Расчет и проектирование приводной станции

Содержание


Задание

Введение

1. Выбор электродвигателя

2. Выбор и обоснование оптимального варианта конструкции редуктора

3 Статическое исследование редуктора

4. Кинематический анализ редуктора

5. Геометрический расчет зубчатых передач

6. Выбор материала и термообработки зубчатых передач

7. Определение допускаемых напряжений

7.1 Допускаемые контактные напряжения

7.2 Допускаемые изгибные напряжения

8. Определение расчетного контактного напряжения в полюсе зацепления зубчатой пары для тихоходной ступени

9. Определение расчетного изгибного напряжения

10. Определение размеров валов зубчатых колес и выбор подшипников

11. Расчет подшипников промежуточного вала на долговечность

12. Расчет шпонок

13. Расчет промежуточного вала на прочность

14. Расчет соединений

15. Определение размеров корпусных деталей

15.1 Обоснование выбора конструкции крышек подшипников

15.2 Манжетные уплотнения

15.3 Конструирование прочих элементов редуктора

20. Подбор системы смазки

21. Краткое описание сборки редуктора

22. Эскизы стандартных изделий

Список литературы

Приложения

Задание № 02


Рассчитать и спроектировать приводную станцию транспортера по схеме 91, применить тип редуктора 21

Быстроходная ступень с косозубым зацеплением

тихоходная ступень с прямозубым зацеплением

Сила тяги, Fk = 8kH;

Скорость, V = 0,21 м/с;

Длительность работы (ресурс), Lh = 18000час;

Режим работы, 2;

Тип производства – средняя серия

Введение


Привод грузоподъемной машины был сконструирован для передачи крутящего момента на барабан, который обеспечивает поднятие груза со скоростью 0,21 м/с.

Привод грузоподъемной машины (рис. 2) состоит из электродвигателя, редуктора, барабана, троса. Электродвигатель и барабан присоединены к редуктору при помощи муфт. Подъем груза осуществляется тросом, который наматывается на барабан. Барабан приводится в движение от электродвигателя через редуктор и муфты. Редуктор осуществляет повышение крутящего момента и снижение частоты вращения до требуемой величины.


рис. 2. Схема привода барабана


Редуктор состоит из быстроходной шевронной передачи и тихоходной прямозубой передачи. Смазка зубчатых колес и подшипников осуществляется разбрызгиванием.

Для корпуса редуктора была применена современная конструкция. Все выступающие элементы устранены с наружных поверхностей и введены внутрь. Лапы под фундаментальные болты не выступают за габариты корпуса. Проушины для подъема и транспортировки редуктора отлиты заодно с корпусом.

Для удобства сборки корпус выполнен с разъемом. Плоскость разъема проходит через оси валов.

Выбор электродвигателя


Определим мощность и частоту вращения.

Потребляемую мощность привода (мощность на выходе) определим по формуле [2]:


Рвых = Ft*V = 8*10 і*0,21 = 1680 Вт.


Определим потребную мощность электродвигателя [2]:


Рэ.потр = Рвых/ηобщ,


где ηобщ = ηб* ηозп* ηред* ηм.

Здесь ηб = 0,95 – КПД барабана;

ηозп = 0,94 – КПД открытой зубчатой передачи;

ηред = ηп і* ηззп і= 0,99 і*0,97 і = 0,886 – КПД редуктора;

ηм = 0,98 – КПД муфты.


Получаем:


Рэ.потр = 1680/0,95*0,94*0,886*0,98 = 2,17 кВт;


Определим частоту вращения барабана [2]:

60*υ

пб =,

π*Dб


где Dб = 18*dк = 18*0,1* √ Ft = 18*0,1* √8*10 і= 160,992 мм;


Получим:

60*0,21*10 і

пб = = 24,9 об/мин.

π*160,992


По таблице 24.8 [2] выбираем электродвигатель 90L4/1425:

P=2,2кВт и п=1425 об/мин.

