Теории управления

а может быть и небелым, например, описываться сколь-

зящим средним ().


Критерий оптимального управления


Пусть модель (1) или (2) генерирует случайный процесс :


- управляемый процесс с дискретным

временем, т.е. процесс должен развиваться таким образом,

чтобы минимизировать некоторую функцию риска, тогда уп-

равление называется оптимальным.


Математически это выглядит так :


,

где f(Ч) - выпуклая функция

При движении ракеты по некоторой траектории из точки А в

точку В траектория должна быть такой, чтобы минимизиро-

вать энергетические затраты на управление.


Пример 2 :

Существует некоторая эталонная траектория.

Необходимо привести движение про-

цесса к эталону за минимальное

время. Это называется оптимизация

x(t)-эталон по быстродействию. Существует мно-

жество способов аналитического на-

хождения оптимальной функции упра-

x(t) вления.


Метод динамического программирования


Имеется детерминированная система :


(1)


Принцип Бэлмана - состоит в том, что оптимальное управ-

ление ищется с конца в начало (из будущего в прошлое).

Задача решается в обратном направлении.


(2)


Аналитическое решение задачи по Бэлману


Предположим, что мы отправились из и прошли траекторию:

. И предположим, что за ‘k’ шагов управление вы-

брали. Принцип динамического программирования основывает-

ся на том, что любой кусок траектории оптимального управ-

ления является оптимальным.


(3)

Траектория от (k+1) до ‘n’ называется хвостом.


N - последняя точка в управлении






С учетом (3) запишем :


(4)


Допустим, что начиная от шага (k+1) до ‘n’ в формуле (4)

оптимальное управление уже выбрано.


(5)

k=N,N-1,...,1


(6)


Формула (6) называется уравнением Бэлмана (уравне-

ние динамического программирования)


Выводы: (из уравнения (6))


Уравнение (6) позволяет в реккурентной форме вы-

вычислить управление, шаг за шагом, от точки N

до 1 (из будущего в прошлое) получить минимиза-

цию (6) на каждом шаге. Получить . Значе-

ния управления фактически получаются методом пе-

ребора. Оптимальная траектория ) неиз-

вестна до самого последнего шага.

Если задача имеет большую размерность, то

сложность при вычислении очень большая. Если

вводить динамические системы (т.е. модели), то

можно значительно упростить метод нахождения оп-

тимального управления. Т.е. получить управление

в замкнутом виде (в виде некоторой формулы).


Синтез оптимального управления для марковских динамичес-

ких систем.


(1) ; ; ; где -


- управление; - шум динамической системы.

Управление должно менять - траекторию, и изменять ее так, чтобы минимизировать средний критерий качества,

причем управляется динамическая система не по всем коор-

динатам.

- управляемый случайный процесс.

Динамическая система, сама как таковая, не наблюдается, а

наблюдается j()(нелинейно преобразованная фазовая пере-

менная) с шумом. В этом случае говорят, что динамическая система ненаблюдаема напрямую. Для того, чтобы сделать ее

наблюдаемой необходимо использовать теорию нелинейной

фильтрации (см. предыдущие лекции).

В этом случае получаем оценку нелинейной динамической

системы в условиях линеаризации по Тейлору :


(2)


Синтез оптимального управления используя (2) проведем применив квадратичный критерий качества, причем управле-

ние динамической системой будем вести к некоторому этало-

ну, т.е. задано : , i=1,2...n


Критерий оптимизации


(3) ;

где || - норма, .

Риск складывается из двух слагаемых :


1-е слагаемое : Это есть квадрат отклонения траектории от

эталона. Оно должно быть минимизировано с

учетом формулы (2).

2-е слагаемое : Это есть сумма с квадратом самого управ-

ления (некоторая сила) должны быть мини-

мизированны (так должно быть всегда)


Минимизация (3) - это достаточно сложная задача вариаци-

онного исчисления (просто взять здесь производную по ‘u’

не удается).


Для минимизации (3) используем уравнение Бэлмана :


(4)


В формуле (4) минимизируя шаг за шагом получим :


(5) ; где - матрица


Выводы : (к формуле (5))

Оптимальное управление (5) реализуется с ис-

пользованием линейной оценки динамической сис-

темы, и это управление вставляется в формулу :

Если упростить критерий и привести его к виду (3’):

(3’)

то минимизация дает оптимальное управление эталона:


(6)

Оптимальное управление пропорционально разности меж-

ду экстраполированной оценкой и эталоном, т.о. полу-

чим :

(7)

Оценка (7) подставляется в (6). Со временем, при ми-

нимизации в этом случае сама оценка устремляется к

эталону.


Пример синтеза динамической системы управления частотой

генератора


Общая постановка :


Пусть имеется некоторая эталонная траектория

(1) , где - шум

Если эталон защищен, то его фильтруют.

Имеется управляемая динамическая система :

Управляемая динамическая система - фаза генератора или

траектория, которая должна подстроиться под эталон.


(2) ; шума часто нет, поэтому

им пренебрегают. Пусть

(3)

Рассмотрим более сложную модель фазы рассматриваемого ге-

нератора.


(4)

Считаем, что в (1),(3) уход фазы очень медленный,т.е.

. Используя нелинейную функцию оценка эталона:


(4’)

В (4) решение уравнения относительно имеет вид :

(5) ; с<1.

Выше было доказано, используя уравнение Бэлмана,

что :

(6)


Структурная схема реализации оптимального управления под-

стройки частоты к эталону


(4’) (5’)

шум

эталонный нелиненый Решающее Подстраи-

генератор фильтр устройство ваемый ге- вых