Кооперативные игры

коалиция K, для которой делёж x доминирует y. Это доминирование обозначается так:

x > y.

Наличие доминирования x > y означает, что в множестве игроков N найдётся коалиция, для которой x предпочтительнее y. Отношение доминирования не обладает полностью свойствами рефлексивности, симметрии, транзитивности, возможна только частичная симметрия и транзитивность. Соотношение доминирования возможно не по всякой коалиции. Так, невозможно доминирование по коалиции, состоящей из одного игрока или из всех игроков.

Справедлива следующая теорема.

Теорема. Если u и u1 – две стратегически эквивалентные характеристические функции, причём дележам x и y соответствуют дележи  и , то из x > y следует >.

Очевидно, все явления, описываемые в терминах доминирования дележей, относятся к классам стратегической эквивалентности, поэтому достаточно изучать эти классы (а не сами игры) для существенных игр по их (0,1)-редуцированной форме, а для несущественных игр – по нулевым играм.

В любой несущественной игре имеется только один делёж, поэтому никаких доминирований в ней нет.

Рассмотрим доминирование дележей в существенной игре на следующем примере.

Пример. Пусть имеется (0,1)-редуцированная форма существенной игры трёх игроков с постоянной суммой (равной 1). Поскольку доминирование невозможно ни по одной из одноэлементных коалиций 1,2,3, а также по коалиции, состоящей из всех трёх игроков, то доминирование возможно только по одной из двухэлементных коалиций {1,2}, {1,3}, {2,3}.

Для наглядности доминирования дележей введём понятие бароцентрических координат. Осями координат служат три оси x1, x2, x3, составляющие между собой одинаковые углы 60о, ось x3 находится на расстоянии единицы от точки пересечения осей x1 и x2 (рис.1), координаты точки x = (x1, x2, x3) – соответственно расстояния от этой точки до осей x1, x2, x3, взятые с такими знаками, как указано на рис.1. (Например, для точки x на рис.1. x1 < 0, x2 > 0, x3 > 0).

В барицентрической системе координат всегда выполняется равенство

x1 + x2 + x3 = 1. 

В плоскости всегда имеется точка с координатами x1, x2, x3, удовлетворяющими равенству (6). По этому бароцентрическая система координат автоматически удовлетворяет одному из условий, определяющих исход игры трёх игроков. С другой стороны, поскольку игра в (0, 1)-редуцированной форме, то точка x должна находиться в заштрихованном треугольнике (см. рис. 2). Дележи x1, x2, x3 должны удовлетворять неравенствам

x1 + x2 £ u(1, 2), x1 + x3 £ u(1, 3), x2 + x3 £ u(2, 3).

Очевидно, из условия дополнительности, что

x1 + x2 = 1 - x3 £ 1 = u(1, 2), x1 + x3 £ 1, x2 + x3 £ 1.

Делёж x = (x1, x2, x3) доминирует дележ y = (y1, y2, y3)

по коалиции {1, 2}, если x1 > y1, x2 > y2;

по коалиции {1, 3}, если x1 > y1, x3 > y3;

по коалиции {2, 3}, если x2 > y2, x3 > y3,

т.е. если делёж y находится в одном из заштрихованных параллелограммов (за исключением трёх граничных прямых, проходящих через точку x) на рис. 3, то делёж x доминирует делёж y, а всякая точка находящаяся в не заштрихованных треугольниках, является предпочтительнее исхода x.

 x3 = - 1 x2 = - 1

   x = (x1, x2, x3)

        x3 = 1 - C3

    x1 = 0

    x1 = 1 - C1    x2 = 1 - C2

  Рис.3     Рис. 4

Таким образом, если x и y - два исхода и ни один из них не предпочтительнее другого, то соответствующие точки лежат на прямой, параллельной одной из координатных осей.

Пример. Пусть имеется (0, 1)-редуцированная игра трёх игроков с ненулевой суммой.

Рассмотрим сначала условия доминирования дележа x = (x1, x2, x3) над дележём y = (y1, y2, y3) по коалиции {1, 2}. В этом случае имеем :

  

Поскольку может быть, что C3 < 1 , то первое из условий (7) нельзя отбросить, как это делает- ся в играх с постоянной суммой. Это значит что, x должна быть не ниже прямой

x1 + x2 = C3.

Или, учитывая (6), последнее уравнение принимает вид

x3 = 1 + C3 .

Таким образом, если делёж x таков, что

x1 ³ 1 - C1, x2 ³ 1 - C2, x3 ³ 1 - C3, 

то имеется три параллелограмма, заштрихованных на рис. 4, находясь в которых, точки x доминируют y.

