Теории управления

f

В зависимости от коэффициентов ны выходе будут раз-

личные процессы. Процесс (1) получается из линейного диф.

уравнения 2-го порядка, если это диф. уравнение рассмат-

ривать на временной сетке (дискретна во времени).

Известно, что диф. уравнение 2-го порядка имеет реше-

ние в виде комплексной экспоненты, если корни характерис-

тического уравнения комплексные, аналогично для некоторых

значений коэффициентов , процесс авторегрессии будет

иметь вид стохастической синусоиды.


Генератор двухсвязного марковского процесса




|ѕѕ| |ѕѕ|





T - период дискретизации


Изменение по синусоиде называется синусоидальный тренд.

Марковский процесс 2-го порядка более богатый, чем 1-го,

с помощью него можно моделировать более сложные процессы.


Авторегрессия m-го порядка


(2)

- возбуждающий белый шум.

Процесс (2) получен из диф. уравнения m-го порядка путем

дискретизации. Это марковский процесс с дискретным време-

нем.

Этот процесс значительно более информативен, чем ра-

нее рассмотренные, ибо он может моделировать сложномоду-

лированные случайные процессы. Он может модулировать АМ,

ЧМ, ФМ путем подбора , а также подбором мож-

но идентифицировать очень многие случайные процессы ре-

ально существующие на практике, например : хорошо моду-

лируется движение летательнвх аппаратов при маневре (рег-

рессия m=6ё16), речь, полет космического корабля, посадка

на планету.Стохастическая модель удобна потому, что она адекватна реальным ситуациям.


Генератор m-связного марковского процесса



|ѕѕ| ...... |ѕѕ| |ѕѕ|




Разностные модели на примере модели 2-го порядка


(3) - разностная модель 2-го порядка


- приращение, характеризует скорость изменения

процесса


Модель с приращением удобна в том

плане, что не требуется заранее

знать коэффициенты регрессии.


Разностные модели 3-го порядка


(4)


- 1-я разность

- 2-я разность

1-я разность характеризует скорость изменения случайного

процесса.

2-я разность характеризует ускорение.


Модель (3) и (4) очень широко иcпользуется на практи-

ке, т.к. здесь почти нет коэффициентов, которые нужно

идентифицировать ( а и ), они легко подбираются на ЭВМ

по методу наименьших квадратов. Для этого надо иметь ре-

альный процесс отсчетов , модель (4) и нужно воспользо-

ваться следующей формулой МНК/метод наименьших квадратов/


min где, - модель,

- реальный процесс


Суть МНК состоит в следующем :

Есть m-отсчетов реального процесса, есть m-отсчетов

модели, составляется сумма квадратов и подбираются пара-

метры (а,) так, чтобы минимизировать эту сумму (делает-

ся это на ЭВМ)(метод перебора) но в авторегрессии m-го

порядка. Сделать это очень сложно.


Модели скользящего среднего


Пусть - независимая случайная величина, с произвольным распределением (очень часто гауссовское распределение)


М=0 ; М= ; (процесс не коррелирован)

Тогда процесс


(1)


называется процессом скользящего среднего. Этот

процесс сформирован полностью из шума (из белого шума)

путем сдвига и весового суммирования.

( - весовые коэффициенты). Сумма (1) генерирует

процесс . Процесс - коррелированный марковский

процесс.


Генератор скользящего среднего для формулы (1)