Определим передаточное число привода [2]:


и = п/пб = 1425/24,9 = 57,23;


Определим передаточное число редуктора [2]:


иред = и/иозп = 57,23/3 = 19,08.


Подготовка данных и расчетов на ЭВМ


Таблица №1. Данные на ЭВМ

Момент на вых. Валу,

Н*м

Перед отн-ние Допуск. напряжения

Отн.

Шир.

Час-та,

об/

мин

Ресурс

ч

код № ред


SIG1 SIG2 PSI1 PSI2


240 19,08 500 500 0,5 0,4 1425 4500 3 1 21

Выбор и обоснование оптимального варианта конструкции


Для того, чтобы найти оптимальный вариант конструкции определим для всех 6 случаев объем и массу конструкции.


рис. 2 Схема редуктора


1. Диаметр шестерни быстроходной передачи d1б = 29,38 мм;

Диаметр колеса быстроходной передачи d2б = 110,62 мм;

Диаметр шестерни тихоходной передачи d1т = 47,5 мм;

Диаметр колеса тихоходной передачи d2т = 232,5 мм.

Ширина колеса быстроходной ступени вwб = 32,5 мм;

Ширина колеса тихоходной ступени вwт = 51,8 мм;

Межосевое расстояние быстроходной ступени аwб = 70 мм;

Межосевое расстояние тихоходной ступени аwт = 140 мм.

Объем редуктора определим по формуле:


V = LAB,

Где L = d1б/2 + d2т/2 + аwб + аwт;

A = d2т + 2*a;

B = вwб + вwт + 2*с +2*а;

Здесь а = і√L + 3мм;

с = (0,3 ч 0,5)*а.


Массу редуктора определим по формуле:


т = π*γ*(d1б І* вwб + d2б І* вwб + d1т І* вwт + d2т І* вwт)/4,


где γ=7,8*10ˉі г/мм і - удельный вес стали.


Получим:


L = 29,38/2 + 232,5/2 + 70 + 140 = 340,94 мм;


а = і√ 340,94 + 3 = 9,99 мм;


с = (0,3 ч 0,5)*9,99 = (2,997 ч 4,995) = 4 мм;


В = 32,5 + 51,8 + 2*4 + 2*9,99 = 112,28 мм;


А = 232,5 + 2*9,99 = 252,48 мм;


V = 340,94*112,28*252,48 = 9665122,04 мм і;


т = π*7,8*10ˉі*(29,38 І*32,5 + 110,62 І*32,5 + 47,5 І*51,8 +


+232,5 І*51,8) /4 = 20,47 кг.

2. d1б = 27,59 мм d2б = 122,41 мм d1т = 52,5 мм d2т = 227,5 мм

вwб = 37 мм вwт = 48,6 мм аwб = 75 мм аwт = 140 мм.


L = 27,59/2 + 227,5/2 + 75 + 140 = 342,545 мм;


а = і√ 342,545 + 3 = 9,996 мм;


с = (0,3 ч 0,5)*9,996 = (2,999 ч 4,998) = 4 мм;


В = 37 + 48,6 + 2*4 + 2*9,996 = 113,592 мм;


А = 227,5 + 2*9,996 = 247,542 мм;


V = 342,545*113,592*247,542 = 9631951,22 мм і;


т = π*7,8*10ˉі*(27,59 І*37 + 122,41 І*37 +52,5 І*48,6 + 227,5 І*48,6)/


/4 = 19,79 кг.


3. d1б = 27,53 мм d2б = 132,47 мм d1т = 55 мм d2т = 215 мм

вwб = 37,2 мм вwт = 50,9 мм аwб = 80 мм аwт = 135 мм.