Если в (8) одно из неравенств, например, третье не имеет места, то есть только 2 парал- лелограмма, заштрихованных на рис. 5, находясь в некоторых точках x доминирует y.

x1 = 1 - C1  x2 = 1 - C2  x2 = 1 - C2  x1 = 1 - C1

        x3 = 1 - C3

      x

  Рис. 5     Рис. 6

Из рассмотренного примера видно, что возможно много вариантов, которые возникают при изучении вопросов, связанных с доминированием дележей в кооперативных играх. С ростом числа игроков чрезвычайно быстро растёт количество таких вариантов. В связи с этим возникает необходимость выделения вполне устойчивых дележей, т.е. таких дележей, которые не доминируются никакими другими дележами. Множество вполне устойчивых дележей в кооперативной игре называется с-ядром этой игры.

Теорема. Для того чтобы делёж x принадлежал с-ядру кооперативной игры с характеристической функцией u, необходимо и достаточно, чтобы для любой коалиции K выполнялось неравенство

     

Поскольку неравенства (9) линейны относительно x, то из последней теоремы следует, что с-ядро в любой кооперативной игре является выпуклым многогранником.

К особенностям кооперативных игр относительно существования с-ядра относятся :

1) в несущественной игре с-ядро существует и состоит из единственного дележа этой игры;

2) во всякой существенной игре с постоянной суммой с-ядро пусто.

Для общей игры трёх игроков в (0; 1)-редуцированной форме имеем следующее (рис. 7).

Её характеристическая функция имеет вид :

u(Æ) = u(1) = u(2) = u(3) = 0;

u(1, 2, 3) = 1,

u(1, 2) = С3; u(1, 3) = С2; u(2, 3) = С1,

где 0 £ С1, С2, С3 £ 1.

На основании последней теоремы для принадлежности дележа x с-ядру необходимо и достаточно выполнение неравенств

x1 + x2 ³ C3, x1 + x3 ³ C2, x2 + x3 ³ C1

или, используя равенство x1 + x2 + x3 = 1, получим

  x3 £ 1 - C3, x2 £ 1 - C2, x3 £ 1 - C1. 

 

     3

   1   2

    Рис. 7

Это означает, что точка x должна лежать ближе к i-й вершине основного треугольника (см. рис. 7), чем прямая

  xi = 1 - Сi (i = 1,2,3)  

Из неравенства (10) путём суммирования получим

x1 + x2 + x3 £ 3 - (С1 + С2 + С3)

или, учитывая, что x1 + x2 + x3 = 1, получим

   С1 + С2 + С3 £ 2.   

Неравенство (12) является необходимым условием существования непустого с-ядра. С другой стороны, если (12) выполняется, то можно взять такие неотрицательные e1, e2, e3, чтобы

,

и положить

xi = 1 - Ci - ei (i = )

Такие значения xi и удовлетворяют неравенствам (10), т.е. такой делёж x = (x1, x2, x3) принад- лежит с-ядру.

Геометрически непустое с-ядро является заштрихованным треугольником (рис. 7), со сто- ронами, выраженными уравнениями (11)

  3     3

 1   2  1   2

 Рис. 8     Рис. 9

при условии, что выполняется соотношение

x1 + x2 + x3 = 1,

и решения любой пары уравнений (11) являются неотрицательными. Так, например, рассмот- рим систему

x1 = 1 - С1, x2 = 1 - С2.

Поскольку 0 £ С1 £ 1, 0 £ С2 £ 1, то x1, x2 ³ 0. Отсюда получаем

x3 = 1 - x1 - x2 = 1 - (1 - С1) - (1 - С2) = С1 + С2 - 1.

Для того, чтобы было x3 ³ 0, необходимо чтобы

С1 + С2 - 1 ³ 0

или

С1 + С2 ³ 1.

В этом случае с-ядро представлено на рис.7 в виде заштрихованного треугольника внутри основного треугольника. Аналогично рассматриваются остальные возможные варианты сочета- ний неравенств. Например, если С1 + С2 < 1, то с-ядро имеет вид заштрихованного четырёх- угольника внутри основного треугольника (рис.8). Вообще многогранник, представляющий с-ядро, образуется как выпуклый многогранник пересечением прямых (11) и строк основного треугольника. Если, например, выполняются неравенства

С1 + С2 < 1; С2 + С3 < 1; С1 + С3 < 1,

то с-ядро представляется в виде шестигранника, заштрихованного на рис.9.

Очевидно, в решение кооперативной игры должны входить дележи, лучшие с определён- ной точки зрения. Так, дележи, входящие в с-ядро, являются устойчивыми в несколько пассив- ном смысле, т.е. при этих обстоятельствах нет оснований отклоняться от такого дележа. Одна- ко, найти делёж, который не только не доминировался бы какими-либо другими дележами, но сам доминировал бы любой другой делёж, не удаётся. Поэтому решение отыскивают на пути расширения класса дележей . И это расширение состоит в том, что решением игры должен быть не один делёж, а некоторое их множество.

Дж. фон Нейман и О. Моргенштерн предложили потребовать от множества дележей, которое принимается в качестве решения кооперативной игры следующие два свойства: внут- реннюю устойчивость, состоящую в том, чтобы дележи из решений нельзя было противопоста- вить друг другу, и внешнюю устойчивость, состоящую в возможности каждому отклонению от решения противопоставлять некоторый делёж, принадлежащий решению. В результате мы приходим к следующему определению.

