базы; в результате напряжение в точках эмиттерного перехода, удаленных от вывода базы, оказывается заметно меньшим, чем в близ­лежащих. Поэтому эмиттерный ток концентрируется по периметру эмиттера ближе к выводу базы, эффективная площадь эмиттера полу­чается меньше, чем при равномерной инжекции, и коэффициент быст­ро надает с ростом тока эмиттера. Для ослабления указанного явления применяют электроды, имеющие высокое отношение длины периметра к площади: кольцевые и гребенчатые.

Схема с общим эмиттером

Ранее были рассмотрены статические характеристики транзистора, включенного по схеме с общей базой, когда общая точка входной и вы­ходной цепей находится на базовом электроде. Другой распростра­ненной схемой включения транзистора яв­ляется схема с общим эмиттером, в кото­рой общая точка входной и выходной це­пей соединена (рис. 5-4).

Входным напряжением в схеме с общим эмиттером является напряжение базы измеряемое относительно эмиттерного элек­трода. Для того чтобы эмиттерный пере­ход был открыт, напряжение базы долж­но быть отрицательным (рассматривается транзистор типа р-n-р).

Выходным напряжением в схеме с об­щим эмиттером является напряжение коллектора измеряемое относительно эмиттерного электрода. Для того чтобы коллекторный переход был закрыт, напряжение коллекто­ра должно быть большим по величине, чем прямое напряжение базы.

Отметим, что в схеме с общим эмиттером в рабочем режиме, когда транзистор открыт, полярность источников питания базы и коллектора одинакова.

Входные характеристики. Входные характеристики транзистора в схеме с общим

Рис. 5-4 эмиттером представляют собой зависимость тока базы от напряжения базы: при ;

Зависимость тока базы от напряжений эмиттера и коллектора най­дем из уравнений (5.8) и (5.9).

(5.8)

(5.9)

Вычтя второе уравнение из первого, введя обозначения

(5.10)

(5.11)

и использовав соотношения и , окончательно получим

(5.12)

При большом обратном напряжении коллектора, когда , ток базы

(5.13)

Если при этом напряжение базы также обратное (то ток базы идеального транзистора