L = 27,53/2 + 215/2 + 80 + 135 = 336,265 мм;


а = і√336,265 + 3 = 9,95 мм;


с = (0,3 ч 0,5)*9,95 = (2,985 ч 4,975) = 4 мм;


В = 37,2 + 50,9 + 2*4 +2*9,95 = 116 мм;

А = 215 + 2*9,95 = 234,9 мм;


V = 336,265*116*234,9 = 9162683,23 мм і;


т = π*7,8*10ˉі*(27,53 І*37,2 + 132,47 І*37,2 + 55 І*50,9 +


+215 І*50,9)/4 = 19,52 кг.

4. d1б = 25.76 мм d2б = 144,24 мм d1т = 60 мм d2т = 210 мм

вwб = 43,1 мм вwт = 49,5 мм аwб = 85 мм аwт = 135 мм.


L = 25,76/2 + 210/2 + 85 + 135 = 337,88 мм;


а = і√337,88 + 3 = 9,96 мм;


с = (0,3 ч 0,5)*9,96 = (2,99 ч 4,98) = 4 мм;


В = 43,1 + 49,5 + 2*4 +2*9,96 = 120,52 мм;


А = 210 + 2*9,96 = 229,92 мм;


V = 337,88*120,52*229,92 = 9362640,74 мм і;


т = π*7,8*10ˉі*(25,76 І*43,1 + 144,24 І*43,1 + 60 І*49,5 +


+210 І*49,5)/4 = 20,12 кг.


5. d1б = 24 мм d2б = 156 мм d1т = 65 мм d2т = 195 мм

вwб = 50,8 мм вwт = 48,7 мм аwб = 90 мм аwт = 130 мм.


L = 24/2 + 195/2 + 90 + 130 = 329,5 мм;

а = і√329,5 + 3 = 9,91 мм;


с = (0,3 ч 0,5)*9,91 = (2,97 ч 4,95) = 4 мм;


В = 50,8 + 48,7 + 2*4 +2*9,91 = 127,32 мм;


А = 195 + 2*9,91 = 214,82 мм;


V = 329,5*214,82*127,32 = 9012115,75 мм і;


т = π*7,8*10ˉі*(24 І*50,8 + 156 І*50,8 + 65 І*48,7 +


+195 І*48.7)/4 = 20,35 кг.

6. d1б = 25,29 мм d2б = 174,71 мм d1т = 70 мм d2т = 190 мм

вwб = 48,5 мм вwт = 48,9 мм аwб = 100 мм аwт = 130 мм.


L = 25,29/2 + 190/2 + 100 + 130 = 337,65 мм;


а = і√337,65 + 3 = 9,96 мм;


с = (0,3 ч 0,5)*9,96= (2,99 ч 4,98) = 4 мм;


В = 48,5 + 48,9 + 2*4 +2*9,96 = 125,32 мм;


А = 190 + 2*9,96 = 209,92 мм;


V = 329,5*214,82*127,32 = 9012115,75 мм і4


т = π*7,8*10ˉі*(25,29 І*48,5 + 174,71 І*48.5 + 70 І*48,9 +

+190 І*48.9)/4 = 21,53 кг.


По полученным значениям объемов и масс построим график для всех шести случаев и по графику выберем оптимальный вариант.


рис. 3 График объемов и масс редуктора для шести вариантов


По графику видно, что оптимальным вариантом конструкции является третий вариант, т. к. в данном случае редуктор обладает минимальной массой и небольшим объемом.


Статическое исследование редуктора


Определим моменты в зубчатых колесах, а также усилия в зацеплении.

Вращающий момент на колесе тихоходной ступени:


Т2тк = Т2т/ ηп = 240,4/0,99 = 242,82 Н*м;


Вращающий момент на шестерне тихоходной ступени:


Т2тк

Т1тш =,

ηз*ит


где ηз – КПД зацепления;

ит – передаточное число на тихоходной ступени;

Получим:

242,82

Т1тш = = 64,02 Н*м;

0,97*3,91


Вращающий момент на колесе промежуточного вала:

Т1тш 64,02

Т2б = = = 32,33 Н*м;

2* ηп 2*0,99


Вращающий момент на шестерне быстроходной ступени:


Т2б 32,33

Т1б = = = 6,93 Н*м;

ηз *иб 0,97*4,81

Вращающий момент на входе в редуктор:


рис. 4 Схема усилий в зацеплении


Кинематический анализ редуктора


Найдем частоту вращения быстроходного вала:


пэ = п1б = 1425 об/мин;


Частота вращения промежуточного вала:


п2б = п1т = п1б/иб = 1425/4,81 = 296,3 об/мин;


Частота вращения тихоходного вала:


п2т = п1т/ит = 296,3/3,91 = 75,8 об/мин;


Частота вращения барабана:


пб = п2т/иозп = 75,8/3 = 25,3 об/мин;


По формуле ω= π*п/30 определим соответствующие угловые скорости:


ω1б = π*п1б/30 = π*1425/30 = 149,15 сˉ№;

ω2т = π*п2т/30 = π*78,5/30 = 8,2 сˉ№;

ω2б = ω1т = π*п2б/30 = π*296,3/30 = 31,02 сˉ№;

ωб = π*пб/30 = π*24,9/30 = 2.61 сˉ№.


Определим окружные скорости на быстроходной ступени:


υ1б = Т1б* ω1б/ Ft1б = 6,93*149,15/0,503 = 2,055 м/с;

υ2б = Т2б* ω2б/ Ft2б = 32,33*31,02/0,488 = 2,055 м/с;

Определим окружные скорости на тихоходной ступени:


υ1т = Т1тш* ω1т/ Ft1т = 64,02*31,02/2,328= 0,853 м/с;

υ2т = Т2тк* ω2т/ Ft2т = 242,82*8,2/2,259 = 0,88 м/с;

Геометрический расчет зубчатых передач


Тихоходная прямозубая ступень


диаметр делительной окружности у шестерни [1 ]:


d1 = т*z1 = 2,5*22 = 55 мм;


диаметр делительной окружности у колеса [1 ]:


d2 = т*z2 = 2,5*86 = 215 мм;


диаметр начальной окружности у шестерни [1 ]:


dw1 = 2*aw/(и+1) = 2*135/(3,91 +1) = 54,99 мм;


диаметр начальной окружности у колеса [1 ]:


dw2 = 2*aw*и/(и+1) = 2*135*3,91/(3,91 +1) = 215 мм;


диаметр основной окружности у шестерни [1 ]:


dв1 = т*z1*cos α = 2,5*22*cos 20є = 51,68 мм;


диаметр основной окружности у колеса [1 ]:


dв2 = т*z2*cos α = 2,5*86*cos 20є = 202 мм;


диаметр окружности впадин у шестерни [1 ]:

df1 = d1 – 2*(с+т) = 55 – 2*(0,25+2,5) = 49,5 мм;


диаметр окружности впадин у колеса [1 ]:


df2 = d2 – 2*(с+т) = 215 – 2*(0,25+2,5) = 209,5 мм;


диаметр окружности вершин у шестерни [1 ]:


dа1 = d1 +2*т = 55 + 2*2,5 = 60 мм;


диаметр окружности вершин у колеса [1 ]:


dа2 = d2 +2*т = 215 + 2*2,5 = 220 мм.


Быстроходная косозубая ступень


диаметр делительной окружности у шестерни [1 ]:


d1 = т*z1/соs β = 1,5*16/ соs 29,329є= 27,53 мм;


диаметр делительной окружности у колеса [1 ]:


d2 = т*z2/соs β = 1,5*77/ соs 29,329є= 132,48 мм;


диаметр начальной окружности у шестерни [1 ]:


dw1 = 2*aw/(и+1) = 2*80/(4,81 +1) = 27,54 мм;


диаметр начальной окружности у колеса [1 ]:


dw2 = 2*aw*и/(и+1) = 2*80*4,81/(4,81 +1) = 132,46 мм;


диаметр основной окружности у шестерни [1 ]:


dв1 = т*z1*cos α = 1,5*16*cos 20є = 22,55 мм;


