Понятие состояния квантово-механической системы. Принцип суперпозиции
Размещено на /
Содержание:
Введение
I. Понятие состояния квантово-механической системы. Принцип суперпозиции.
1.1 Описание состояний квантовомеханической системы. Волновая функция (амплитуда вероятности).
1.2 Принцип суперпозиции состояний.
1.3 Понятие гильбертова пространства.
II. Операторы квантовой механики.
2.1 Операторы динамических переменных.
2.2 Алгебраические действия с операторами.
2.3 Собственные функции и собственные значения операторов.
2.4 Свойства собственных значений и собственных функций эрмитовых операторов.
2.5 Операторы с непрерывным спектром собственных значений.
2.6 Дельта-функция Дирака.
2.7 Операторы координаты и импульса.
2.8 Соотношение неопределенности.
Литература
I. Понятие состояния квантовомеханической системы. Принцип суперпозиций состояний
1.1 Описание состояний квантовомеханической системы. Волновая функция (амплитуда вероятности)
Опираясь на гипотезу де Бройля о том, что свободной частице соответствует монохроматическая волна, а также на многочисленные экспериментальные факты, свидетельствующие о наличии и смысле волновых свойств у частиц вещества, формулируем 1-ый постулат квантовой механики:
Состояние квантовомеханической системы определяется -функцией (вообще говоря, комплексной), которая называется волновой функцией или амплитудой вероятности.
-функция может зависеть от пространственных координат квантовомеханической системы и времени. Для одной частицы в декартовых координатах в таком случае имеем
Квадрат модуля -функции
есть вероятность обнаружить частицу в точке с координатами в момент времени . Задавая координаты и момент времени можно определить значение -функции, а, следовательно, и плотность вероятности локализации частицы в том или ином месте пространства. Таким образом, квантовомеханическое описание состояния системы связано одновременно со всем пространством. Вероятность обнаружить частицу в элементе объема (т.е. вероятность того, что ее координаты заключены в пределах от до , от до , от до ) определяется выражением
(1.1.1)
Предположим для простоты, что волновая функция зависит только от координаты . Тогда среднее значение этой координаты в момент времени определяется выражением
. (1.1.2)
Для произвольной функции
(1.1.2а)
Интегрирование проводится по всей области изменений независимой переменной.
Хотя термин "волновая функция" используется очень часто, -функция может не иметь ничего общего с функцией, описывающей волну в классическом понимании. Она не обязательно должна зависеть от пространственных координат, но может являться функцией других динамических переменных, например, импульса, энергии и т.д. Например, есть вероятность того, что в момент времени квантовомеханическая система имеет импульс . Поэтому -функцию лучше называть амплитудой вероятности. С помощью -функции можно найти все распределения вероятностей для результатов измерения над системой.
Поскольку квадрат модуля -функции есть плотность вероятности соответствующего значения динамической переменной в определенный момент времени, она (-функция) должна быть однозначной, непрерывной и конечной. Совокупность перечисленных требований называют стандартными условиями.
Проинтегрировав левую и правую часть выражения (1.1.1) по всей области изменения независимых переменных получаем:
, (1.1.3)
поскольку – плотность вероятности локализации частиц в данной точке и частица обязательно где-то находится. Это соотношение называется условием нормировки -функции (на единицу). Так как независимыми переменными могут быть не только координаты, но и другие физические величины в общем случае имеем
, (1.1.4)
где – произведение дифференциалов независимых переменных. Например, если -функция зависит от импульса частицы, то .
Условие нормировки накладывает на -функцию требование квадратичной интегрируемости:
(1.1.5)
Это означает что -функция должна быстро убывать при стремлении независимых переменных (например, координат) к бесконечности. Бывают ситуации, когда -функция не является квадратично интегрируемой. В таком случае применяются другие способы нормировки, целесообразные с физической точки зрения. Для таких квантовомеханических систем не имеет смысла плотности вероятности, но может быть интерпретирована как величина пропорциональная ей.
1.2 Принцип суперпозиции состояний
Опыт показывает, что между возможными состояниями квантовомеханической системы в любой момент времени существует определённая связь. Выражают её математически в виде соотношения между соответствующими –функциями и называют принципом суперпозиции.
Если квантовомеханическая система может находится в состоянии , в котором физическая величина имеет значение либо в состоянии , в котором та же величина имеет значение , то она может находиться и в состоянии , в котором при измерении величины получают либо , либо .
Это утверждение обобщается на любое число различных состояний:
, (1.2.1)
где постоянные являются, вообще говоря, комплексными числами. Таким образом, в состоянии величина является неопределённой.
Предположим, что состояния одинаковы: . Это означает, что физическая величина в этих состояниях имеет одно и тоже значение . Из принципа суперпозиции следует:
Следовательно, при измерении величины в состоянии мы получим значение . Это значит, что состояния и одинаковы. Таким образом, -функцию можно умножать на произвольное комплексное число и при этом состояние квантовомеханической системы не изменяется. Это постоянное число выбирают таким образом, чтобы выполнялось условие нормировки волновой функции. Поэтому его обычно называют нормировочным коэффициентом или постоянной нормировки.
