Кооперативные игры

в коалицию T, выражается как

u(T) - u(T {i})

и считается выигрышем i-го игрока; gi (T) – это вероятность того, что i-й игрок вступит в коалицию T {i}; ji (u) – средний выигрыш i-го игрока в такой схеме интерпретации. В том случае, когда u – простейшая,

Следовательно

,

где суммирование по T распространяется на все такие выигрывающие коалиции T, что коалиция T {i}не является выигрывающей.

Пример. Рассматривается корпорация из четырёх акционеров, имеющих акции соответственно в следующих размерах

a1 = 10, a2 = 20, a3 = 30, a4 = 40.

Любое решение утверждается акционерами, имеющими в сумме большинство акций. Это решение считается выигрышем, равным 1. Поэтому данная ситуация может рассматриваться как простая игра четырёх игроков, в которой выигрывающими коалициями являются следующие:

{2; 4}, {3; 4},

{1; 2; 3}, {1; 2; 4}, {2; 3; 4}, {1; 3; 4},

{1; 2; 3; 4}.

Найдём вектор Шепли для этой игры.

При нахождении j1 необходимо учитывать, что имеется только одна коалиция T={1;2;3}, которая выигрывает, а коалиция T {1} = {2; 3} не выигрывает. В коалиции T имеется t = 3 игрока, поэтому

.

Далее, определяем все выигрывающие коалиции, но не выигрывающие без 2-го игрока: {2; 4}, {1; 2; 3}, {2; 3; 4}. Поэтому

.

Аналогично получаем, что , .

В результате получаем, что вектор Шепли равен . При этом, если считать, что вес голоса акционера пропорционален количеству имеющихся у него акций, то получим следующий вектор голосования

,

который, очевидно, отличается от вектора Шепли.

Анализ игры показывает, что компоненты 2-го и 3-го игроков равны, хотя третий игрок имеет больше акций. Это получается вследствие того, что возможности образования коалиций у 2-го и 3-го игрока одинаковые. Для 1-го и 4-го игрока ситуация естественная, отвечающая силе их капитала.