диаметр основной окружности у колеса [1 ]:


dв2 = т*z2*cos α = 1,5*77*cos 20є = 108,53 мм;


диаметр окружности впадин у шестерни [1 ]:


df1 = d1 – 2*(с+т) = 27,53 – 2*(0,25+1,5) = 24,03 мм;


диаметр окружности впадин у колеса [1 ]:


df2 = d2 – 2*(с+т) = 132,48 – 2*(0,25+1,5) = 128,98 мм;


диаметр окружности вершин у шестерни [1 ]:


dа1 = d1 +2*т = 27,53 + 2*1,5 = 30,53 мм;


диаметр окружности вершин у колеса [1 ]:


dа2 = d2 +2*т = 132,48 + 2*1,5 = 135,48 мм.

7. Выбор материала и термообработки зубчатых передач


Практикой эксплуатации и специальными исследованиями установлено, что нагрузка, допускаемая при контактной прочности зубьев, определяется в основном твердостью материала. Высокую твердость в сочетании с другими характеристиками, а следовательно, малые габариты и массу передачи можно получить при изготовлении зубчатых передач из сталей, подвергнутых термообработке.

Для шестерни тихоходной ступени выберем марку стали 45 с твердостью 241….285 НВ и термообработку – улучшение. Для колеса выберем марку стали 45 с твердостью 192…240 НВ и термообработку – улучшение.

Для тихоходной ступени назначим твердость для шестерни 270 НВ и для колеса 230 НВ [3].

Для шестерни быстроходной ступени выберем марку стали 45 с твердостью 241….285 НВ и термообработку – улучшение. Для колеса выберем марку стали 45 с твердостью 192…240 НВ и термообработку – улучшение.

Для быстроходной ступени назначим твердость для шестерни 270 НВ и для колеса 230 НВ [3].


Допускаемые контактные напряжения


Допускаемые контактные напряжения рассчитаем по формуле:


[σН]1 + [σН]2

[σН] =,

2

где [σН]1 – допускаемые контактные напряжения для шестерни тихоходной ступени;

[σН]2 - допускаемые контактные напряжения для колеса тихоходной ступени;


[σН]1 = σНlim1*zN1/sN1;

[σН]2 = σНlim2*zN2/sN2;


Рассчитаем пределы выносливости для шестерни и колеса [3]:


σНlim1 = 2*HB + 70 = 2*270 + 70 = 610 МПа;

σНlim2 = 2*HB + 70 = 2*230 + 70 = 530 МПа;


Коэффициенты долговечности определим по формуле [3]:


zN = √NHG/NHE,


где NHG – базовое число циклов нагружения;

NHE – циклическая долговечность;

По графику определим [3]:


NHG1 = 11*10

NHG2 = 10*10


Циклическую долговечность определим по формуле [3]:


NHE = μН* Nк = μН*60*с*п*LH,


Где с – число зацеплений зуба за один оборот колеса;

п – частота вращения;

LH – длительность работы (ресурс);

μН – коэффициент эквивалентности. Для заданного режима работы 2 определяем, что μН = 0,25;

Получим:


NHE1 = 0,25*60*1*296,4*18000 = 80*10;

NHE2 = 0,25*60*1*75,8*18000 = 20,47*10;


Рассчитаем коэффициент долговечности:


zN1 = √NHG1/NHE1 = 11*10 /80*10 = 0,72;

zN2 = √NHG2/NHE2 = 10*10 /20,47*10 = 0,89;


т.к. найденные числовые значения коэффициентов долговечности не удовлетворяют условию 1 ≤ zN ≤ 2,4 [3]. То для колеса и шестерни принимаем zN = 1.

Значение коэффициента надежности примем равным SH = 1,1.

Допускаемые контактные напряжения на колесе и на шестерне:


[σН]1 = 610*1/1,1 = 554 МПа;

[σН]2 = 530*1/1,1 = 481 МПа;


Допускаемое контактное напряжение:


554 + 481

[σН] = = 518 МПа.

