Теории управления

ации уже с аппаратурой.

3й этап состоит в проверке аппаратуры на полигоне.( На

борту транспортного или военного средства).


Моделирование случайных процессов с дискретным временем


(1) - выборка случайного процесса с дискретным

временем.

X(t) Процесс (1) в общем виде очень

трудно анализировать, этот про-

цесс, как правило, получен из

эксперимента. Этот реальный

процесс обычно аппроксимируется

другим процессом, который поз-

волит нам математически созда-

t вать модели, близкие к реально-

му процессу.

Такое создание моделей называется - аппроксимацией.

Сам аппроксимирующий процесс называется агрегат.


Марковская аппроксимация случайных процессов


Марковским процессом называется такой процесс, у которого

многомерная плотность вероятности

факторизуется в следующем виде : . Некоторые

значения фазовых переменных в n-мерном пространстве - это

многомерная плотность вероятности


Двумерная плотность Многомерная ФПВ несет всю ин-

вероятности формацию о случчайном процес-

W(x,y) се. Больше информации не су-

ществует.

Однако использовать эту мно-

гомерную ФПВ чрезвычайно сло-

жно на практике, поэтому час-

то прибегают к некоторым ап-

проксимациям процесса :

Y


X

Аппроксимировать - выбрать такие отсчеты

процесса в моменты времени , чтобы все были

независимы, тогда многомерная ФПВ факторизуется следую-

щим образом: - факторизация.

Однако при такой факторизации может потеряться информа-

ция о случайном процессе. Есть потеря информации для

произвольных отсчетов (кореллированность процесса).

Существует 2й способ аппроксимации - марковский способ

аппроксимации. Для марковских процессов многомерная ФПВ

факторизуется так :


(2) , где - ус-

ловная плотность вероятности.

Факторизация (2) позволяет сильно упростить математичес-

кие выкладки в задачах фильтрации и управления.


Определение : Процесс называется марковским, если выпол-

няется условие (2)


Оказывается, существует очень много генераторов марковс-

ких процессов. Мы переходим к их рассмотрению.


Процессы авторегрессии


Процесс авторегрессии - простой генератор марковского

процесса.


1. Односвязная регрессия


(3)

- задано.

- от генератора белого шума

- корреляция.


Если а®0 имеем

устойчивый процесс.

a<1

Если а>1 - неустой-

чивый процесс 1 2 3 4 n

®Ґ (P=1)

x(t) ¬a=0.9


aі1

¬a=0.3