Суперпозиция часто встречается в классической физике. (Например, суперпозиция классических волн, напряжённостей электрического поля и т.д.) С точки зрения математики классическая и квантовая суперпозиции аналогичны. Поэтому иногда используют аналогию квантовых систем с классическими (колеблющиеся струны, мембраны и т.д.). Эти классические системы также описываются линейными уравнениями и, следовательно, подчиняются принципу суперпозиции. «Важно помнить, однако, что суперпозиция, которая встречается в квантовой механике, существенным образом отличается от суперпозиции, встречающейся в любой классической теории» [1,с31]. Например, в результате суперпозиции двух классических волн появляется новая волна с новыми свойствами (например, новой амплитудой). Суперпозиция же двух квантовых состояний, в которых некоторая физическая величина имеет значение (в первом) и (во втором), не приводит к появлению состояния с новым значением . При измерении этой величины в суперпозиционном состоянии будем получать либо , либо . Результат конкретного измерения предсказать нельзя. Можно лишь найти вероятность того или иного результата. Неопределённость результатов измерения – принципиальное отличие квантовой суперпозиции от классической. «Промежуточный характер состояния, образованного в результате суперпозиции, выражается в том, что вероятность того или иного результата измерения будет промежуточной между соответствующими вероятностями для исходных состояний, а не в том, что сам результат будет промежуточным между соответствующими результатами для исходных состояний» [1,с.30]
1.3 Понятие гильбертова пространства.
Из принципа суперпозиции следует, что уравнения квантовой механики должны быть линейными. Действительно, если являются решением такого уравнения, то также должно быть его решением.
Из принципа суперпозиции следует также, что состояния системы в квантовой механике должны описываться такими математическими величинами, которые можно складывать, умножать на комплексные числа и при этом получать величины такого же типа.
Таким образом, величины, характеризующие состояние квантовомеханической системы, можно считать элементами некоторого линейного функционального пространства. Что же это за пространство? Ранее мы показали, что -функции являются, как правило, квадратично-интегрируемыми, т.е. такими, что
(Здесь – произведение дифференциалов независимых переменных от которых зависит -функция. Интегрирование проводится по всей области изменения этих переменных). Следовательно, каждой -функции можно сопоставить число
(1.3.1)
Это число называется нормой функции.
Существует аналогия между и абсолютной величиной вещественного или комплексного числа. С помощью абсолютной величины производится измерение расстояний на числовой оси
Аналогично понятие нормы даёт возможность множество элементов (функций) рассматривать как некоторые «пространство», в котором также можно проводить измерения. Расстояние между элементами и определяется числом
Таким образом, множество функций, характеризующих состояние квантовомеханической системы, образуют метрическое пространство. Оно называется пространством Гильберта. В этом пространстве можно определить скалярное произведение функций:
. (1.3.2)
Если скалярное произведение равно нулю:
то функции и считают ортогональными. Норма определяется через скалярное произведение функции саму на себя:
.
Свойства скалярного произведения:
(1.3.3а)
(1.3.3б)
, только если (1.3.3в)
Из соотношения (1.3.3а) следует, что скалярное произведение комплексной функции саму на себя вещественно:
Указанные свойства -функции аналогичны свойствам векторов в евклидовом пространстве. Эту аналогию рассмотрим подробнее при изучении операторов квантовой механики.
Итак, множество состояний квантовомеханической системы может быть представлено как пространство Гильберта.
Гильбертово пространство есть множество элементов (в нашем случае – функций, характеризующих состояние квантовой системы), на котором определены операции сложения, умножения на число и скалярное произведение с указанными выше свойствами (1.3.3).
Вопросы для самопроверки
1. Сформулировать первый постулат квантовой механики.
2. Какая связь между -функцией системы и вероятностью результатов измерения физических величин в данном состоянии?
3. Сформулировать принцип суперпозиции состояний.
4. Объяснить, чем квантовомеханическая суперпозиция отличается от классической?
5. Охарактеризуйте понятие "пространство Гильберта".
Упражнения
1.1. Частица локализована в области на оси и ее состояние описывается функцией . Найти коэффициент нормировки.
1.2. Состояние частицы, локализованной на оси в интервале описывается функцией . Найти вероятность ее обнаружения в области .
1.3. Состояние частицы в данный момент времени описывается волновой функцией , представляющей собой суперпозицию волн де Бройля с одинаковыми амплитудами и мало отличающимися волновыми числами в интервале . Определить распределение плотности вероятности местонахождения частицы и размер области ее локализации.
1.4. В момент времени волновая функция частицы имеет вид , где и – постоянные. Определить нормировочный коэффициент , изобразить примерный вид зависимости от и область локализации частицы.
Указание. Распределение вероятностей, описываемое плотностью вида
называется нормальным или гауссовским, – среднее значение случайной величины,