2


Допускаемые изгибные напряжения


Допускаемое изгибное напряжение определим по формуле [3]:


[σF] = σFlim*KFC*KFL/SF,


где σFlim – предел выносливости зубьев по напряжениям изгиба, МПа;

KFC – коэффициент, учитывающий влияние двустороннего приложения нагрузки (при односторонней нагрузке KFC=1;

KFL – коэффициент долговечности;

SF – коэффициент безопасности;


Рассчитаем пределы выносливости для шестерни и колеса [3]:


σFlim1 = 1,8*НВ = 1,8*270 = 486 МПа;

σFlim2 = 1,8*НВ = 1,8*230 = 414 МПа;


Принимаем значение коэффициентов безопасности для шестерни и колеса SF = 1,75 [3];


Коэффициент долговечности определим по формуле [3]:

KFL = √NFG/NFE,

где NFG = 4*10 - базовое число циклов;

NFE – эквивалентное число циклов;


Эквивалентное число циклов определим по формуле:


NFE1 = μFE*Nк1 = μFE*60*с*п*LH = 0,14*60*1*296,3*18000 = 44,8*10;

NFE2 = μFE *Nк2 = μFE*60*с*п*LH = 0,14*60*1*75,8*18000 = 11,46*10;


где μFE – коэффициент эквивалентности;

Nк – расчетное значение циклов;


Получим:


KFL1 = √4*10 /44,8*10 = 0,668;

KFL2 = √ 4*10 /11,46*10 = 0,839;


Полученные значения коэффициентов долговечности не удовлетворяют условию 1 ≤ KFL ≤ 2 [3], тогда для колеса и шестерни принимаем KFL=1.

Допускаемые изгибные напряжения равны:


[σF]1 = 486*1*1/1,75 = 278 МПа;

[σF]2 = 414*1*1/1,75 = 237 МПа.

Определение расчетного контактного напряжения в полюсе зацепления зубчатой пары для тихоходной ступени


Значение расчетных контактных напряжений одинаковы для шестерни и колеса, поэтому расчет выполняем только для шестерни.

Расчет прочности зубьев по контактным напряжениям для прямозубой передачи внешнего зацепления произведем по формуле [3]:


Т1Тш*kH*ЕПр (и + 1)

σН = 1,18* √ * ≤ [σН],

d1І*вw*sin 2αw и


где Т1Тш – вращающий момент на шестерне тихоходной ступени;

kH – коэффициент нагрузки по контактным напряжениям;

ЕПр = 2*10 МПа – модуль упругости для стали;

d1 = 55 мм – диаметр шестерни;

вw = 50,9 мм – ширина венца шестерни;

αw=20є - угол зацепления;

и = 3,91 – передаточное отношение тихоходной ступени.

Коэффициент нагрузки определяем по формуле:


kH = kHβ* kHV,


где kHβ = 1,02 – коэффициент концентрации нагрузки (при ψвd = в/d= = 0,93) [3];

kHV = 1,03 – динамический коэффициент (при υ= π*d*п/30 =

= π*d*Пб*иозп*и/30 = 1,68 м/с);

Тогда:


kH = 1,02*1,03 = 1,0506;

Получаем расчетное контактное напряжение равно:


64,02*10 і*1,0506*2*10 (3,91 + 1)

σН = 1,18*√ * = 488 МПа;

55 І*50,9*sin40є 3,91


Следовательно, условие прочности по контактным напряжениям выполняется, т.к.:


σН = 488 МПа < [σН] = 518 МПа.

Определение расчетного изгибного напряжения


Расчет прочности зубьев по изгибным напряжениям произведем по формуле [3]:


σF = УFs*Ft*kF/вw*т,


где УFs – коэффициент формы зуба;

Ft – окружная сила, Н;

kF – коэффициент нагрузки по изгибным напряжениям;

Для шестерни УFs = 4,08 (при z=22 и х=0), для колеса УFs = 3,73 (при z=86 и х=0) [3].