Определение. Решением по Нейману-Моргенштерну (Н-М-решением) кооперативной игры называется множество R дележей в нём, обладающее следующими свойствами :

1) внутренняя устойчивость: никакие два дележа из R не доминируют друг друга;

2) внешняя устойчивость: каков бы ни был делёж S не принадлежащий R, найдётся делёж r, принадлежащий R, который доминировал бы S.

Содержательная интерпретация Н-М-решения состоит в том, что любые две нормы пове- дения, соответствующие Н-М-решению, не могут быть противопоставлены друг другу; каково бы ни было отклонение от допустимых поведений, найдётся такая коалиция, которая будет стремиться к восстановлению нормы.

Теорема. Если в кооперативной игре существует с-ядро C и Н-М-решение R, то CÌ R.

Свойства Н-М-решений.

Н-М-решение кооперативной игры не может состоять только из одного дележа, т.к. в этом случае характеристическая функция игры несущественная.

Недостатки Н-М-решения.

1. Известны примеры кооперативных игр, которые не имеют Н-М-решений. Более того, в настоящее время не известно каких-либо критериев, позволяющих судить о наличии у кооперативных игр Н-М-решений. Тем самым заложенный в Н-М-решении принцип оптимальности не является универсально реализуемым, и область его реализуемости пока остаётся неопределён- ной.

2. Кооперативные игры, если не имеют Н-М-решения, то, как правило, более одного. Поэтому принцип оптимальности, приводящий к Н-М-решению, не является полным: он, вообще говоря, не в состоянии указать игрокам единственной системы норм распределения выигрыша.

3. Решения существенных кооперативных игр состоит более, чем из одного дележа. Таким образом, даже выбор какого-либо конкретного Н-М-решения ещё не определяет выигрыша каждого из игроков.

4. Понятие Н-М-решения отражает только в очень малой степени черты справедливости.

Перечисленные недостатки отражают положение дел в действительности: большинство экономических и социальных проблем допускает множественные решения, и эти решения не всегда поддаются непосредственному сравнению по их предпочтительности.

Перечисленные недостатки Н-М-решения коалиционных игр способствуют поискам новых подходов. Одним из таких подходов является подход Шепли, суть которого в том, что он строиться на основании аксиом, отражающих справедливость дележей.

Определение. Носителем игры с характеристической функцией u называется такая коали-ция T, что

u(S) = u(S Ç T)

для любой коалиции S.

Смысл носителя T состоит в том, что любой игрок, не принадлежащий T, является нейтральным, он не может ничего внести в коалицию и ему ничего не следует выделять из общих средств.

Определение. Пусть u – характеристическая функция кооперативной игры n игроков, p – любая перестановка множества N игроков. Через pu обозначим характеристическую функцию и та- кой игры, что для коалиции S = {i1, i2, ..., iS} будет

u ({p( i1), p( i2), ..., p( iS)}) = u(S).

Содержательный смысл функции pu состоит в том, что если в игре с характеристической функцией u поменять местами игроков согласно перестановке p, то получим игру с характерис- тической функцией pu.

Аксиомы Шепли.

1о. Аксиома эффективности. Если S – любой носитель игры с характеристической функцией u, то

= u(S)

Иными словами, “справедливость требует”, что при разделении общего выигрыша носителя игры ничего не выделять на долю посторонних, не принадлежащих этому носителю, равно как и ничего не взимать с них.

2о. Аксиома симметрии. Для любой перестановки p и iÎN должно выполняться

(pu) = ji (u),

т.е. игроки, одинаково входящие в игру, должны “по справедливости” получать одинаковые выигрыши.

3о. Аксиома агрегации. Если есть две игры с характеристическими функциями u¢ и u¢¢, то

j i (u¢ + u¢¢) = j i (u¢) + j i (u¢¢),

т.е. ради “справедливости” необходимо считать, что при участии игроков в двух играх их выигрыши в отдельных играх должны складываться.

Определение. Вектором цен (вектором Шепли) игры с характеристической функцией u называется n-мерный вектор

j (u) = (j1(u), j2(u), ..., jn(u)),

удовлетворяющий аксиомам Шепли.

Существование вектора Шепли вытекает из следующей теоремы

Теорема. Существует единственная функция j, определённая для всех игр и удовлетворяющая аксиомам Шепли.

Определение. Характеристическая функция wS(T), определённая для любой коалиции S, называется простейшей, если

wS(T) =

Содержательно простейшая характеристическая функция описывает такое положение дел, при котором множество игроков S выигрывает единицу тогда и только тогда, когда оно содержит некоторую основную минимальную выигрывающую коалицию S.

Можно доказать, что компоненты вектора Шепли в явном виде запишутся следующим образом

где t – число элементов в T.

Вектор Шепли содержательно можно интерпретировать следующим образом: предельная величина, которую вносит i-й игрок