Окружная сила для шестерни Ft = 2,328 кН, для колеса Ft = 2,259 кН.

Рассчитаем коэффициенты нагрузки по изгибным напряжениям для шестерни и колеса [3]:


kF = kFβ* kFV,


где kFβ1 = 1,05 и kFβ2 = 1 – коэффициенты концентрации нагрузки для шестерни и колеса (при ψвd1 = в/d= = 0,93 и ψвd2 = в/d= = 0,24) [3];

kHV = 1,02 – динамический коэффициент (при υ= π*d*п/30 =

= π*d*Пб*иозп*и/30 = 1,68 м/с);

Тогда:


kF1 = 1,05*1,02 = 1,071;

kF2 = 1*1,02 = 1,02;


Получаем расчетные контактные напряжения равны:


σF1 = 4,08*2,328*10 і*1,071/50,9*2,5 = 80 МПа;

σF2 = 3,73*2,259*10 і*1,02/50,9*2,5 = 68 МПа;


Следовательно, условие прочности по изгибным напряжениям выполняется, т.к.:


σF1 = 80 МПа < [σF]1 = 278 МПа;

σF2 = 68 МПа < [σF]2 = 237 МПа.


Определение размеров валов зубчатых колес и выбор подшипников


Диаметры различных участков валов редуктора определим по формулам [2]:


быстроходный вал

d ≥ (7…8) і√T1Б = (7…8) і√6,93 = (13,3…15,25) = 15 мм;

dП ≥ d +2*t,

где t = 2 – высота буртика [2];

Получим:

dП ≥ 15 + 2*2 = 19 мм;

Принимаем dП = 20 мм;

dБП ≥ dп +3*r,

где r = 1,6 – координата фаски подшипника;

Получим:

dБП ≥ 20 + 3*1,6 = 24,8 мм;

диаметр dБП округляем в ближайшую сторону до стандартного значения dБП = 24 мм.

промежуточный вал

dк ≥ (6…7) і√T1тш = (6…7) і√64,02 = (24…28) = 25 мм;

dБК ≥ dк +3*f,

где f = 1 – размер фаски [2];

Получим:

dБК ≥ 25 + 3*1 = 28 мм;

dП = dк – 3*r = 25 – 3*1,6 = 20,2 мм;

диаметр dП округляем в ближайшую сторону до стандартного значения

dП = 20 мм;

dБп ≥ dП +3*r = 20 +3*1,6 = 24,8 мм;

диаметр dБП округляем в ближайшую сторону до стандартного значения

dБП = 24 мм.

Тихоходный вал

d ≥ (5…6) і√T2тк = (5…6) і√242,82 = (31,5…37,8) = 36 мм;

dП ≥ d +2*t = 36 + 2*2 = 40 мм;

dБп ≥ dП +3*r = 40 + 3*1,6 = 44,8 мм;

диаметр dБП округляем в ближайшую сторону до стандартного значения

dБП = 42 мм;

dк = dБП = 42 мм.


рис.5 Валы редуктора

Для быстроходного вала выбираем роликовые радиальные подшипники с короткими цилиндрическими роликами тип 2000: d = 20 мм, D = 47 мм, В = 14 мм, r = 1,5 мм и грузоподъемность С = 11,9 кН;

Для тихоходного вала выбираем шариковые радиальные однорядные подшипники 208 легкой серии: d = 40 мм, D = 80 мм, В = 18 мм, r = 2 мм и грузоподъемность С = 25,6 кН;

Для промежуточного вала выбираем шариковые радиальные однорядные подшипники 304 легкой серии: d = 20 мм, D = 47 мм, В = 14 мм,

r = 1,5 мм и грузоподъемность С = 10 кН.


11.

Расчет подшипников промежуточного вала на грузоподъемность


Рассмотрим промежуточный вал, а также действующие на него нагрузки: